shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * jchuff.c
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * This file was part of the Independent JPEG Group's software:
shun-iwasawa 82a8f5
 * Copyright (C) 1991-1997, Thomas G. Lane.
shun-iwasawa 82a8f5
 * libjpeg-turbo Modifications:
shun-iwasawa 82a8f5
 * Copyright (C) 2009-2011, 2014-2016, 2018-2019, D. R. Commander.
shun-iwasawa 82a8f5
 * Copyright (C) 2015, Matthieu Darbois.
shun-iwasawa 82a8f5
 * For conditions of distribution and use, see the accompanying README.ijg
shun-iwasawa 82a8f5
 * file.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * This file contains Huffman entropy encoding routines.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * Much of the complexity here has to do with supporting output suspension.
shun-iwasawa 82a8f5
 * If the data destination module demands suspension, we want to be able to
shun-iwasawa 82a8f5
 * back up to the start of the current MCU.  To do this, we copy state
shun-iwasawa 82a8f5
 * variables into local working storage, and update them back to the
shun-iwasawa 82a8f5
 * permanent JPEG objects only upon successful completion of an MCU.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * NOTE: All referenced figures are from
shun-iwasawa 82a8f5
 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define JPEG_INTERNALS
shun-iwasawa 82a8f5
#include "jinclude.h"
shun-iwasawa 82a8f5
#include "jpeglib.h"
shun-iwasawa 82a8f5
#include "jsimd.h"
shun-iwasawa 82a8f5
#include "jconfigint.h"
shun-iwasawa 82a8f5
#include <limits.h></limits.h>
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
shun-iwasawa 82a8f5
 * used for bit counting rather than the lookup table.  This will reduce the
shun-iwasawa 82a8f5
 * memory footprint by 64k, which is important for some mobile applications
shun-iwasawa 82a8f5
 * that create many isolated instances of libjpeg-turbo (web browsers, for
shun-iwasawa 82a8f5
 * instance.)  This may improve performance on some mobile platforms as well.
shun-iwasawa 82a8f5
 * This feature is enabled by default only on Arm processors, because some x86
shun-iwasawa 82a8f5
 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
shun-iwasawa 82a8f5
 * shown to have a significant performance impact even on the x86 chips that
shun-iwasawa 82a8f5
 * have a fast implementation of it.  When building for Armv6, you can
shun-iwasawa 82a8f5
 * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
shun-iwasawa 82a8f5
 * flags (this defines __thumb__).
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* NOTE: Both GCC and Clang define __GNUC__ */
shun-iwasawa 82a8f5
#if defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))
shun-iwasawa 82a8f5
#if !defined(__thumb__) || defined(__thumb2__)
shun-iwasawa 82a8f5
#define USE_CLZ_INTRINSIC
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#ifdef USE_CLZ_INTRINSIC
shun-iwasawa 82a8f5
#define JPEG_NBITS_NONZERO(x)  (32 - __builtin_clz(x))
shun-iwasawa 82a8f5
#define JPEG_NBITS(x)          (x ? JPEG_NBITS_NONZERO(x) : 0)
shun-iwasawa 82a8f5
#else
shun-iwasawa 82a8f5
#include "jpeg_nbits_table.h"
shun-iwasawa 82a8f5
#define JPEG_NBITS(x)          (jpeg_nbits_table[x])
shun-iwasawa 82a8f5
#define JPEG_NBITS_NONZERO(x)  JPEG_NBITS(x)
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Expanded entropy encoder object for Huffman encoding.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * The savable_state subrecord contains fields that change within an MCU,
shun-iwasawa 82a8f5
 * but must not be updated permanently until we complete the MCU.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
typedef struct {
shun-iwasawa 82a8f5
  size_t put_buffer;                    /* current bit-accumulation buffer */
shun-iwasawa 82a8f5
  int put_bits;                         /* # of bits now in it */
shun-iwasawa 82a8f5
  int last_dc_val[MAX_COMPS_IN_SCAN];   /* last DC coef for each component */
shun-iwasawa 82a8f5
} savable_state;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* This macro is to work around compilers with missing or broken
shun-iwasawa 82a8f5
 * structure assignment.  You'll need to fix this code if you have
shun-iwasawa 82a8f5
 * such a compiler and you change MAX_COMPS_IN_SCAN.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#ifndef NO_STRUCT_ASSIGN
shun-iwasawa 82a8f5
#define ASSIGN_STATE(dest, src)  ((dest) = (src))
shun-iwasawa 82a8f5
#else
shun-iwasawa 82a8f5
#if MAX_COMPS_IN_SCAN == 4
shun-iwasawa 82a8f5
#define ASSIGN_STATE(dest, src) \
shun-iwasawa 82a8f5
  ((dest).put_buffer = (src).put_buffer, \
shun-iwasawa 82a8f5
   (dest).put_bits = (src).put_bits, \
shun-iwasawa 82a8f5
   (dest).last_dc_val[0] = (src).last_dc_val[0], \
shun-iwasawa 82a8f5
   (dest).last_dc_val[1] = (src).last_dc_val[1], \
shun-iwasawa 82a8f5
   (dest).last_dc_val[2] = (src).last_dc_val[2], \
shun-iwasawa 82a8f5
   (dest).last_dc_val[3] = (src).last_dc_val[3])
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
typedef struct {
shun-iwasawa 82a8f5
  struct jpeg_entropy_encoder pub; /* public fields */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  savable_state saved;          /* Bit buffer & DC state at start of MCU */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* These fields are NOT loaded into local working state. */
shun-iwasawa 82a8f5
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
shun-iwasawa 82a8f5
  int next_restart_num;         /* next restart number to write (0-7) */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Pointers to derived tables (these workspaces have image lifespan) */
shun-iwasawa 82a8f5
  c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
shun-iwasawa 82a8f5
  c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
shun-iwasawa 82a8f5
  long *dc_count_ptrs[NUM_HUFF_TBLS];
shun-iwasawa 82a8f5
  long *ac_count_ptrs[NUM_HUFF_TBLS];
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  int simd;
shun-iwasawa 82a8f5
} huff_entropy_encoder;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
typedef huff_entropy_encoder *huff_entropy_ptr;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Working state while writing an MCU.
shun-iwasawa 82a8f5
 * This struct contains all the fields that are needed by subroutines.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
typedef struct {
shun-iwasawa 82a8f5
  JOCTET *next_output_byte;     /* => next byte to write in buffer */
shun-iwasawa 82a8f5
  size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
shun-iwasawa 82a8f5
  savable_state cur;            /* Current bit buffer & DC state */
shun-iwasawa 82a8f5
  j_compress_ptr cinfo;         /* dump_buffer needs access to this */
shun-iwasawa 82a8f5
} working_state;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Forward declarations */
shun-iwasawa 82a8f5
METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data);
shun-iwasawa 82a8f5
METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo);
shun-iwasawa 82a8f5
#ifdef ENTROPY_OPT_SUPPORTED
shun-iwasawa 82a8f5
METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo,
shun-iwasawa 82a8f5
                                     JBLOCKROW *MCU_data);
shun-iwasawa 82a8f5
METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo);
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Initialize for a Huffman-compressed scan.
shun-iwasawa 82a8f5
 * If gather_statistics is TRUE, we do not output anything during the scan,
shun-iwasawa 82a8f5
 * just count the Huffman symbols used and generate Huffman code tables.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
METHODDEF(void)
shun-iwasawa 82a8f5
start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
shun-iwasawa 82a8f5
  int ci, dctbl, actbl;
shun-iwasawa 82a8f5
  jpeg_component_info *compptr;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  if (gather_statistics) {
shun-iwasawa 82a8f5
#ifdef ENTROPY_OPT_SUPPORTED
shun-iwasawa 82a8f5
    entropy->pub.encode_mcu = encode_mcu_gather;
shun-iwasawa 82a8f5
    entropy->pub.finish_pass = finish_pass_gather;
shun-iwasawa 82a8f5
#else
shun-iwasawa 82a8f5
    ERREXIT(cinfo, JERR_NOT_COMPILED);
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
  } else {
shun-iwasawa 82a8f5
    entropy->pub.encode_mcu = encode_mcu_huff;
shun-iwasawa 82a8f5
    entropy->pub.finish_pass = finish_pass_huff;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  entropy->simd = jsimd_can_huff_encode_one_block();
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
shun-iwasawa 82a8f5
    compptr = cinfo->cur_comp_info[ci];
shun-iwasawa 82a8f5
    dctbl = compptr->dc_tbl_no;
shun-iwasawa 82a8f5
    actbl = compptr->ac_tbl_no;
shun-iwasawa 82a8f5
    if (gather_statistics) {
shun-iwasawa 82a8f5
#ifdef ENTROPY_OPT_SUPPORTED
shun-iwasawa 82a8f5
      /* Check for invalid table indexes */
shun-iwasawa 82a8f5
      /* (make_c_derived_tbl does this in the other path) */
shun-iwasawa 82a8f5
      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
shun-iwasawa 82a8f5
        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
shun-iwasawa 82a8f5
      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
shun-iwasawa 82a8f5
        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
shun-iwasawa 82a8f5
      /* Allocate and zero the statistics tables */
shun-iwasawa 82a8f5
      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
shun-iwasawa 82a8f5
      if (entropy->dc_count_ptrs[dctbl] == NULL)
shun-iwasawa 82a8f5
        entropy->dc_count_ptrs[dctbl] = (long *)
shun-iwasawa 82a8f5
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
shun-iwasawa 82a8f5
                                      257 * sizeof(long));
shun-iwasawa 82a8f5
      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
shun-iwasawa 82a8f5
      if (entropy->ac_count_ptrs[actbl] == NULL)
shun-iwasawa 82a8f5
        entropy->ac_count_ptrs[actbl] = (long *)
shun-iwasawa 82a8f5
          (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
shun-iwasawa 82a8f5
                                      257 * sizeof(long));
shun-iwasawa 82a8f5
      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
    } else {
shun-iwasawa 82a8f5
      /* Compute derived values for Huffman tables */
shun-iwasawa 82a8f5
      /* We may do this more than once for a table, but it's not expensive */
shun-iwasawa 82a8f5
      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
shun-iwasawa 82a8f5
                              &entropy->dc_derived_tbls[dctbl]);
shun-iwasawa 82a8f5
      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
shun-iwasawa 82a8f5
                              &entropy->ac_derived_tbls[actbl]);
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
    /* Initialize DC predictions to 0 */
shun-iwasawa 82a8f5
    entropy->saved.last_dc_val[ci] = 0;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Initialize bit buffer to empty */
shun-iwasawa 82a8f5
  entropy->saved.put_buffer = 0;
shun-iwasawa 82a8f5
  entropy->saved.put_bits = 0;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Initialize restart stuff */
shun-iwasawa 82a8f5
  entropy->restarts_to_go = cinfo->restart_interval;
shun-iwasawa 82a8f5
  entropy->next_restart_num = 0;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Compute the derived values for a Huffman table.
shun-iwasawa 82a8f5
 * This routine also performs some validation checks on the table.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * Note this is also used by jcphuff.c.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
GLOBAL(void)
shun-iwasawa 82a8f5
jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno,
shun-iwasawa 82a8f5
                        c_derived_tbl **pdtbl)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  JHUFF_TBL *htbl;
shun-iwasawa 82a8f5
  c_derived_tbl *dtbl;
shun-iwasawa 82a8f5
  int p, i, l, lastp, si, maxsymbol;
shun-iwasawa 82a8f5
  char huffsize[257];
shun-iwasawa 82a8f5
  unsigned int huffcode[257];
shun-iwasawa 82a8f5
  unsigned int code;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Note that huffsize[] and huffcode[] are filled in code-length order,
shun-iwasawa 82a8f5
   * paralleling the order of the symbols themselves in htbl->huffval[].
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Find the input Huffman table */
shun-iwasawa 82a8f5
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
shun-iwasawa 82a8f5
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
shun-iwasawa 82a8f5
  htbl =
shun-iwasawa 82a8f5
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
shun-iwasawa 82a8f5
  if (htbl == NULL)
shun-iwasawa 82a8f5
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Allocate a workspace if we haven't already done so. */
shun-iwasawa 82a8f5
  if (*pdtbl == NULL)
shun-iwasawa 82a8f5
    *pdtbl = (c_derived_tbl *)
shun-iwasawa 82a8f5
      (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
shun-iwasawa 82a8f5
                                  sizeof(c_derived_tbl));
shun-iwasawa 82a8f5
  dtbl = *pdtbl;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Figure C.1: make table of Huffman code length for each symbol */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  p = 0;
shun-iwasawa 82a8f5
  for (l = 1; l <= 16; l++) {
shun-iwasawa 82a8f5
    i = (int)htbl->bits[l];
shun-iwasawa 82a8f5
    if (i < 0 || p + i > 256)   /* protect against table overrun */
shun-iwasawa 82a8f5
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
shun-iwasawa 82a8f5
    while (i--)
shun-iwasawa 82a8f5
      huffsize[p++] = (char)l;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
  huffsize[p] = 0;
shun-iwasawa 82a8f5
  lastp = p;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Figure C.2: generate the codes themselves */
shun-iwasawa 82a8f5
  /* We also validate that the counts represent a legal Huffman code tree. */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  code = 0;
shun-iwasawa 82a8f5
  si = huffsize[0];
shun-iwasawa 82a8f5
  p = 0;
shun-iwasawa 82a8f5
  while (huffsize[p]) {
shun-iwasawa 82a8f5
    while (((int)huffsize[p]) == si) {
shun-iwasawa 82a8f5
      huffcode[p++] = code;
shun-iwasawa 82a8f5
      code++;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
    /* code is now 1 more than the last code used for codelength si; but
shun-iwasawa 82a8f5
     * it must still fit in si bits, since no code is allowed to be all ones.
shun-iwasawa 82a8f5
     */
shun-iwasawa 82a8f5
    if (((JLONG)code) >= (((JLONG)1) << si))
shun-iwasawa 82a8f5
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
shun-iwasawa 82a8f5
    code <<= 1;
shun-iwasawa 82a8f5
    si++;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Figure C.3: generate encoding tables */
shun-iwasawa 82a8f5
  /* These are code and size indexed by symbol value */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Set all codeless symbols to have code length 0;
shun-iwasawa 82a8f5
   * this lets us detect duplicate VAL entries here, and later
shun-iwasawa 82a8f5
   * allows emit_bits to detect any attempt to emit such symbols.
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
  MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* This is also a convenient place to check for out-of-range
shun-iwasawa 82a8f5
   * and duplicated VAL entries.  We allow 0..255 for AC symbols
shun-iwasawa 82a8f5
   * but only 0..15 for DC.  (We could constrain them further
shun-iwasawa 82a8f5
   * based on data depth and mode, but this seems enough.)
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
  maxsymbol = isDC ? 15 : 255;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  for (p = 0; p < lastp; p++) {
shun-iwasawa 82a8f5
    i = htbl->huffval[p];
shun-iwasawa 82a8f5
    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
shun-iwasawa 82a8f5
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
shun-iwasawa 82a8f5
    dtbl->ehufco[i] = huffcode[p];
shun-iwasawa 82a8f5
    dtbl->ehufsi[i] = huffsize[p];
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Outputting bytes to the file */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Emit a byte, taking 'action' if must suspend. */
shun-iwasawa 82a8f5
#define emit_byte(state, val, action) { \
shun-iwasawa 82a8f5
  *(state)->next_output_byte++ = (JOCTET)(val); \
shun-iwasawa 82a8f5
  if (--(state)->free_in_buffer == 0) \
shun-iwasawa 82a8f5
    if (!dump_buffer(state)) \
shun-iwasawa 82a8f5
      { action; } \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
LOCAL(boolean)
shun-iwasawa 82a8f5
dump_buffer(working_state *state)
shun-iwasawa 82a8f5
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  struct jpeg_destination_mgr *dest = state->cinfo->dest;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  if (!(*dest->empty_output_buffer) (state->cinfo))
shun-iwasawa 82a8f5
    return FALSE;
shun-iwasawa 82a8f5
  /* After a successful buffer dump, must reset buffer pointers */
shun-iwasawa 82a8f5
  state->next_output_byte = dest->next_output_byte;
shun-iwasawa 82a8f5
  state->free_in_buffer = dest->free_in_buffer;
shun-iwasawa 82a8f5
  return TRUE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Outputting bits to the file */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* These macros perform the same task as the emit_bits() function in the
shun-iwasawa 82a8f5
 * original libjpeg code.  In addition to reducing overhead by explicitly
shun-iwasawa 82a8f5
 * inlining the code, additional performance is achieved by taking into
shun-iwasawa 82a8f5
 * account the size of the bit buffer and waiting until it is almost full
shun-iwasawa 82a8f5
 * before emptying it.  This mostly benefits 64-bit platforms, since 6
shun-iwasawa 82a8f5
 * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define EMIT_BYTE() { \
shun-iwasawa 82a8f5
  JOCTET c; \
shun-iwasawa 82a8f5
  put_bits -= 8; \
shun-iwasawa 82a8f5
  c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
shun-iwasawa 82a8f5
  *buffer++ = c; \
shun-iwasawa 82a8f5
  if (c == 0xFF)  /* need to stuff a zero byte? */ \
shun-iwasawa 82a8f5
    *buffer++ = 0; \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define PUT_BITS(code, size) { \
shun-iwasawa 82a8f5
  put_bits += size; \
shun-iwasawa 82a8f5
  put_buffer = (put_buffer << size) | code; \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#if SIZEOF_SIZE_T != 8 && !defined(_WIN64)
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define CHECKBUF15() { \
shun-iwasawa 82a8f5
  if (put_bits > 15) { \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
  } \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define CHECKBUF31() { \
shun-iwasawa 82a8f5
  if (put_bits > 31) { \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
  } \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define CHECKBUF47() { \
shun-iwasawa 82a8f5
  if (put_bits > 47) { \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
    EMIT_BYTE() \
shun-iwasawa 82a8f5
  } \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
shun-iwasawa 82a8f5
#error Cannot determine word size
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#if SIZEOF_SIZE_T == 8 || defined(_WIN64)
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define EMIT_BITS(code, size) { \
shun-iwasawa 82a8f5
  CHECKBUF47() \
shun-iwasawa 82a8f5
  PUT_BITS(code, size) \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define EMIT_CODE(code, size) { \
shun-iwasawa 82a8f5
  temp2 &= (((JLONG)1) << nbits) - 1; \
shun-iwasawa 82a8f5
  CHECKBUF31() \
shun-iwasawa 82a8f5
  PUT_BITS(code, size) \
shun-iwasawa 82a8f5
  PUT_BITS(temp2, nbits) \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#else
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define EMIT_BITS(code, size) { \
shun-iwasawa 82a8f5
  PUT_BITS(code, size) \
shun-iwasawa 82a8f5
  CHECKBUF15() \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define EMIT_CODE(code, size) { \
shun-iwasawa 82a8f5
  temp2 &= (((JLONG)1) << nbits) - 1; \
shun-iwasawa 82a8f5
  PUT_BITS(code, size) \
shun-iwasawa 82a8f5
  CHECKBUF15() \
shun-iwasawa 82a8f5
  PUT_BITS(temp2, nbits) \
shun-iwasawa 82a8f5
  CHECKBUF15() \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Although it is exceedingly rare, it is possible for a Huffman-encoded
shun-iwasawa 82a8f5
 * coefficient block to be larger than the 128-byte unencoded block.  For each
shun-iwasawa 82a8f5
 * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
shun-iwasawa 82a8f5
 * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
shun-iwasawa 82a8f5
 * encoded block.)  If, for instance, one artificially sets the AC
shun-iwasawa 82a8f5
 * coefficients to alternating values of 32767 and -32768 (using the JPEG
shun-iwasawa 82a8f5
 * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
shun-iwasawa 82a8f5
 * larger than 200 bytes.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
#define BUFSIZE  (DCTSIZE2 * 8)
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define LOAD_BUFFER() { \
shun-iwasawa 82a8f5
  if (state->free_in_buffer < BUFSIZE) { \
shun-iwasawa 82a8f5
    localbuf = 1; \
shun-iwasawa 82a8f5
    buffer = _buffer; \
shun-iwasawa 82a8f5
  } else \
shun-iwasawa 82a8f5
    buffer = state->next_output_byte; \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#define STORE_BUFFER() { \
shun-iwasawa 82a8f5
  if (localbuf) { \
shun-iwasawa 82a8f5
    bytes = buffer - _buffer; \
shun-iwasawa 82a8f5
    buffer = _buffer; \
shun-iwasawa 82a8f5
    while (bytes > 0) { \
shun-iwasawa 82a8f5
      bytestocopy = MIN(bytes, state->free_in_buffer); \
shun-iwasawa 82a8f5
      MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
shun-iwasawa 82a8f5
      state->next_output_byte += bytestocopy; \
shun-iwasawa 82a8f5
      buffer += bytestocopy; \
shun-iwasawa 82a8f5
      state->free_in_buffer -= bytestocopy; \
shun-iwasawa 82a8f5
      if (state->free_in_buffer == 0) \
shun-iwasawa 82a8f5
        if (!dump_buffer(state)) return FALSE; \
shun-iwasawa 82a8f5
      bytes -= bytestocopy; \
shun-iwasawa 82a8f5
    } \
shun-iwasawa 82a8f5
  } else { \
shun-iwasawa 82a8f5
    state->free_in_buffer -= (buffer - state->next_output_byte); \
shun-iwasawa 82a8f5
    state->next_output_byte = buffer; \
shun-iwasawa 82a8f5
  } \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
LOCAL(boolean)
shun-iwasawa 82a8f5
flush_bits(working_state *state)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  JOCTET _buffer[BUFSIZE], *buffer;
shun-iwasawa 82a8f5
  size_t put_buffer;  int put_bits;
shun-iwasawa 82a8f5
  size_t bytes, bytestocopy;  int localbuf = 0;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  put_buffer = state->cur.put_buffer;
shun-iwasawa 82a8f5
  put_bits = state->cur.put_bits;
shun-iwasawa 82a8f5
  LOAD_BUFFER()
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* fill any partial byte with ones */
shun-iwasawa 82a8f5
  PUT_BITS(0x7F, 7)
shun-iwasawa 82a8f5
  while (put_bits >= 8) EMIT_BYTE()
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
shun-iwasawa 82a8f5
  state->cur.put_bits = 0;
shun-iwasawa 82a8f5
  STORE_BUFFER()
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  return TRUE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Encode a single block's worth of coefficients */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
LOCAL(boolean)
shun-iwasawa 82a8f5
encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val,
shun-iwasawa 82a8f5
                      c_derived_tbl *dctbl, c_derived_tbl *actbl)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  JOCTET _buffer[BUFSIZE], *buffer;
shun-iwasawa 82a8f5
  size_t bytes, bytestocopy;  int localbuf = 0;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  LOAD_BUFFER()
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
shun-iwasawa 82a8f5
                                       dctbl, actbl);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  STORE_BUFFER()
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  return TRUE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
LOCAL(boolean)
shun-iwasawa 82a8f5
encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val,
shun-iwasawa 82a8f5
                 c_derived_tbl *dctbl, c_derived_tbl *actbl)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  int temp, temp2, temp3;
shun-iwasawa 82a8f5
  int nbits;
shun-iwasawa 82a8f5
  int r, code, size;
shun-iwasawa 82a8f5
  JOCTET _buffer[BUFSIZE], *buffer;
shun-iwasawa 82a8f5
  size_t put_buffer;  int put_bits;
shun-iwasawa 82a8f5
  int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
shun-iwasawa 82a8f5
  size_t bytes, bytestocopy;  int localbuf = 0;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  put_buffer = state->cur.put_buffer;
shun-iwasawa 82a8f5
  put_bits = state->cur.put_bits;
shun-iwasawa 82a8f5
  LOAD_BUFFER()
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Encode the DC coefficient difference per section F.1.2.1 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  temp = temp2 = block[0] - last_dc_val;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* This is a well-known technique for obtaining the absolute value without a
shun-iwasawa 82a8f5
   * branch.  It is derived from an assembly language technique presented in
shun-iwasawa 82a8f5
   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
shun-iwasawa 82a8f5
   * Agner Fog.
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
  temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
shun-iwasawa 82a8f5
  temp ^= temp3;
shun-iwasawa 82a8f5
  temp -= temp3;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* For a negative input, want temp2 = bitwise complement of abs(input) */
shun-iwasawa 82a8f5
  /* This code assumes we are on a two's complement machine */
shun-iwasawa 82a8f5
  temp2 += temp3;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Find the number of bits needed for the magnitude of the coefficient */
shun-iwasawa 82a8f5
  nbits = JPEG_NBITS(temp);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Emit the Huffman-coded symbol for the number of bits */
shun-iwasawa 82a8f5
  code = dctbl->ehufco[nbits];
shun-iwasawa 82a8f5
  size = dctbl->ehufsi[nbits];
shun-iwasawa 82a8f5
  EMIT_BITS(code, size)
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Mask off any extra bits in code */
shun-iwasawa 82a8f5
  temp2 &= (((JLONG)1) << nbits) - 1;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Emit that number of bits of the value, if positive, */
shun-iwasawa 82a8f5
  /* or the complement of its magnitude, if negative. */
shun-iwasawa 82a8f5
  EMIT_BITS(temp2, nbits)
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Encode the AC coefficients per section F.1.2.2 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  r = 0;                        /* r = run length of zeros */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Manually unroll the k loop to eliminate the counter variable.  This
shun-iwasawa 82a8f5
 * improves performance greatly on systems with a limited number of
shun-iwasawa 82a8f5
 * registers (such as x86.)
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
#define kloop(jpeg_natural_order_of_k) { \
shun-iwasawa 82a8f5
  if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
shun-iwasawa 82a8f5
    r++; \
shun-iwasawa 82a8f5
  } else { \
shun-iwasawa 82a8f5
    temp2 = temp; \
shun-iwasawa 82a8f5
    /* Branch-less absolute value, bitwise complement, etc., same as above */ \
shun-iwasawa 82a8f5
    temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
shun-iwasawa 82a8f5
    temp ^= temp3; \
shun-iwasawa 82a8f5
    temp -= temp3; \
shun-iwasawa 82a8f5
    temp2 += temp3; \
shun-iwasawa 82a8f5
    nbits = JPEG_NBITS_NONZERO(temp); \
shun-iwasawa 82a8f5
    /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
shun-iwasawa 82a8f5
    while (r > 15) { \
shun-iwasawa 82a8f5
      EMIT_BITS(code_0xf0, size_0xf0) \
shun-iwasawa 82a8f5
      r -= 16; \
shun-iwasawa 82a8f5
    } \
shun-iwasawa 82a8f5
    /* Emit Huffman symbol for run length / number of bits */ \
shun-iwasawa 82a8f5
    temp3 = (r << 4) + nbits; \
shun-iwasawa 82a8f5
    code = actbl->ehufco[temp3]; \
shun-iwasawa 82a8f5
    size = actbl->ehufsi[temp3]; \
shun-iwasawa 82a8f5
    EMIT_CODE(code, size) \
shun-iwasawa 82a8f5
    r = 0; \
shun-iwasawa 82a8f5
  } \
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* One iteration for each value in jpeg_natural_order[] */
shun-iwasawa 82a8f5
  kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
shun-iwasawa 82a8f5
  kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
shun-iwasawa 82a8f5
  kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
shun-iwasawa 82a8f5
  kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
shun-iwasawa 82a8f5
  kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
shun-iwasawa 82a8f5
  kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
shun-iwasawa 82a8f5
  kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
shun-iwasawa 82a8f5
  kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
shun-iwasawa 82a8f5
  kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
shun-iwasawa 82a8f5
  kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
shun-iwasawa 82a8f5
  kloop(55);  kloop(62);  kloop(63);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* If the last coef(s) were zero, emit an end-of-block code */
shun-iwasawa 82a8f5
  if (r > 0) {
shun-iwasawa 82a8f5
    code = actbl->ehufco[0];
shun-iwasawa 82a8f5
    size = actbl->ehufsi[0];
shun-iwasawa 82a8f5
    EMIT_BITS(code, size)
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  state->cur.put_buffer = put_buffer;
shun-iwasawa 82a8f5
  state->cur.put_bits = put_bits;
shun-iwasawa 82a8f5
  STORE_BUFFER()
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  return TRUE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Emit a restart marker & resynchronize predictions.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
LOCAL(boolean)
shun-iwasawa 82a8f5
emit_restart(working_state *state, int restart_num)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  int ci;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  if (!flush_bits(state))
shun-iwasawa 82a8f5
    return FALSE;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  emit_byte(state, 0xFF, return FALSE);
shun-iwasawa 82a8f5
  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Re-initialize DC predictions to 0 */
shun-iwasawa 82a8f5
  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
shun-iwasawa 82a8f5
    state->cur.last_dc_val[ci] = 0;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* The restart counter is not updated until we successfully write the MCU. */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  return TRUE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Encode and output one MCU's worth of Huffman-compressed coefficients.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
METHODDEF(boolean)
shun-iwasawa 82a8f5
encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
shun-iwasawa 82a8f5
  working_state state;
shun-iwasawa 82a8f5
  int blkn, ci;
shun-iwasawa 82a8f5
  jpeg_component_info *compptr;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Load up working state */
shun-iwasawa 82a8f5
  state.next_output_byte = cinfo->dest->next_output_byte;
shun-iwasawa 82a8f5
  state.free_in_buffer = cinfo->dest->free_in_buffer;
shun-iwasawa 82a8f5
  ASSIGN_STATE(state.cur, entropy->saved);
shun-iwasawa 82a8f5
  state.cinfo = cinfo;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Emit restart marker if needed */
shun-iwasawa 82a8f5
  if (cinfo->restart_interval) {
shun-iwasawa 82a8f5
    if (entropy->restarts_to_go == 0)
shun-iwasawa 82a8f5
      if (!emit_restart(&state, entropy->next_restart_num))
shun-iwasawa 82a8f5
        return FALSE;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Encode the MCU data blocks */
shun-iwasawa 82a8f5
  if (entropy->simd) {
shun-iwasawa 82a8f5
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
shun-iwasawa 82a8f5
      ci = cinfo->MCU_membership[blkn];
shun-iwasawa 82a8f5
      compptr = cinfo->cur_comp_info[ci];
shun-iwasawa 82a8f5
      if (!encode_one_block_simd(&state,
shun-iwasawa 82a8f5
                                 MCU_data[blkn][0], state.cur.last_dc_val[ci],
shun-iwasawa 82a8f5
                                 entropy->dc_derived_tbls[compptr->dc_tbl_no],
shun-iwasawa 82a8f5
                                 entropy->ac_derived_tbls[compptr->ac_tbl_no]))
shun-iwasawa 82a8f5
        return FALSE;
shun-iwasawa 82a8f5
      /* Update last_dc_val */
shun-iwasawa 82a8f5
      state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  } else {
shun-iwasawa 82a8f5
    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
shun-iwasawa 82a8f5
      ci = cinfo->MCU_membership[blkn];
shun-iwasawa 82a8f5
      compptr = cinfo->cur_comp_info[ci];
shun-iwasawa 82a8f5
      if (!encode_one_block(&state,
shun-iwasawa 82a8f5
                            MCU_data[blkn][0], state.cur.last_dc_val[ci],
shun-iwasawa 82a8f5
                            entropy->dc_derived_tbls[compptr->dc_tbl_no],
shun-iwasawa 82a8f5
                            entropy->ac_derived_tbls[compptr->ac_tbl_no]))
shun-iwasawa 82a8f5
        return FALSE;
shun-iwasawa 82a8f5
      /* Update last_dc_val */
shun-iwasawa 82a8f5
      state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Completed MCU, so update state */
shun-iwasawa 82a8f5
  cinfo->dest->next_output_byte = state.next_output_byte;
shun-iwasawa 82a8f5
  cinfo->dest->free_in_buffer = state.free_in_buffer;
shun-iwasawa 82a8f5
  ASSIGN_STATE(entropy->saved, state.cur);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Update restart-interval state too */
shun-iwasawa 82a8f5
  if (cinfo->restart_interval) {
shun-iwasawa 82a8f5
    if (entropy->restarts_to_go == 0) {
shun-iwasawa 82a8f5
      entropy->restarts_to_go = cinfo->restart_interval;
shun-iwasawa 82a8f5
      entropy->next_restart_num++;
shun-iwasawa 82a8f5
      entropy->next_restart_num &= 7;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
    entropy->restarts_to_go--;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  return TRUE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Finish up at the end of a Huffman-compressed scan.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
METHODDEF(void)
shun-iwasawa 82a8f5
finish_pass_huff(j_compress_ptr cinfo)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
shun-iwasawa 82a8f5
  working_state state;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Load up working state ... flush_bits needs it */
shun-iwasawa 82a8f5
  state.next_output_byte = cinfo->dest->next_output_byte;
shun-iwasawa 82a8f5
  state.free_in_buffer = cinfo->dest->free_in_buffer;
shun-iwasawa 82a8f5
  ASSIGN_STATE(state.cur, entropy->saved);
shun-iwasawa 82a8f5
  state.cinfo = cinfo;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Flush out the last data */
shun-iwasawa 82a8f5
  if (!flush_bits(&state))
shun-iwasawa 82a8f5
    ERREXIT(cinfo, JERR_CANT_SUSPEND);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Update state */
shun-iwasawa 82a8f5
  cinfo->dest->next_output_byte = state.next_output_byte;
shun-iwasawa 82a8f5
  cinfo->dest->free_in_buffer = state.free_in_buffer;
shun-iwasawa 82a8f5
  ASSIGN_STATE(entropy->saved, state.cur);
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Huffman coding optimization.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * We first scan the supplied data and count the number of uses of each symbol
shun-iwasawa 82a8f5
 * that is to be Huffman-coded. (This process MUST agree with the code above.)
shun-iwasawa 82a8f5
 * Then we build a Huffman coding tree for the observed counts.
shun-iwasawa 82a8f5
 * Symbols which are not needed at all for the particular image are not
shun-iwasawa 82a8f5
 * assigned any code, which saves space in the DHT marker as well as in
shun-iwasawa 82a8f5
 * the compressed data.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#ifdef ENTROPY_OPT_SUPPORTED
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/* Process a single block's worth of coefficients */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
LOCAL(void)
shun-iwasawa 82a8f5
htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
shun-iwasawa 82a8f5
                long dc_counts[], long ac_counts[])
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  register int temp;
shun-iwasawa 82a8f5
  register int nbits;
shun-iwasawa 82a8f5
  register int k, r;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Encode the DC coefficient difference per section F.1.2.1 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  temp = block[0] - last_dc_val;
shun-iwasawa 82a8f5
  if (temp < 0)
shun-iwasawa 82a8f5
    temp = -temp;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Find the number of bits needed for the magnitude of the coefficient */
shun-iwasawa 82a8f5
  nbits = 0;
shun-iwasawa 82a8f5
  while (temp) {
shun-iwasawa 82a8f5
    nbits++;
shun-iwasawa 82a8f5
    temp >>= 1;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
  /* Check for out-of-range coefficient values.
shun-iwasawa 82a8f5
   * Since we're encoding a difference, the range limit is twice as much.
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
  if (nbits > MAX_COEF_BITS + 1)
shun-iwasawa 82a8f5
    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Count the Huffman symbol for the number of bits */
shun-iwasawa 82a8f5
  dc_counts[nbits]++;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Encode the AC coefficients per section F.1.2.2 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  r = 0;                        /* r = run length of zeros */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  for (k = 1; k < DCTSIZE2; k++) {
shun-iwasawa 82a8f5
    if ((temp = block[jpeg_natural_order[k]]) == 0) {
shun-iwasawa 82a8f5
      r++;
shun-iwasawa 82a8f5
    } else {
shun-iwasawa 82a8f5
      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
shun-iwasawa 82a8f5
      while (r > 15) {
shun-iwasawa 82a8f5
        ac_counts[0xF0]++;
shun-iwasawa 82a8f5
        r -= 16;
shun-iwasawa 82a8f5
      }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
      /* Find the number of bits needed for the magnitude of the coefficient */
shun-iwasawa 82a8f5
      if (temp < 0)
shun-iwasawa 82a8f5
        temp = -temp;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
      /* Find the number of bits needed for the magnitude of the coefficient */
shun-iwasawa 82a8f5
      nbits = 1;                /* there must be at least one 1 bit */
shun-iwasawa 82a8f5
      while ((temp >>= 1))
shun-iwasawa 82a8f5
        nbits++;
shun-iwasawa 82a8f5
      /* Check for out-of-range coefficient values */
shun-iwasawa 82a8f5
      if (nbits > MAX_COEF_BITS)
shun-iwasawa 82a8f5
        ERREXIT(cinfo, JERR_BAD_DCT_COEF);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
      /* Count Huffman symbol for run length / number of bits */
shun-iwasawa 82a8f5
      ac_counts[(r << 4) + nbits]++;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
      r = 0;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* If the last coef(s) were zero, emit an end-of-block code */
shun-iwasawa 82a8f5
  if (r > 0)
shun-iwasawa 82a8f5
    ac_counts[0]++;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
shun-iwasawa 82a8f5
 * No data is actually output, so no suspension return is possible.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
METHODDEF(boolean)
shun-iwasawa 82a8f5
encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
shun-iwasawa 82a8f5
  int blkn, ci;
shun-iwasawa 82a8f5
  jpeg_component_info *compptr;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Take care of restart intervals if needed */
shun-iwasawa 82a8f5
  if (cinfo->restart_interval) {
shun-iwasawa 82a8f5
    if (entropy->restarts_to_go == 0) {
shun-iwasawa 82a8f5
      /* Re-initialize DC predictions to 0 */
shun-iwasawa 82a8f5
      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
shun-iwasawa 82a8f5
        entropy->saved.last_dc_val[ci] = 0;
shun-iwasawa 82a8f5
      /* Update restart state */
shun-iwasawa 82a8f5
      entropy->restarts_to_go = cinfo->restart_interval;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
    entropy->restarts_to_go--;
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
shun-iwasawa 82a8f5
    ci = cinfo->MCU_membership[blkn];
shun-iwasawa 82a8f5
    compptr = cinfo->cur_comp_info[ci];
shun-iwasawa 82a8f5
    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
shun-iwasawa 82a8f5
                    entropy->dc_count_ptrs[compptr->dc_tbl_no],
shun-iwasawa 82a8f5
                    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
shun-iwasawa 82a8f5
    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  return TRUE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Generate the best Huffman code table for the given counts, fill htbl.
shun-iwasawa 82a8f5
 * Note this is also used by jcphuff.c.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * The JPEG standard requires that no symbol be assigned a codeword of all
shun-iwasawa 82a8f5
 * one bits (so that padding bits added at the end of a compressed segment
shun-iwasawa 82a8f5
 * can't look like a valid code).  Because of the canonical ordering of
shun-iwasawa 82a8f5
 * codewords, this just means that there must be an unused slot in the
shun-iwasawa 82a8f5
 * longest codeword length category.  Annex K (Clause K.2) of
shun-iwasawa 82a8f5
 * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
shun-iwasawa 82a8f5
 * by pretending that symbol 256 is a valid symbol with count 1.  In theory
shun-iwasawa 82a8f5
 * that's not optimal; giving it count zero but including it in the symbol set
shun-iwasawa 82a8f5
 * anyway should give a better Huffman code.  But the theoretically better code
shun-iwasawa 82a8f5
 * actually seems to come out worse in practice, because it produces more
shun-iwasawa 82a8f5
 * all-ones bytes (which incur stuffed zero bytes in the final file).  In any
shun-iwasawa 82a8f5
 * case the difference is tiny.
shun-iwasawa 82a8f5
 *
shun-iwasawa 82a8f5
 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
shun-iwasawa 82a8f5
 * If some symbols have a very small but nonzero probability, the Huffman tree
shun-iwasawa 82a8f5
 * must be adjusted to meet the code length restriction.  We currently use
shun-iwasawa 82a8f5
 * the adjustment method suggested in JPEG section K.2.  This method is *not*
shun-iwasawa 82a8f5
 * optimal; it may not choose the best possible limited-length code.  But
shun-iwasawa 82a8f5
 * typically only very-low-frequency symbols will be given less-than-optimal
shun-iwasawa 82a8f5
 * lengths, so the code is almost optimal.  Experimental comparisons against
shun-iwasawa 82a8f5
 * an optimal limited-length-code algorithm indicate that the difference is
shun-iwasawa 82a8f5
 * microscopic --- usually less than a hundredth of a percent of total size.
shun-iwasawa 82a8f5
 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
GLOBAL(void)
shun-iwasawa 82a8f5
jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
#define MAX_CLEN  32            /* assumed maximum initial code length */
shun-iwasawa 82a8f5
  UINT8 bits[MAX_CLEN + 1];     /* bits[k] = # of symbols with code length k */
shun-iwasawa 82a8f5
  int codesize[257];            /* codesize[k] = code length of symbol k */
shun-iwasawa 82a8f5
  int others[257];              /* next symbol in current branch of tree */
shun-iwasawa 82a8f5
  int c1, c2;
shun-iwasawa 82a8f5
  int p, i, j;
shun-iwasawa 82a8f5
  long v;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* This algorithm is explained in section K.2 of the JPEG standard */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  MEMZERO(bits, sizeof(bits));
shun-iwasawa 82a8f5
  MEMZERO(codesize, sizeof(codesize));
shun-iwasawa 82a8f5
  for (i = 0; i < 257; i++)
shun-iwasawa 82a8f5
    others[i] = -1;             /* init links to empty */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  freq[256] = 1;                /* make sure 256 has a nonzero count */
shun-iwasawa 82a8f5
  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
shun-iwasawa 82a8f5
   * that no real symbol is given code-value of all ones, because 256
shun-iwasawa 82a8f5
   * will be placed last in the largest codeword category.
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  for (;;) {
shun-iwasawa 82a8f5
    /* Find the smallest nonzero frequency, set c1 = its symbol */
shun-iwasawa 82a8f5
    /* In case of ties, take the larger symbol number */
shun-iwasawa 82a8f5
    c1 = -1;
shun-iwasawa 82a8f5
    v = 1000000000L;
shun-iwasawa 82a8f5
    for (i = 0; i <= 256; i++) {
shun-iwasawa 82a8f5
      if (freq[i] && freq[i] <= v) {
shun-iwasawa 82a8f5
        v = freq[i];
shun-iwasawa 82a8f5
        c1 = i;
shun-iwasawa 82a8f5
      }
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
    /* Find the next smallest nonzero frequency, set c2 = its symbol */
shun-iwasawa 82a8f5
    /* In case of ties, take the larger symbol number */
shun-iwasawa 82a8f5
    c2 = -1;
shun-iwasawa 82a8f5
    v = 1000000000L;
shun-iwasawa 82a8f5
    for (i = 0; i <= 256; i++) {
shun-iwasawa 82a8f5
      if (freq[i] && freq[i] <= v && i != c1) {
shun-iwasawa 82a8f5
        v = freq[i];
shun-iwasawa 82a8f5
        c2 = i;
shun-iwasawa 82a8f5
      }
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
    /* Done if we've merged everything into one frequency */
shun-iwasawa 82a8f5
    if (c2 < 0)
shun-iwasawa 82a8f5
      break;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
    /* Else merge the two counts/trees */
shun-iwasawa 82a8f5
    freq[c1] += freq[c2];
shun-iwasawa 82a8f5
    freq[c2] = 0;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
    /* Increment the codesize of everything in c1's tree branch */
shun-iwasawa 82a8f5
    codesize[c1]++;
shun-iwasawa 82a8f5
    while (others[c1] >= 0) {
shun-iwasawa 82a8f5
      c1 = others[c1];
shun-iwasawa 82a8f5
      codesize[c1]++;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
    others[c1] = c2;            /* chain c2 onto c1's tree branch */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
    /* Increment the codesize of everything in c2's tree branch */
shun-iwasawa 82a8f5
    codesize[c2]++;
shun-iwasawa 82a8f5
    while (others[c2] >= 0) {
shun-iwasawa 82a8f5
      c2 = others[c2];
shun-iwasawa 82a8f5
      codesize[c2]++;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Now count the number of symbols of each code length */
shun-iwasawa 82a8f5
  for (i = 0; i <= 256; i++) {
shun-iwasawa 82a8f5
    if (codesize[i]) {
shun-iwasawa 82a8f5
      /* The JPEG standard seems to think that this can't happen, */
shun-iwasawa 82a8f5
      /* but I'm paranoid... */
shun-iwasawa 82a8f5
      if (codesize[i] > MAX_CLEN)
shun-iwasawa 82a8f5
        ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
      bits[codesize[i]]++;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
shun-iwasawa 82a8f5
   * Huffman procedure assigned any such lengths, we must adjust the coding.
shun-iwasawa 82a8f5
   * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
shun-iwasawa 82a8f5
   * bit works: Since symbols are paired for the longest Huffman code, the
shun-iwasawa 82a8f5
   * symbols are removed from this length category two at a time.  The prefix
shun-iwasawa 82a8f5
   * for the pair (which is one bit shorter) is allocated to one of the pair;
shun-iwasawa 82a8f5
   * then, skipping the BITS entry for that prefix length, a code word from the
shun-iwasawa 82a8f5
   * next shortest nonzero BITS entry is converted into a prefix for two code
shun-iwasawa 82a8f5
   * words one bit longer.
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  for (i = MAX_CLEN; i > 16; i--) {
shun-iwasawa 82a8f5
    while (bits[i] > 0) {
shun-iwasawa 82a8f5
      j = i - 2;                /* find length of new prefix to be used */
shun-iwasawa 82a8f5
      while (bits[j] == 0)
shun-iwasawa 82a8f5
        j--;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
      bits[i] -= 2;             /* remove two symbols */
shun-iwasawa 82a8f5
      bits[i - 1]++;            /* one goes in this length */
shun-iwasawa 82a8f5
      bits[j + 1] += 2;         /* two new symbols in this length */
shun-iwasawa 82a8f5
      bits[j]--;                /* symbol of this length is now a prefix */
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
shun-iwasawa 82a8f5
  while (bits[i] == 0)          /* find largest codelength still in use */
shun-iwasawa 82a8f5
    i--;
shun-iwasawa 82a8f5
  bits[i]--;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Return final symbol counts (only for lengths 0..16) */
shun-iwasawa 82a8f5
  MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Return a list of the symbols sorted by code length */
shun-iwasawa 82a8f5
  /* It's not real clear to me why we don't need to consider the codelength
shun-iwasawa 82a8f5
   * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
shun-iwasawa 82a8f5
   * this works.
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
  p = 0;
shun-iwasawa 82a8f5
  for (i = 1; i <= MAX_CLEN; i++) {
shun-iwasawa 82a8f5
    for (j = 0; j <= 255; j++) {
shun-iwasawa 82a8f5
      if (codesize[j] == i) {
shun-iwasawa 82a8f5
        htbl->huffval[p] = (UINT8)j;
shun-iwasawa 82a8f5
        p++;
shun-iwasawa 82a8f5
      }
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Set sent_table FALSE so updated table will be written to JPEG file. */
shun-iwasawa 82a8f5
  htbl->sent_table = FALSE;
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Finish up a statistics-gathering pass and create the new Huffman tables.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
METHODDEF(void)
shun-iwasawa 82a8f5
finish_pass_gather(j_compress_ptr cinfo)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
shun-iwasawa 82a8f5
  int ci, dctbl, actbl;
shun-iwasawa 82a8f5
  jpeg_component_info *compptr;
shun-iwasawa 82a8f5
  JHUFF_TBL **htblptr;
shun-iwasawa 82a8f5
  boolean did_dc[NUM_HUFF_TBLS];
shun-iwasawa 82a8f5
  boolean did_ac[NUM_HUFF_TBLS];
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* It's important not to apply jpeg_gen_optimal_table more than once
shun-iwasawa 82a8f5
   * per table, because it clobbers the input frequency counts!
shun-iwasawa 82a8f5
   */
shun-iwasawa 82a8f5
  MEMZERO(did_dc, sizeof(did_dc));
shun-iwasawa 82a8f5
  MEMZERO(did_ac, sizeof(did_ac));
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
shun-iwasawa 82a8f5
    compptr = cinfo->cur_comp_info[ci];
shun-iwasawa 82a8f5
    dctbl = compptr->dc_tbl_no;
shun-iwasawa 82a8f5
    actbl = compptr->ac_tbl_no;
shun-iwasawa 82a8f5
    if (!did_dc[dctbl]) {
shun-iwasawa 82a8f5
      htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl];
shun-iwasawa 82a8f5
      if (*htblptr == NULL)
shun-iwasawa 82a8f5
        *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
shun-iwasawa 82a8f5
      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
shun-iwasawa 82a8f5
      did_dc[dctbl] = TRUE;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
    if (!did_ac[actbl]) {
shun-iwasawa 82a8f5
      htblptr = &cinfo->ac_huff_tbl_ptrs[actbl];
shun-iwasawa 82a8f5
      if (*htblptr == NULL)
shun-iwasawa 82a8f5
        *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo);
shun-iwasawa 82a8f5
      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
shun-iwasawa 82a8f5
      did_ac[actbl] = TRUE;
shun-iwasawa 82a8f5
    }
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
}
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
#endif /* ENTROPY_OPT_SUPPORTED */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
/*
shun-iwasawa 82a8f5
 * Module initialization routine for Huffman entropy encoding.
shun-iwasawa 82a8f5
 */
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
GLOBAL(void)
shun-iwasawa 82a8f5
jinit_huff_encoder(j_compress_ptr cinfo)
shun-iwasawa 82a8f5
{
shun-iwasawa 82a8f5
  huff_entropy_ptr entropy;
shun-iwasawa 82a8f5
  int i;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  entropy = (huff_entropy_ptr)
shun-iwasawa 82a8f5
    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
shun-iwasawa 82a8f5
                                sizeof(huff_entropy_encoder));
shun-iwasawa 82a8f5
  cinfo->entropy = (struct jpeg_entropy_encoder *)entropy;
shun-iwasawa 82a8f5
  entropy->pub.start_pass = start_pass_huff;
shun-iwasawa 82a8f5
shun-iwasawa 82a8f5
  /* Mark tables unallocated */
shun-iwasawa 82a8f5
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
shun-iwasawa 82a8f5
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
shun-iwasawa 82a8f5
#ifdef ENTROPY_OPT_SUPPORTED
shun-iwasawa 82a8f5
    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
shun-iwasawa 82a8f5
#endif
shun-iwasawa 82a8f5
  }
shun-iwasawa 82a8f5
}