|
kusano |
2b45e8 |
SUBROUTINE ZTRMMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
|
|
kusano |
2b45e8 |
$ B, LDB )
|
|
kusano |
2b45e8 |
* .. Scalar Arguments ..
|
|
kusano |
2b45e8 |
CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
|
|
kusano |
2b45e8 |
INTEGER M, N, LDA, LDB
|
|
kusano |
2b45e8 |
COMPLEX*16 ALPHA
|
|
kusano |
2b45e8 |
* .. Array Arguments ..
|
|
kusano |
2b45e8 |
COMPLEX*16 A( LDA, * ), B( LDB, * )
|
|
kusano |
2b45e8 |
* ..
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Purpose
|
|
kusano |
2b45e8 |
* =======
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* ZTRMM performs one of the matrix-matrix operations
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* B := alpha*op( A )*B, or B := alpha*B*op( A )
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* where alpha is a scalar, B is an m by n matrix, A is a unit, or
|
|
kusano |
2b45e8 |
* non-unit, upper or lower triangular matrix and op( A ) is one of
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Parameters
|
|
kusano |
2b45e8 |
* ==========
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* SIDE - CHARACTER*1.
|
|
kusano |
2b45e8 |
* On entry, SIDE specifies whether op( A ) multiplies B from
|
|
kusano |
2b45e8 |
* the left or right as follows:
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* SIDE = 'L' or 'l' B := alpha*op( A )*B.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* SIDE = 'R' or 'r' B := alpha*B*op( A ).
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* UPLO - CHARACTER*1.
|
|
kusano |
2b45e8 |
* On entry, UPLO specifies whether the matrix A is an upper or
|
|
kusano |
2b45e8 |
* lower triangular matrix as follows:
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* UPLO = 'U' or 'u' A is an upper triangular matrix.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* UPLO = 'L' or 'l' A is a lower triangular matrix.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* TRANSA - CHARACTER*1.
|
|
kusano |
2b45e8 |
* On entry, TRANSA specifies the form of op( A ) to be used in
|
|
kusano |
2b45e8 |
* the matrix multiplication as follows:
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* TRANSA = 'N' or 'n' op( A ) = A.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* TRANSA = 'T' or 't' op( A ) = A'.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* DIAG - CHARACTER*1.
|
|
kusano |
2b45e8 |
* On entry, DIAG specifies whether or not A is unit triangular
|
|
kusano |
2b45e8 |
* as follows:
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* DIAG = 'N' or 'n' A is not assumed to be unit
|
|
kusano |
2b45e8 |
* triangular.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* M - INTEGER.
|
|
kusano |
2b45e8 |
* On entry, M specifies the number of rows of B. M must be at
|
|
kusano |
2b45e8 |
* least zero.
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* N - INTEGER.
|
|
kusano |
2b45e8 |
* On entry, N specifies the number of columns of B. N must be
|
|
kusano |
2b45e8 |
* at least zero.
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* ALPHA - COMPLEX*16 .
|
|
kusano |
2b45e8 |
* On entry, ALPHA specifies the scalar alpha. When alpha is
|
|
kusano |
2b45e8 |
* zero then A is not referenced and B need not be set before
|
|
kusano |
2b45e8 |
* entry.
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m
|
|
kusano |
2b45e8 |
* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
|
|
kusano |
2b45e8 |
* Before entry with UPLO = 'U' or 'u', the leading k by k
|
|
kusano |
2b45e8 |
* upper triangular part of the array A must contain the upper
|
|
kusano |
2b45e8 |
* triangular matrix and the strictly lower triangular part of
|
|
kusano |
2b45e8 |
* A is not referenced.
|
|
kusano |
2b45e8 |
* Before entry with UPLO = 'L' or 'l', the leading k by k
|
|
kusano |
2b45e8 |
* lower triangular part of the array A must contain the lower
|
|
kusano |
2b45e8 |
* triangular matrix and the strictly upper triangular part of
|
|
kusano |
2b45e8 |
* A is not referenced.
|
|
kusano |
2b45e8 |
* Note that when DIAG = 'U' or 'u', the diagonal elements of
|
|
kusano |
2b45e8 |
* A are not referenced either, but are assumed to be unity.
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* LDA - INTEGER.
|
|
kusano |
2b45e8 |
* On entry, LDA specifies the first dimension of A as declared
|
|
kusano |
2b45e8 |
* in the calling (sub) program. When SIDE = 'L' or 'l' then
|
|
kusano |
2b45e8 |
* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
|
|
kusano |
2b45e8 |
* then LDA must be at least max( 1, n ).
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* B - COMPLEX*16 array of DIMENSION ( LDB, n ).
|
|
kusano |
2b45e8 |
* Before entry, the leading m by n part of the array B must
|
|
kusano |
2b45e8 |
* contain the matrix B, and on exit is overwritten by the
|
|
kusano |
2b45e8 |
* transformed matrix.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* LDB - INTEGER.
|
|
kusano |
2b45e8 |
* On entry, LDB specifies the first dimension of B as declared
|
|
kusano |
2b45e8 |
* in the calling (sub) program. LDB must be at least
|
|
kusano |
2b45e8 |
* max( 1, m ).
|
|
kusano |
2b45e8 |
* Unchanged on exit.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Level 3 Blas routine.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* -- Written on 8-February-1989.
|
|
kusano |
2b45e8 |
* Jack Dongarra, Argonne National Laboratory.
|
|
kusano |
2b45e8 |
* Iain Duff, AERE Harwell.
|
|
kusano |
2b45e8 |
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
|
kusano |
2b45e8 |
* Sven Hammarling, Numerical Algorithms Group Ltd.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* .. External Functions ..
|
|
kusano |
2b45e8 |
LOGICAL LSAME
|
|
kusano |
2b45e8 |
EXTERNAL LSAME
|
|
kusano |
2b45e8 |
* .. External Subroutines ..
|
|
kusano |
2b45e8 |
EXTERNAL XERBLA
|
|
kusano |
2b45e8 |
* .. Intrinsic Functions ..
|
|
kusano |
2b45e8 |
INTRINSIC DCONJG, MAX
|
|
kusano |
2b45e8 |
* .. Local Scalars ..
|
|
kusano |
2b45e8 |
LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER
|
|
kusano |
2b45e8 |
INTEGER I, INFO, J, K, NROWA
|
|
kusano |
2b45e8 |
COMPLEX*16 TEMP
|
|
kusano |
2b45e8 |
* .. Parameters ..
|
|
kusano |
2b45e8 |
COMPLEX*16 ONE
|
|
kusano |
2b45e8 |
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
|
|
kusano |
2b45e8 |
COMPLEX*16 ZERO
|
|
kusano |
2b45e8 |
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
|
|
kusano |
2b45e8 |
* ..
|
|
kusano |
2b45e8 |
* .. Executable Statements ..
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Test the input parameters.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
LSIDE = LSAME( SIDE , 'L' )
|
|
kusano |
2b45e8 |
IF( LSIDE )THEN
|
|
kusano |
2b45e8 |
NROWA = M
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
NROWA = N
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
NOCONJ = LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'T' )
|
|
kusano |
2b45e8 |
NOUNIT = LSAME( DIAG , 'N' )
|
|
kusano |
2b45e8 |
UPPER = LSAME( UPLO , 'U' )
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
INFO = 0
|
|
kusano |
2b45e8 |
IF( ( .NOT.LSIDE ).AND.
|
|
kusano |
2b45e8 |
$ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
|
|
kusano |
2b45e8 |
INFO = 1
|
|
kusano |
2b45e8 |
ELSE IF( ( .NOT.UPPER ).AND.
|
|
kusano |
2b45e8 |
$ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
|
|
kusano |
2b45e8 |
INFO = 2
|
|
kusano |
2b45e8 |
ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
|
|
kusano |
2b45e8 |
$ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
|
|
kusano |
2b45e8 |
$ ( .NOT.LSAME( TRANSA, 'R' ) ).AND.
|
|
kusano |
2b45e8 |
$ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
|
|
kusano |
2b45e8 |
INFO = 3
|
|
kusano |
2b45e8 |
ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
|
|
kusano |
2b45e8 |
$ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
|
|
kusano |
2b45e8 |
INFO = 4
|
|
kusano |
2b45e8 |
ELSE IF( M .LT.0 )THEN
|
|
kusano |
2b45e8 |
INFO = 5
|
|
kusano |
2b45e8 |
ELSE IF( N .LT.0 )THEN
|
|
kusano |
2b45e8 |
INFO = 6
|
|
kusano |
2b45e8 |
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
|
|
kusano |
2b45e8 |
INFO = 9
|
|
kusano |
2b45e8 |
ELSE IF( LDB.LT.MAX( 1, M ) )THEN
|
|
kusano |
2b45e8 |
INFO = 11
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
IF( INFO.NE.0 )THEN
|
|
kusano |
2b45e8 |
CALL XERBLA( 'ZTRMM ', INFO )
|
|
kusano |
2b45e8 |
RETURN
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Quick return if possible.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
IF( N.EQ.0 )
|
|
kusano |
2b45e8 |
$ RETURN
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* And when alpha.eq.zero.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
IF( ALPHA.EQ.ZERO )THEN
|
|
kusano |
2b45e8 |
DO 20, J = 1, N
|
|
kusano |
2b45e8 |
DO 10, I = 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = ZERO
|
|
kusano |
2b45e8 |
10 CONTINUE
|
|
kusano |
2b45e8 |
20 CONTINUE
|
|
kusano |
2b45e8 |
RETURN
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Start the operations.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
IF( LSIDE )THEN
|
|
kusano |
2b45e8 |
IF( LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'R' ))THEN
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Form B := alpha*A*B.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
IF( UPPER )THEN
|
|
kusano |
2b45e8 |
DO 50, J = 1, N
|
|
kusano |
2b45e8 |
DO 40, K = 1, M
|
|
kusano |
2b45e8 |
IF( B( K, J ).NE.ZERO )THEN
|
|
kusano |
2b45e8 |
TEMP = ALPHA*B( K, J )
|
|
kusano |
2b45e8 |
IF (NOCONJ) THEN
|
|
kusano |
2b45e8 |
DO 30, I = 1, K - 1
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*A( I, K )
|
|
kusano |
2b45e8 |
30 CONTINUE
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*A( K, K )
|
|
kusano |
2b45e8 |
B( K, J ) = TEMP
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
DO 35, I = 1, K - 1
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*DCONJG(A( I, K ))
|
|
kusano |
2b45e8 |
35 CONTINUE
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*DCONJG(A( K, K ))
|
|
kusano |
2b45e8 |
B( K, J ) = TEMP
|
|
kusano |
2b45e8 |
ENDIF
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
40 CONTINUE
|
|
kusano |
2b45e8 |
50 CONTINUE
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
DO 80, J = 1, N
|
|
kusano |
2b45e8 |
DO 70 K = M, 1, -1
|
|
kusano |
2b45e8 |
IF( B( K, J ).NE.ZERO )THEN
|
|
kusano |
2b45e8 |
TEMP = ALPHA*B( K, J )
|
|
kusano |
2b45e8 |
B( K, J ) = TEMP
|
|
kusano |
2b45e8 |
IF (NOCONJ) THEN
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ B( K, J ) = B( K, J )*A( K, K )
|
|
kusano |
2b45e8 |
DO 60, I = K + 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*A( I, K )
|
|
kusano |
2b45e8 |
60 CONTINUE
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ B( K, J ) = B( K, J )*DCONJG(A( K, K ))
|
|
kusano |
2b45e8 |
DO 65, I = K + 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*DCONJG(A( I, K ))
|
|
kusano |
2b45e8 |
65 CONTINUE
|
|
kusano |
2b45e8 |
ENDIF
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
70 CONTINUE
|
|
kusano |
2b45e8 |
80 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Form B := alpha*A'*B or B := alpha*conjg( A' )*B.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
IF( UPPER )THEN
|
|
kusano |
2b45e8 |
DO 120, J = 1, N
|
|
kusano |
2b45e8 |
DO 110, I = M, 1, -1
|
|
kusano |
2b45e8 |
TEMP = B( I, J )
|
|
kusano |
2b45e8 |
IF( NOCONJ )THEN
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*A( I, I )
|
|
kusano |
2b45e8 |
DO 90, K = 1, I - 1
|
|
kusano |
2b45e8 |
TEMP = TEMP + A( K, I )*B( K, J )
|
|
kusano |
2b45e8 |
90 CONTINUE
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*DCONJG( A( I, I ) )
|
|
kusano |
2b45e8 |
DO 100, K = 1, I - 1
|
|
kusano |
2b45e8 |
TEMP = TEMP + DCONJG( A( K, I ) )*B( K, J )
|
|
kusano |
2b45e8 |
100 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
B( I, J ) = ALPHA*TEMP
|
|
kusano |
2b45e8 |
110 CONTINUE
|
|
kusano |
2b45e8 |
120 CONTINUE
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
DO 160, J = 1, N
|
|
kusano |
2b45e8 |
DO 150, I = 1, M
|
|
kusano |
2b45e8 |
TEMP = B( I, J )
|
|
kusano |
2b45e8 |
IF( NOCONJ )THEN
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*A( I, I )
|
|
kusano |
2b45e8 |
DO 130, K = I + 1, M
|
|
kusano |
2b45e8 |
TEMP = TEMP + A( K, I )*B( K, J )
|
|
kusano |
2b45e8 |
130 CONTINUE
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*DCONJG( A( I, I ) )
|
|
kusano |
2b45e8 |
DO 140, K = I + 1, M
|
|
kusano |
2b45e8 |
TEMP = TEMP + DCONJG( A( K, I ) )*B( K, J )
|
|
kusano |
2b45e8 |
140 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
B( I, J ) = ALPHA*TEMP
|
|
kusano |
2b45e8 |
150 CONTINUE
|
|
kusano |
2b45e8 |
160 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
IF( LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'R' ))THEN
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Form B := alpha*B*A.
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
IF( UPPER )THEN
|
|
kusano |
2b45e8 |
DO 200, J = N, 1, -1
|
|
kusano |
2b45e8 |
TEMP = ALPHA
|
|
kusano |
2b45e8 |
IF (NOCONJ) THEN
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*A( J, J )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*DCONJG(A( J, J ))
|
|
kusano |
2b45e8 |
ENDIF
|
|
kusano |
2b45e8 |
DO 170, I = 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = TEMP*B( I, J )
|
|
kusano |
2b45e8 |
170 CONTINUE
|
|
kusano |
2b45e8 |
DO 190, K = 1, J - 1
|
|
kusano |
2b45e8 |
IF( A( K, J ).NE.ZERO )THEN
|
|
kusano |
2b45e8 |
IF (NOCONJ) THEN
|
|
kusano |
2b45e8 |
TEMP = ALPHA*A( K, J )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
TEMP = ALPHA*DCONJG(A( K, J ))
|
|
kusano |
2b45e8 |
ENDIF
|
|
kusano |
2b45e8 |
DO 180, I = 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*B( I, K )
|
|
kusano |
2b45e8 |
180 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
190 CONTINUE
|
|
kusano |
2b45e8 |
200 CONTINUE
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
DO 240, J = 1, N
|
|
kusano |
2b45e8 |
TEMP = ALPHA
|
|
kusano |
2b45e8 |
IF (NOCONJ) THEN
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*A( J, J )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
IF( NOUNIT )
|
|
kusano |
2b45e8 |
$ TEMP = TEMP*DCONJG(A( J, J ))
|
|
kusano |
2b45e8 |
ENDIF
|
|
kusano |
2b45e8 |
DO 210, I = 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = TEMP*B( I, J )
|
|
kusano |
2b45e8 |
210 CONTINUE
|
|
kusano |
2b45e8 |
DO 230, K = J + 1, N
|
|
kusano |
2b45e8 |
IF( A( K, J ).NE.ZERO )THEN
|
|
kusano |
2b45e8 |
IF (NOCONJ) THEN
|
|
kusano |
2b45e8 |
TEMP = ALPHA*A( K, J )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
TEMP = ALPHA*DCONJG(A( K, J ))
|
|
kusano |
2b45e8 |
ENDIF
|
|
kusano |
2b45e8 |
DO 220, I = 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*B( I, K )
|
|
kusano |
2b45e8 |
220 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
230 CONTINUE
|
|
kusano |
2b45e8 |
240 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* Form B := alpha*B*A' or B := alpha*B*conjg( A' ).
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
IF( UPPER )THEN
|
|
kusano |
2b45e8 |
DO 280, K = 1, N
|
|
kusano |
2b45e8 |
DO 260, J = 1, K - 1
|
|
kusano |
2b45e8 |
IF( A( J, K ).NE.ZERO )THEN
|
|
kusano |
2b45e8 |
IF( NOCONJ )THEN
|
|
kusano |
2b45e8 |
TEMP = ALPHA*A( J, K )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
TEMP = ALPHA*DCONJG( A( J, K ) )
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
DO 250, I = 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*B( I, K )
|
|
kusano |
2b45e8 |
250 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
260 CONTINUE
|
|
kusano |
2b45e8 |
TEMP = ALPHA
|
|
kusano |
2b45e8 |
IF( NOUNIT )THEN
|
|
kusano |
2b45e8 |
IF( NOCONJ )THEN
|
|
kusano |
2b45e8 |
TEMP = TEMP*A( K, K )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
TEMP = TEMP*DCONJG( A( K, K ) )
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
IF( TEMP.NE.ONE )THEN
|
|
kusano |
2b45e8 |
DO 270, I = 1, M
|
|
kusano |
2b45e8 |
B( I, K ) = TEMP*B( I, K )
|
|
kusano |
2b45e8 |
270 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
280 CONTINUE
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
DO 320, K = N, 1, -1
|
|
kusano |
2b45e8 |
DO 300, J = K + 1, N
|
|
kusano |
2b45e8 |
IF( A( J, K ).NE.ZERO )THEN
|
|
kusano |
2b45e8 |
IF( NOCONJ )THEN
|
|
kusano |
2b45e8 |
TEMP = ALPHA*A( J, K )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
TEMP = ALPHA*DCONJG( A( J, K ) )
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
DO 290, I = 1, M
|
|
kusano |
2b45e8 |
B( I, J ) = B( I, J ) + TEMP*B( I, K )
|
|
kusano |
2b45e8 |
290 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
300 CONTINUE
|
|
kusano |
2b45e8 |
TEMP = ALPHA
|
|
kusano |
2b45e8 |
IF( NOUNIT )THEN
|
|
kusano |
2b45e8 |
IF( NOCONJ )THEN
|
|
kusano |
2b45e8 |
TEMP = TEMP*A( K, K )
|
|
kusano |
2b45e8 |
ELSE
|
|
kusano |
2b45e8 |
TEMP = TEMP*DCONJG( A( K, K ) )
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
IF( TEMP.NE.ONE )THEN
|
|
kusano |
2b45e8 |
DO 310, I = 1, M
|
|
kusano |
2b45e8 |
B( I, K ) = TEMP*B( I, K )
|
|
kusano |
2b45e8 |
310 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
320 CONTINUE
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
END IF
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
RETURN
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
* End of ZTRMM .
|
|
kusano |
2b45e8 |
*
|
|
kusano |
2b45e8 |
END
|