kusano 2b45e8
      SUBROUTINE CHER2F ( UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA )
kusano 2b45e8
*     .. Scalar Arguments ..
kusano 2b45e8
      COMPLEX            ALPHA
kusano 2b45e8
      INTEGER            INCX, INCY, LDA, N
kusano 2b45e8
      CHARACTER*1        UPLO
kusano 2b45e8
*     .. Array Arguments ..
kusano 2b45e8
      COMPLEX            A( LDA, * ), X( * ), Y( * )
kusano 2b45e8
*     ..
kusano 2b45e8
*
kusano 2b45e8
*  Purpose
kusano 2b45e8
*  =======
kusano 2b45e8
*
kusano 2b45e8
*  CHER2  performs the hermitian rank 2 operation
kusano 2b45e8
*
kusano 2b45e8
*     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
kusano 2b45e8
*
kusano 2b45e8
*  where alpha is a scalar, x and y are n element vectors and A is an n
kusano 2b45e8
*  by n hermitian matrix.
kusano 2b45e8
*
kusano 2b45e8
*  Parameters
kusano 2b45e8
*  ==========
kusano 2b45e8
*
kusano 2b45e8
*  UPLO   - CHARACTER*1.
kusano 2b45e8
*           On entry, UPLO specifies whether the upper or lower
kusano 2b45e8
*           triangular part of the array A is to be referenced as
kusano 2b45e8
*           follows:
kusano 2b45e8
*
kusano 2b45e8
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
kusano 2b45e8
*                                  is to be referenced.
kusano 2b45e8
*
kusano 2b45e8
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
kusano 2b45e8
*                                  is to be referenced.
kusano 2b45e8
*
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*  N      - INTEGER.
kusano 2b45e8
*           On entry, N specifies the order of the matrix A.
kusano 2b45e8
*           N must be at least zero.
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*  ALPHA  - COMPLEX         .
kusano 2b45e8
*           On entry, ALPHA specifies the scalar alpha.
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*  X      - COMPLEX          array of dimension at least
kusano 2b45e8
*           ( 1 + ( n - 1 )*abs( INCX ) ).
kusano 2b45e8
*           Before entry, the incremented array X must contain the n
kusano 2b45e8
*           element vector x.
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*  INCX   - INTEGER.
kusano 2b45e8
*           On entry, INCX specifies the increment for the elements of
kusano 2b45e8
*           X. INCX must not be zero.
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*  Y      - COMPLEX          array of dimension at least
kusano 2b45e8
*           ( 1 + ( n - 1 )*abs( INCY ) ).
kusano 2b45e8
*           Before entry, the incremented array Y must contain the n
kusano 2b45e8
*           element vector y.
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*  INCY   - INTEGER.
kusano 2b45e8
*           On entry, INCY specifies the increment for the elements of
kusano 2b45e8
*           Y. INCY must not be zero.
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
kusano 2b45e8
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
kusano 2b45e8
*           upper triangular part of the array A must contain the upper
kusano 2b45e8
*           triangular part of the hermitian matrix and the strictly
kusano 2b45e8
*           lower triangular part of A is not referenced. On exit, the
kusano 2b45e8
*           upper triangular part of the array A is overwritten by the
kusano 2b45e8
*           upper triangular part of the updated matrix.
kusano 2b45e8
*           Before entry with UPLO = 'L' or 'l', the leading n by n
kusano 2b45e8
*           lower triangular part of the array A must contain the lower
kusano 2b45e8
*           triangular part of the hermitian matrix and the strictly
kusano 2b45e8
*           upper triangular part of A is not referenced. On exit, the
kusano 2b45e8
*           lower triangular part of the array A is overwritten by the
kusano 2b45e8
*           lower triangular part of the updated matrix.
kusano 2b45e8
*           Note that the imaginary parts of the diagonal elements need
kusano 2b45e8
*           not be set, they are assumed to be zero, and on exit they
kusano 2b45e8
*           are set to zero.
kusano 2b45e8
*
kusano 2b45e8
*  LDA    - INTEGER.
kusano 2b45e8
*           On entry, LDA specifies the first dimension of A as declared
kusano 2b45e8
*           in the calling (sub) program. LDA must be at least
kusano 2b45e8
*           max( 1, n ).
kusano 2b45e8
*           Unchanged on exit.
kusano 2b45e8
*
kusano 2b45e8
*
kusano 2b45e8
*  Level 2 Blas routine.
kusano 2b45e8
*
kusano 2b45e8
*  -- Written on 22-October-1986.
kusano 2b45e8
*     Jack Dongarra, Argonne National Lab.
kusano 2b45e8
*     Jeremy Du Croz, Nag Central Office.
kusano 2b45e8
*     Sven Hammarling, Nag Central Office.
kusano 2b45e8
*     Richard Hanson, Sandia National Labs.
kusano 2b45e8
*
kusano 2b45e8
*
kusano 2b45e8
*     .. Parameters ..
kusano 2b45e8
      COMPLEX            ZERO
kusano 2b45e8
      PARAMETER        ( ZERO = ( 0.0E+0, 0.0E+0 ) )
kusano 2b45e8
*     .. Local Scalars ..
kusano 2b45e8
      COMPLEX            TEMP1, TEMP2
kusano 2b45e8
      INTEGER            I, INFO, IX, IY, J, JX, JY, KX, KY
kusano 2b45e8
*     .. External Functions ..
kusano 2b45e8
      LOGICAL            LSAME
kusano 2b45e8
      EXTERNAL           LSAME
kusano 2b45e8
*     .. External Subroutines ..
kusano 2b45e8
      EXTERNAL           XERBLA
kusano 2b45e8
*     .. Intrinsic Functions ..
kusano 2b45e8
      INTRINSIC          CONJG, MAX, REAL
kusano 2b45e8
*     ..
kusano 2b45e8
*     .. Executable Statements ..
kusano 2b45e8
*
kusano 2b45e8
*     Test the input parameters.
kusano 2b45e8
*
kusano 2b45e8
      INFO = 0
kusano 2b45e8
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
kusano 2b45e8
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
kusano 2b45e8
         INFO = 1
kusano 2b45e8
      ELSE IF( N.LT.0 )THEN
kusano 2b45e8
         INFO = 2
kusano 2b45e8
      ELSE IF( INCX.EQ.0 )THEN
kusano 2b45e8
         INFO = 5
kusano 2b45e8
      ELSE IF( INCY.EQ.0 )THEN
kusano 2b45e8
         INFO = 7
kusano 2b45e8
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
kusano 2b45e8
         INFO = 9
kusano 2b45e8
      END IF
kusano 2b45e8
      IF( INFO.NE.0 )THEN
kusano 2b45e8
         CALL XERBLA( 'CHER2 ', INFO )
kusano 2b45e8
         RETURN
kusano 2b45e8
      END IF
kusano 2b45e8
*
kusano 2b45e8
*     Quick return if possible.
kusano 2b45e8
*
kusano 2b45e8
      IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
kusano 2b45e8
     $   RETURN
kusano 2b45e8
*
kusano 2b45e8
*     Set up the start points in X and Y if the increments are not both
kusano 2b45e8
*     unity.
kusano 2b45e8
*
kusano 2b45e8
      IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
kusano 2b45e8
         IF( INCX.GT.0 )THEN
kusano 2b45e8
            KX = 1
kusano 2b45e8
         ELSE
kusano 2b45e8
            KX = 1 - ( N - 1 )*INCX
kusano 2b45e8
         END IF
kusano 2b45e8
         IF( INCY.GT.0 )THEN
kusano 2b45e8
            KY = 1
kusano 2b45e8
         ELSE
kusano 2b45e8
            KY = 1 - ( N - 1 )*INCY
kusano 2b45e8
         END IF
kusano 2b45e8
         JX = KX
kusano 2b45e8
         JY = KY
kusano 2b45e8
      END IF
kusano 2b45e8
*
kusano 2b45e8
*     Start the operations. In this version the elements of A are
kusano 2b45e8
*     accessed sequentially with one pass through the triangular part
kusano 2b45e8
*     of A.
kusano 2b45e8
*
kusano 2b45e8
      IF( LSAME( UPLO, 'U' ) )THEN
kusano 2b45e8
*
kusano 2b45e8
*        Form  A  when A is stored in the upper triangle.
kusano 2b45e8
*
kusano 2b45e8
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
kusano 2b45e8
            DO 20, J = 1, N
kusano 2b45e8
               IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
kusano 2b45e8
                  TEMP1 = ALPHA*CONJG( Y( J ) )
kusano 2b45e8
                  TEMP2 = CONJG( ALPHA*X( J ) )
kusano 2b45e8
                  DO 10, I = 1, J - 1
kusano 2b45e8
                     A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
kusano 2b45e8
   10             CONTINUE
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) ) +
kusano 2b45e8
     $                        REAL( X( J )*TEMP1 + Y( J )*TEMP2 )
kusano 2b45e8
               ELSE
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) )
kusano 2b45e8
               END IF
kusano 2b45e8
   20       CONTINUE
kusano 2b45e8
         ELSE
kusano 2b45e8
            DO 40, J = 1, N
kusano 2b45e8
               IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
kusano 2b45e8
                  TEMP1 = ALPHA*CONJG( Y( JY ) )
kusano 2b45e8
                  TEMP2 = CONJG( ALPHA*X( JX ) )
kusano 2b45e8
                  IX    = KX
kusano 2b45e8
                  IY    = KY
kusano 2b45e8
                  DO 30, I = 1, J - 1
kusano 2b45e8
                     A( I, J ) = A( I, J ) + X( IX )*TEMP1
kusano 2b45e8
     $                                     + Y( IY )*TEMP2
kusano 2b45e8
                     IX        = IX        + INCX
kusano 2b45e8
                     IY        = IY        + INCY
kusano 2b45e8
   30             CONTINUE
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) ) +
kusano 2b45e8
     $                        REAL( X( JX )*TEMP1 + Y( JY )*TEMP2 )
kusano 2b45e8
               ELSE
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) )
kusano 2b45e8
               END IF
kusano 2b45e8
               JX = JX + INCX
kusano 2b45e8
               JY = JY + INCY
kusano 2b45e8
   40       CONTINUE
kusano 2b45e8
         END IF
kusano 2b45e8
      ELSE
kusano 2b45e8
*
kusano 2b45e8
*        Form  A  when A is stored in the lower triangle.
kusano 2b45e8
*
kusano 2b45e8
         IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
kusano 2b45e8
            DO 60, J = 1, N
kusano 2b45e8
               IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
kusano 2b45e8
                  TEMP1     = ALPHA*CONJG( Y( J ) )
kusano 2b45e8
                  TEMP2     = CONJG( ALPHA*X( J ) )
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) ) +
kusano 2b45e8
     $                        REAL( X( J )*TEMP1 + Y( J )*TEMP2 )
kusano 2b45e8
                  DO 50, I = J + 1, N
kusano 2b45e8
                     A( I, J ) = A( I, J ) + X( I )*TEMP1 + Y( I )*TEMP2
kusano 2b45e8
   50             CONTINUE
kusano 2b45e8
               ELSE
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) )
kusano 2b45e8
               END IF
kusano 2b45e8
   60       CONTINUE
kusano 2b45e8
         ELSE
kusano 2b45e8
            DO 80, J = 1, N
kusano 2b45e8
               IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
kusano 2b45e8
                  TEMP1     = ALPHA*CONJG( Y( JY ) )
kusano 2b45e8
                  TEMP2     = CONJG( ALPHA*X( JX ) )
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) ) +
kusano 2b45e8
     $                        REAL( X( JX )*TEMP1 + Y( JY )*TEMP2 )
kusano 2b45e8
                  IX        = JX
kusano 2b45e8
                  IY        = JY
kusano 2b45e8
                  DO 70, I = J + 1, N
kusano 2b45e8
                     IX        = IX        + INCX
kusano 2b45e8
                     IY        = IY        + INCY
kusano 2b45e8
                     A( I, J ) = A( I, J ) + X( IX )*TEMP1
kusano 2b45e8
     $                                     + Y( IY )*TEMP2
kusano 2b45e8
   70             CONTINUE
kusano 2b45e8
               ELSE
kusano 2b45e8
                  A( J, J ) = REAL( A( J, J ) )
kusano 2b45e8
               END IF
kusano 2b45e8
               JX = JX + INCX
kusano 2b45e8
               JY = JY + INCY
kusano 2b45e8
   80       CONTINUE
kusano 2b45e8
         END IF
kusano 2b45e8
      END IF
kusano 2b45e8
*
kusano 2b45e8
      RETURN
kusano 2b45e8
*
kusano 2b45e8
*     End of CHER2 .
kusano 2b45e8
*
kusano 2b45e8
      END