kusano 2b45e8
/*********************************************************************/
kusano 2b45e8
/* Copyright 2009, 2010 The University of Texas at Austin.           */
kusano 2b45e8
/* All rights reserved.                                              */
kusano 2b45e8
/*                                                                   */
kusano 2b45e8
/* Redistribution and use in source and binary forms, with or        */
kusano 2b45e8
/* without modification, are permitted provided that the following   */
kusano 2b45e8
/* conditions are met:                                               */
kusano 2b45e8
/*                                                                   */
kusano 2b45e8
/*   1. Redistributions of source code must retain the above         */
kusano 2b45e8
/*      copyright notice, this list of conditions and the following  */
kusano 2b45e8
/*      disclaimer.                                                  */
kusano 2b45e8
/*                                                                   */
kusano 2b45e8
/*   2. Redistributions in binary form must reproduce the above      */
kusano 2b45e8
/*      copyright notice, this list of conditions and the following  */
kusano 2b45e8
/*      disclaimer in the documentation and/or other materials       */
kusano 2b45e8
/*      provided with the distribution.                              */
kusano 2b45e8
/*                                                                   */
kusano 2b45e8
/*    THIS  SOFTWARE IS PROVIDED  BY THE  UNIVERSITY OF  TEXAS AT    */
kusano 2b45e8
/*    AUSTIN  ``AS IS''  AND ANY  EXPRESS OR  IMPLIED WARRANTIES,    */
kusano 2b45e8
/*    INCLUDING, BUT  NOT LIMITED  TO, THE IMPLIED  WARRANTIES OF    */
kusano 2b45e8
/*    MERCHANTABILITY  AND FITNESS FOR  A PARTICULAR  PURPOSE ARE    */
kusano 2b45e8
/*    DISCLAIMED.  IN  NO EVENT SHALL THE UNIVERSITY  OF TEXAS AT    */
kusano 2b45e8
/*    AUSTIN OR CONTRIBUTORS BE  LIABLE FOR ANY DIRECT, INDIRECT,    */
kusano 2b45e8
/*    INCIDENTAL,  SPECIAL, EXEMPLARY,  OR  CONSEQUENTIAL DAMAGES    */
kusano 2b45e8
/*    (INCLUDING, BUT  NOT LIMITED TO,  PROCUREMENT OF SUBSTITUTE    */
kusano 2b45e8
/*    GOODS  OR  SERVICES; LOSS  OF  USE,  DATA,  OR PROFITS;  OR    */
kusano 2b45e8
/*    BUSINESS INTERRUPTION) HOWEVER CAUSED  AND ON ANY THEORY OF    */
kusano 2b45e8
/*    LIABILITY, WHETHER  IN CONTRACT, STRICT  LIABILITY, OR TORT    */
kusano 2b45e8
/*    (INCLUDING NEGLIGENCE OR OTHERWISE)  ARISING IN ANY WAY OUT    */
kusano 2b45e8
/*    OF  THE  USE OF  THIS  SOFTWARE,  EVEN  IF ADVISED  OF  THE    */
kusano 2b45e8
/*    POSSIBILITY OF SUCH DAMAGE.                                    */
kusano 2b45e8
/*                                                                   */
kusano 2b45e8
/* The views and conclusions contained in the software and           */
kusano 2b45e8
/* documentation are those of the authors and should not be          */
kusano 2b45e8
/* interpreted as representing official policies, either expressed   */
kusano 2b45e8
/* or implied, of The University of Texas at Austin.                 */
kusano 2b45e8
/*********************************************************************/
kusano 2b45e8
kusano 2b45e8
#include <stdio.h></stdio.h>
kusano 2b45e8
#include "common.h"
kusano 2b45e8
kusano 2b45e8
#ifndef USE_SIMPLE_THREADED_LEVEL3
kusano 2b45e8
kusano 2b45e8
static FLOAT dm1 = -1.;
kusano 2b45e8
kusano 2b45e8
#ifndef KERNEL_FUNC
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
#define KERNEL_FUNC SYRK_KERNEL_U
kusano 2b45e8
#else
kusano 2b45e8
#define KERNEL_FUNC SYRK_KERNEL_L
kusano 2b45e8
#endif
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
#ifndef COMPLEX
kusano 2b45e8
#define TRSM_KERNEL   TRSM_KERNEL_LT
kusano 2b45e8
#else
kusano 2b45e8
#define TRSM_KERNEL   TRSM_KERNEL_LC
kusano 2b45e8
#endif
kusano 2b45e8
#else
kusano 2b45e8
#ifndef COMPLEX
kusano 2b45e8
#define TRSM_KERNEL   TRSM_KERNEL_RN
kusano 2b45e8
#else
kusano 2b45e8
#define TRSM_KERNEL   TRSM_KERNEL_RR
kusano 2b45e8
#endif
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef CACHE_LINE_SIZE
kusano 2b45e8
#define CACHE_LINE_SIZE 8
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef DIVIDE_RATE
kusano 2b45e8
#define DIVIDE_RATE 2
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef SWITCH_RATIO
kusano 2b45e8
#define SWITCH_RATIO 2
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
#define TRANS
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef SYRK_LOCAL
kusano 2b45e8
#if   !defined(LOWER) && !defined(TRANS)
kusano 2b45e8
#define SYRK_LOCAL    SYRK_UN
kusano 2b45e8
#elif !defined(LOWER) &&  defined(TRANS)
kusano 2b45e8
#define SYRK_LOCAL    SYRK_UT
kusano 2b45e8
#elif  defined(LOWER) && !defined(TRANS)
kusano 2b45e8
#define SYRK_LOCAL    SYRK_LN
kusano 2b45e8
#else
kusano 2b45e8
#define SYRK_LOCAL    SYRK_LT
kusano 2b45e8
#endif
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
typedef struct {
kusano 2b45e8
  volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
kusano 2b45e8
} job_t;
kusano 2b45e8
kusano 2b45e8
kusano 2b45e8
#ifndef KERNEL_OPERATION
kusano 2b45e8
#ifndef COMPLEX
kusano 2b45e8
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
kusano 2b45e8
	KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
kusano 2b45e8
#else
kusano 2b45e8
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
kusano 2b45e8
	KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
kusano 2b45e8
#endif
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef ICOPY_OPERATION
kusano 2b45e8
#ifndef TRANS
kusano 2b45e8
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
kusano 2b45e8
#else
kusano 2b45e8
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
kusano 2b45e8
#endif
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef OCOPY_OPERATION
kusano 2b45e8
#ifdef TRANS
kusano 2b45e8
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
kusano 2b45e8
#else
kusano 2b45e8
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
kusano 2b45e8
#endif
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef S
kusano 2b45e8
#define S	args -> a
kusano 2b45e8
#endif
kusano 2b45e8
#ifndef A
kusano 2b45e8
#define A	args -> b
kusano 2b45e8
#endif
kusano 2b45e8
#ifndef C
kusano 2b45e8
#define C	args -> c
kusano 2b45e8
#endif
kusano 2b45e8
#ifndef LDA
kusano 2b45e8
#define LDA	args -> lda
kusano 2b45e8
#endif
kusano 2b45e8
#ifndef N
kusano 2b45e8
#define N	args -> m
kusano 2b45e8
#endif
kusano 2b45e8
#ifndef K
kusano 2b45e8
#define K	args -> k
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
kusano 2b45e8
kusano 2b45e8
  FLOAT *buffer[DIVIDE_RATE];
kusano 2b45e8
kusano 2b45e8
  BLASLONG k, lda;
kusano 2b45e8
  BLASLONG m_from, m_to;
kusano 2b45e8
kusano 2b45e8
  FLOAT *alpha;
kusano 2b45e8
  FLOAT *a, *c;
kusano 2b45e8
  job_t *job = (job_t *)args -> common;
kusano 2b45e8
  BLASLONG xxx, bufferside;
kusano 2b45e8
kusano 2b45e8
  BLASLONG jjs, min_jj;
kusano 2b45e8
  BLASLONG is, min_i, div_n;
kusano 2b45e8
kusano 2b45e8
  BLASLONG i, current;
kusano 2b45e8
kusano 2b45e8
  k = K;
kusano 2b45e8
kusano 2b45e8
  a = (FLOAT *)A;
kusano 2b45e8
  c = (FLOAT *)C;
kusano 2b45e8
kusano 2b45e8
  lda = LDA;
kusano 2b45e8
kusano 2b45e8
  alpha = (FLOAT *)args -> alpha;
kusano 2b45e8
kusano 2b45e8
  m_from = range_n[mypos + 0];
kusano 2b45e8
  m_to   = range_n[mypos + 1];
kusano 2b45e8
kusano 2b45e8
#if 0
kusano 2b45e8
  fprintf(stderr, "Thread[%ld]  m_from : %ld m_to : %ld\n",  mypos, m_from, m_to);
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
  div_n = ((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
kusano 2b45e8
kusano 2b45e8
  buffer[0] = (FLOAT *)((((long)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
kusano 2b45e8
  for (i = 1; i < DIVIDE_RATE; i++) {
kusano 2b45e8
    buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE;
kusano 2b45e8
  }
kusano 2b45e8
  
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
  TRSM_IUNCOPY(k, k, (FLOAT *)S, lda, 0, sb);
kusano 2b45e8
#else
kusano 2b45e8
  TRSM_OLTCOPY(k, k, (FLOAT *)S, lda, 0, sb);
kusano 2b45e8
#endif
kusano 2b45e8
  
kusano 2b45e8
  for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) {
kusano 2b45e8
    
kusano 2b45e8
    for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
kusano 2b45e8
      
kusano 2b45e8
      min_jj = MIN(m_to, xxx + div_n) - jjs;
kusano 2b45e8
      
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
      if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
kusano 2b45e8
#else
kusano 2b45e8
      if (min_jj > GEMM_P)         min_jj = GEMM_P;
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
      OCOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
kusano 2b45e8
kusano 2b45e8
      TRSM_KERNEL     (k, min_jj, k, dm1, 
kusano 2b45e8
#ifdef COMPLEX
kusano 2b45e8
		       ZERO,
kusano 2b45e8
#endif
kusano 2b45e8
		       sb,
kusano 2b45e8
		       buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
kusano 2b45e8
		       a + jjs * lda * COMPSIZE, lda, 0);
kusano 2b45e8
#else
kusano 2b45e8
      ICOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
kusano 2b45e8
kusano 2b45e8
      TRSM_KERNEL     (min_jj, k, k, dm1,
kusano 2b45e8
#ifdef COMPLEX
kusano 2b45e8
		       ZERO,
kusano 2b45e8
#endif
kusano 2b45e8
		       buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
kusano 2b45e8
		       sb,
kusano 2b45e8
		       a + jjs       * COMPSIZE, lda, 0);
kusano 2b45e8
#endif
kusano 2b45e8
    }
kusano 2b45e8
    
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
    for (i = 0; i <= mypos; i++)
kusano 2b45e8
      job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
kusano 2b45e8
#else
kusano 2b45e8
    for (i = mypos; i < args -> nthreads; i++)
kusano 2b45e8
      job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
kusano 2b45e8
#endif
kusano 2b45e8
    
kusano 2b45e8
    WMB;
kusano 2b45e8
  }
kusano 2b45e8
  
kusano 2b45e8
  min_i = m_to - m_from;
kusano 2b45e8
  
kusano 2b45e8
  if (min_i >= GEMM_P * 2) {
kusano 2b45e8
    min_i = GEMM_P;
kusano 2b45e8
  } else 
kusano 2b45e8
    if (min_i > GEMM_P) {
kusano 2b45e8
      min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
kusano 2b45e8
    }
kusano 2b45e8
  
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
  ICOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
kusano 2b45e8
#else
kusano 2b45e8
  OCOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
kusano 2b45e8
#endif
kusano 2b45e8
  
kusano 2b45e8
  current = mypos;
kusano 2b45e8
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
  while (current < args -> nthreads)
kusano 2b45e8
#else
kusano 2b45e8
  while (current >= 0)
kusano 2b45e8
#endif
kusano 2b45e8
    {
kusano 2b45e8
      div_n = ((range_n[current + 1]  - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
kusano 2b45e8
      
kusano 2b45e8
      for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
kusano 2b45e8
	
kusano 2b45e8
	/* thread has to wait */
kusano 2b45e8
	if (current != mypos) while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
kusano 2b45e8
	
kusano 2b45e8
	KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
kusano 2b45e8
			 sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
kusano 2b45e8
			 c, lda, m_from, xxx);
kusano 2b45e8
	
kusano 2b45e8
	if (m_from + min_i >= m_to) {
kusano 2b45e8
	  job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
kusano 2b45e8
	  WMB;
kusano 2b45e8
	}
kusano 2b45e8
      }
kusano 2b45e8
      
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
      current ++;
kusano 2b45e8
#else
kusano 2b45e8
      current --;
kusano 2b45e8
#endif
kusano 2b45e8
    }
kusano 2b45e8
  
kusano 2b45e8
  for(is = m_from + min_i; is < m_to; is += min_i){
kusano 2b45e8
    min_i = m_to - is;
kusano 2b45e8
    
kusano 2b45e8
    if (min_i >= GEMM_P * 2) {
kusano 2b45e8
      min_i = GEMM_P;
kusano 2b45e8
    } else 
kusano 2b45e8
      if (min_i > GEMM_P) {
kusano 2b45e8
	min_i = ((min_i + 1) / 2 + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
kusano 2b45e8
      }
kusano 2b45e8
    
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
    ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
kusano 2b45e8
#else
kusano 2b45e8
    OCOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
kusano 2b45e8
#endif
kusano 2b45e8
    
kusano 2b45e8
    current = mypos;
kusano 2b45e8
    
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
    while (current < args -> nthreads)
kusano 2b45e8
#else
kusano 2b45e8
      while (current >= 0)
kusano 2b45e8
#endif
kusano 2b45e8
	{
kusano 2b45e8
	  div_n = ((range_n[current + 1]  - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1) & ~(GEMM_UNROLL_MN - 1);
kusano 2b45e8
	  
kusano 2b45e8
	  for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
kusano 2b45e8
	    
kusano 2b45e8
	    KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
kusano 2b45e8
			     sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
kusano 2b45e8
			     c, lda, is, xxx);
kusano 2b45e8
	    
kusano 2b45e8
	    if (is + min_i >= m_to) {
kusano 2b45e8
	      job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
kusano 2b45e8
	      WMB;
kusano 2b45e8
	    }
kusano 2b45e8
	  }	
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
	  current ++;
kusano 2b45e8
#else
kusano 2b45e8
	  current --;
kusano 2b45e8
#endif
kusano 2b45e8
	}
kusano 2b45e8
  }
kusano 2b45e8
  
kusano 2b45e8
  for (i = 0; i < args -> nthreads; i++) {
kusano 2b45e8
    if (i != mypos) {
kusano 2b45e8
      for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
kusano 2b45e8
	while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
kusano 2b45e8
      }
kusano 2b45e8
    }
kusano 2b45e8
  }
kusano 2b45e8
  
kusano 2b45e8
  return 0;
kusano 2b45e8
  }
kusano 2b45e8
kusano 2b45e8
static int thread_driver(blas_arg_t *args, FLOAT *sa, FLOAT *sb){
kusano 2b45e8
kusano 2b45e8
  blas_arg_t newarg;
kusano 2b45e8
kusano 2b45e8
  job_t          job[MAX_CPU_NUMBER];
kusano 2b45e8
  blas_queue_t queue[MAX_CPU_NUMBER];
kusano 2b45e8
kusano 2b45e8
  BLASLONG range[MAX_CPU_NUMBER + 100];
kusano 2b45e8
kusano 2b45e8
  BLASLONG num_cpu;
kusano 2b45e8
kusano 2b45e8
  BLASLONG nthreads = args -> nthreads;
kusano 2b45e8
kusano 2b45e8
  BLASLONG width, i, j, k;
kusano 2b45e8
  BLASLONG n, n_from, n_to;
kusano 2b45e8
  int  mode, mask;
kusano 2b45e8
  double dnum;
kusano 2b45e8
kusano 2b45e8
#ifndef COMPLEX
kusano 2b45e8
#ifdef XDOUBLE
kusano 2b45e8
  mode  =  BLAS_XDOUBLE | BLAS_REAL;
kusano 2b45e8
  mask  = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1;
kusano 2b45e8
#elif defined(DOUBLE)
kusano 2b45e8
  mode  =  BLAS_DOUBLE  | BLAS_REAL;
kusano 2b45e8
  mask  = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1;
kusano 2b45e8
#else
kusano 2b45e8
  mode  =  BLAS_SINGLE  | BLAS_REAL;
kusano 2b45e8
  mask  = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1;
kusano 2b45e8
#endif  
kusano 2b45e8
#else
kusano 2b45e8
#ifdef XDOUBLE
kusano 2b45e8
  mode  =  BLAS_XDOUBLE | BLAS_COMPLEX;
kusano 2b45e8
  mask  = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1;
kusano 2b45e8
#elif defined(DOUBLE)
kusano 2b45e8
  mode  =  BLAS_DOUBLE  | BLAS_COMPLEX;
kusano 2b45e8
  mask  = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1;
kusano 2b45e8
#else
kusano 2b45e8
  mode  =  BLAS_SINGLE  | BLAS_COMPLEX;
kusano 2b45e8
  mask  = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1;
kusano 2b45e8
#endif  
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
  newarg.m        = args -> m;
kusano 2b45e8
  newarg.k        = args -> k;
kusano 2b45e8
  newarg.a        = args -> a;
kusano 2b45e8
  newarg.b        = args -> b;
kusano 2b45e8
  newarg.c        = args -> c;
kusano 2b45e8
  newarg.lda      = args -> lda;
kusano 2b45e8
  newarg.alpha    = args -> alpha;
kusano 2b45e8
  newarg.common   = (void *)job;
kusano 2b45e8
   
kusano 2b45e8
  n_from = 0;
kusano 2b45e8
  n_to   = args -> m;
kusano 2b45e8
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
kusano 2b45e8
  range[MAX_CPU_NUMBER] = n_to - n_from;
kusano 2b45e8
  range[0] = 0;
kusano 2b45e8
  num_cpu  = 0;
kusano 2b45e8
  i        = 0;
kusano 2b45e8
  n        = n_to - n_from;
kusano 2b45e8
kusano 2b45e8
  dnum = (double)n * (double)n /(double)nthreads;
kusano 2b45e8
kusano 2b45e8
  while (i < n){
kusano 2b45e8
    
kusano 2b45e8
    if (nthreads - num_cpu > 1) {
kusano 2b45e8
      
kusano 2b45e8
      double di   = (double)i;
kusano 2b45e8
      
kusano 2b45e8
      width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask);
kusano 2b45e8
      
kusano 2b45e8
      if (num_cpu == 0) width = n - ((n - width) & ~mask);
kusano 2b45e8
      
kusano 2b45e8
      if ((width > n - i) || (width < mask)) width = n - i;
kusano 2b45e8
      
kusano 2b45e8
    } else {
kusano 2b45e8
      width = n - i;
kusano 2b45e8
    }
kusano 2b45e8
kusano 2b45e8
    range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width;
kusano 2b45e8
kusano 2b45e8
    queue[num_cpu].mode    = mode;
kusano 2b45e8
    queue[num_cpu].routine = inner_thread;
kusano 2b45e8
    queue[num_cpu].args    = &newarg;
kusano 2b45e8
    queue[num_cpu].range_m = NULL;
kusano 2b45e8
kusano 2b45e8
    queue[num_cpu].sa      = NULL;
kusano 2b45e8
    queue[num_cpu].sb      = NULL;
kusano 2b45e8
    queue[num_cpu].next    = &queue[num_cpu + 1];
kusano 2b45e8
    
kusano 2b45e8
    num_cpu ++;
kusano 2b45e8
    i += width;
kusano 2b45e8
  }
kusano 2b45e8
kusano 2b45e8
   for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu];
kusano 2b45e8
kusano 2b45e8
#else
kusano 2b45e8
kusano 2b45e8
  range[0] = 0;
kusano 2b45e8
  num_cpu  = 0;
kusano 2b45e8
  i        = 0;
kusano 2b45e8
  n        = n_to - n_from;
kusano 2b45e8
kusano 2b45e8
  dnum = (double)n * (double)n /(double)nthreads;
kusano 2b45e8
kusano 2b45e8
  while (i < n){
kusano 2b45e8
    
kusano 2b45e8
    if (nthreads - num_cpu > 1) {
kusano 2b45e8
      
kusano 2b45e8
	double di   = (double)i;
kusano 2b45e8
	
kusano 2b45e8
	width = (((BLASLONG)(sqrt(di * di + dnum) - di) + mask) & ~mask);
kusano 2b45e8
	
kusano 2b45e8
      if ((width > n - i) || (width < mask)) width = n - i;
kusano 2b45e8
	
kusano 2b45e8
    } else {
kusano 2b45e8
      width = n - i;
kusano 2b45e8
    }
kusano 2b45e8
kusano 2b45e8
    range[num_cpu + 1] = range[num_cpu] + width;
kusano 2b45e8
    
kusano 2b45e8
    queue[num_cpu].mode    = mode;
kusano 2b45e8
    queue[num_cpu].routine = inner_thread;
kusano 2b45e8
    queue[num_cpu].args    = &newarg;
kusano 2b45e8
    queue[num_cpu].range_m = NULL;
kusano 2b45e8
    queue[num_cpu].range_n = range;
kusano 2b45e8
    queue[num_cpu].sa      = NULL;
kusano 2b45e8
    queue[num_cpu].sb      = NULL;
kusano 2b45e8
    queue[num_cpu].next    = &queue[num_cpu + 1];
kusano 2b45e8
    
kusano 2b45e8
    num_cpu ++;
kusano 2b45e8
    i += width;
kusano 2b45e8
  }
kusano 2b45e8
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
  newarg.nthreads = num_cpu;
kusano 2b45e8
kusano 2b45e8
  if (num_cpu) {
kusano 2b45e8
kusano 2b45e8
    for (j = 0; j < num_cpu; j++) {
kusano 2b45e8
      for (i = 0; i < num_cpu; i++) {
kusano 2b45e8
	for (k = 0; k < DIVIDE_RATE; k++) {
kusano 2b45e8
	  job[j].working[i][CACHE_LINE_SIZE * k] = 0;
kusano 2b45e8
	}
kusano 2b45e8
      }
kusano 2b45e8
    }
kusano 2b45e8
    
kusano 2b45e8
    queue[0].sa = sa;
kusano 2b45e8
    queue[0].sb = sb;
kusano 2b45e8
    queue[num_cpu - 1].next = NULL;
kusano 2b45e8
    
kusano 2b45e8
    exec_blas(num_cpu, queue);
kusano 2b45e8
  }
kusano 2b45e8
 
kusano 2b45e8
  return 0;
kusano 2b45e8
}
kusano 2b45e8
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
kusano 2b45e8
kusano 2b45e8
  BLASLONG n, bk, i, blocking, lda;
kusano 2b45e8
  BLASLONG info;
kusano 2b45e8
  int mode;
kusano 2b45e8
  blas_arg_t newarg;
kusano 2b45e8
  FLOAT *a;
kusano 2b45e8
  FLOAT alpha[2] = { -ONE, ZERO};
kusano 2b45e8
kusano 2b45e8
#ifndef COMPLEX
kusano 2b45e8
#ifdef XDOUBLE
kusano 2b45e8
  mode  =  BLAS_XDOUBLE | BLAS_REAL;
kusano 2b45e8
#elif defined(DOUBLE)
kusano 2b45e8
  mode  =  BLAS_DOUBLE  | BLAS_REAL;
kusano 2b45e8
#else
kusano 2b45e8
  mode  =  BLAS_SINGLE  | BLAS_REAL;
kusano 2b45e8
#endif  
kusano 2b45e8
#else
kusano 2b45e8
#ifdef XDOUBLE
kusano 2b45e8
  mode  =  BLAS_XDOUBLE | BLAS_COMPLEX;
kusano 2b45e8
#elif defined(DOUBLE)
kusano 2b45e8
  mode  =  BLAS_DOUBLE  | BLAS_COMPLEX;
kusano 2b45e8
#else
kusano 2b45e8
  mode  =  BLAS_SINGLE  | BLAS_COMPLEX;
kusano 2b45e8
#endif  
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
  if (args -> nthreads  == 1) {
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
    info = POTRF_U_SINGLE(args, NULL, NULL, sa, sb, 0); 
kusano 2b45e8
#else
kusano 2b45e8
    info = POTRF_L_SINGLE(args, NULL, NULL, sa, sb, 0); 
kusano 2b45e8
#endif
kusano 2b45e8
    return info;
kusano 2b45e8
  }
kusano 2b45e8
kusano 2b45e8
  n  = args -> n;
kusano 2b45e8
  a  = (FLOAT *)args -> a;
kusano 2b45e8
  lda = args -> lda;
kusano 2b45e8
kusano 2b45e8
  if (range_n) n  = range_n[1] - range_n[0];
kusano 2b45e8
kusano 2b45e8
  if (n <= GEMM_UNROLL_N * 2) {
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
    info = POTRF_U_SINGLE(args, NULL, range_n, sa, sb, 0);
kusano 2b45e8
#else
kusano 2b45e8
    info = POTRF_L_SINGLE(args, NULL, range_n, sa, sb, 0);
kusano 2b45e8
#endif
kusano 2b45e8
    return info;
kusano 2b45e8
  }
kusano 2b45e8
kusano 2b45e8
  newarg.lda = lda;
kusano 2b45e8
  newarg.ldb = lda;
kusano 2b45e8
  newarg.ldc = lda;
kusano 2b45e8
  newarg.alpha = alpha;
kusano 2b45e8
  newarg.beta = NULL;
kusano 2b45e8
  newarg.nthreads = args -> nthreads;
kusano 2b45e8
kusano 2b45e8
  blocking = (n / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
kusano 2b45e8
  if (blocking > GEMM_Q) blocking = GEMM_Q;
kusano 2b45e8
    
kusano 2b45e8
  for (i = 0; i < n; i += blocking) {
kusano 2b45e8
    bk = n - i;
kusano 2b45e8
    if (bk > blocking) bk = blocking;
kusano 2b45e8
kusano 2b45e8
    newarg.m = bk;
kusano 2b45e8
    newarg.n = bk;
kusano 2b45e8
    newarg.a = a + (i + i * lda) * COMPSIZE;
kusano 2b45e8
kusano 2b45e8
    info = CNAME(&newarg, NULL, NULL, sa, sb, 0);
kusano 2b45e8
    if (info) return info + i;
kusano 2b45e8
kusano 2b45e8
    if (n - i - bk > 0) {
kusano 2b45e8
#ifndef USE_SIMPLE_THREADED_LEVEL3
kusano 2b45e8
      newarg.m = n - i - bk;
kusano 2b45e8
      newarg.k = bk;
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
      newarg.b = a + ( i       + (i + bk) * lda) * COMPSIZE;
kusano 2b45e8
#else
kusano 2b45e8
      newarg.b = a + ((i + bk) +  i       * lda) * COMPSIZE;
kusano 2b45e8
#endif
kusano 2b45e8
      newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
kusano 2b45e8
kusano 2b45e8
      thread_driver(&newarg, sa, sb);
kusano 2b45e8
#else
kusano 2b45e8
kusano 2b45e8
#ifndef LOWER
kusano 2b45e8
    newarg.m = bk;
kusano 2b45e8
    newarg.n = n - i - bk;
kusano 2b45e8
    newarg.a = a + (i +  i       * lda) * COMPSIZE;
kusano 2b45e8
    newarg.b = a + (i + (i + bk) * lda) * COMPSIZE;
kusano 2b45e8
kusano 2b45e8
    gemm_thread_n(mode | BLAS_TRANSA_T,
kusano 2b45e8
		  &newarg, NULL, NULL, (void *)TRSM_LCUN, sa, sb, args -> nthreads);
kusano 2b45e8
kusano 2b45e8
    newarg.n = n - i - bk;
kusano 2b45e8
    newarg.k = bk;
kusano 2b45e8
    newarg.a = a + ( i       + (i + bk) * lda) * COMPSIZE;
kusano 2b45e8
    newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
kusano 2b45e8
kusano 2b45e8
#if 0
kusano 2b45e8
    HERK_THREAD_UC(&newarg, NULL, NULL, sa, sb, 0);
kusano 2b45e8
#else
kusano 2b45e8
    syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T,
kusano 2b45e8
                &newarg, NULL, NULL, (void *)HERK_UC, sa, sb, args -> nthreads);
kusano 2b45e8
#endif
kusano 2b45e8
#else
kusano 2b45e8
    newarg.m = n - i - bk;
kusano 2b45e8
    newarg.n = bk;
kusano 2b45e8
    newarg.a = a + (i      + i * lda) * COMPSIZE;
kusano 2b45e8
    newarg.b = a + (i + bk + i * lda) * COMPSIZE;
kusano 2b45e8
kusano 2b45e8
    gemm_thread_m(mode | BLAS_RSIDE | BLAS_TRANSA_T | BLAS_UPLO,
kusano 2b45e8
		  &newarg, NULL, NULL, (void *)TRSM_RCLN, sa, sb, args -> nthreads);
kusano 2b45e8
kusano 2b45e8
    newarg.n = n - i - bk;
kusano 2b45e8
    newarg.k = bk;
kusano 2b45e8
    newarg.a = a + (i + bk +  i       * lda) * COMPSIZE;
kusano 2b45e8
    newarg.c = a + (i + bk + (i + bk) * lda) * COMPSIZE;
kusano 2b45e8
    
kusano 2b45e8
#if 0
kusano 2b45e8
    HERK_THREAD_LN(&newarg, NULL, NULL, sa, sb, 0);
kusano 2b45e8
#else
kusano 2b45e8
    syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T | BLAS_UPLO,
kusano 2b45e8
                &newarg, NULL, NULL, (void *)HERK_LN, sa, sb, args -> nthreads);
kusano 2b45e8
#endif
kusano 2b45e8
#endif
kusano 2b45e8
kusano 2b45e8
#endif
kusano 2b45e8
     }
kusano 2b45e8
  }
kusano 2b45e8
  return 0;
kusano 2b45e8
}