Blob Blame Raw
#if _MSC_VER >= 1400
#define _CRT_SECURE_NO_DEPRECATE 1
#endif
/* pngwutil.c - utilities to write a PNG file
 *
 * libpng 1.2.4 - July 8, 2002
 * For conditions of distribution and use, see copyright notice in png.h
 * Copyright (c) 1998-2002 Glenn Randers-Pehrson
 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
 */

#define PNG_INTERNAL
#include "png.h"
#ifdef PNG_WRITE_SUPPORTED

/* Place a 32-bit number into a buffer in PNG byte order.  We work
 * with unsigned numbers for convenience, although one supported
 * ancillary chunk uses signed (two's complement) numbers.
 */
void /* PRIVATE */
	png_save_uint_32(png_bytep buf, png_uint_32 i)
{
	buf[0] = (png_byte)((i >> 24) & 0xff);
	buf[1] = (png_byte)((i >> 16) & 0xff);
	buf[2] = (png_byte)((i >> 8) & 0xff);
	buf[3] = (png_byte)(i & 0xff);
}

#if defined(PNG_WRITE_pCAL_SUPPORTED) || defined(PNG_WRITE_oFFs_SUPPORTED)
/* The png_save_int_32 function assumes integers are stored in two's
 * complement format.  If this isn't the case, then this routine needs to
 * be modified to write data in two's complement format.
 */
void /* PRIVATE */
	png_save_int_32(png_bytep buf, png_int_32 i)
{
	buf[0] = (png_byte)((i >> 24) & 0xff);
	buf[1] = (png_byte)((i >> 16) & 0xff);
	buf[2] = (png_byte)((i >> 8) & 0xff);
	buf[3] = (png_byte)(i & 0xff);
}
#endif

/* Place a 16-bit number into a buffer in PNG byte order.
 * The parameter is declared unsigned int, not png_uint_16,
 * just to avoid potential problems on pre-ANSI C compilers.
 */
void /* PRIVATE */
	png_save_uint_16(png_bytep buf, unsigned int i)
{
	buf[0] = (png_byte)((i >> 8) & 0xff);
	buf[1] = (png_byte)(i & 0xff);
}

/* Write a PNG chunk all at once.  The type is an array of ASCII characters
 * representing the chunk name.  The array must be at least 4 bytes in
 * length, and does not need to be null terminated.  To be safe, pass the
 * pre-defined chunk names here, and if you need a new one, define it
 * where the others are defined.  The length is the length of the data.
 * All the data must be present.  If that is not possible, use the
 * png_write_chunk_start(), png_write_chunk_data(), and png_write_chunk_end()
 * functions instead.
 */
void PNGAPI
png_write_chunk(png_structp png_ptr, png_bytep chunk_name,
				png_bytep data, png_size_t length)
{
	png_write_chunk_start(png_ptr, chunk_name, (png_uint_32)length);
	png_write_chunk_data(png_ptr, data, length);
	png_write_chunk_end(png_ptr);
}

/* Write the start of a PNG chunk.  The type is the chunk type.
 * The total_length is the sum of the lengths of all the data you will be
 * passing in png_write_chunk_data().
 */
void PNGAPI
png_write_chunk_start(png_structp png_ptr, png_bytep chunk_name,
					  png_uint_32 length)
{
	png_byte buf[4];
	png_debug2(0, "Writing %s chunk (%lu bytes)\n", chunk_name, length);

	/* write the length */
	png_save_uint_32(buf, length);
	png_write_data(png_ptr, buf, (png_size_t)4);

	/* write the chunk name */
	png_write_data(png_ptr, chunk_name, (png_size_t)4);
	/* reset the crc and run it over the chunk name */
	png_reset_crc(png_ptr);
	png_calculate_crc(png_ptr, chunk_name, (png_size_t)4);
}

/* Write the data of a PNG chunk started with png_write_chunk_start().
 * Note that multiple calls to this function are allowed, and that the
 * sum of the lengths from these calls *must* add up to the total_length
 * given to png_write_chunk_start().
 */
void PNGAPI
png_write_chunk_data(png_structp png_ptr, png_bytep data, png_size_t length)
{
	/* write the data, and run the CRC over it */
	if (data != NULL && length > 0) {
		png_calculate_crc(png_ptr, data, length);
		png_write_data(png_ptr, data, length);
	}
}

/* Finish a chunk started with png_write_chunk_start(). */
void PNGAPI
png_write_chunk_end(png_structp png_ptr)
{
	png_byte buf[4];

	/* write the crc */
	png_save_uint_32(buf, png_ptr->crc);

	png_write_data(png_ptr, buf, (png_size_t)4);
}

/* Simple function to write the signature.  If we have already written
 * the magic bytes of the signature, or more likely, the PNG stream is
 * being embedded into another stream and doesn't need its own signature,
 * we should call png_set_sig_bytes() to tell libpng how many of the
 * bytes have already been written.
 */
void /* PRIVATE */
	png_write_sig(png_structp png_ptr)
{
	png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
	/* write the rest of the 8 byte signature */
	png_write_data(png_ptr, &png_signature[png_ptr->sig_bytes],
				   (png_size_t)8 - png_ptr->sig_bytes);
	if (png_ptr->sig_bytes < 3)
		png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE;
}

#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_iCCP_SUPPORTED)
/*
 * This pair of functions encapsulates the operation of (a) compressing a
 * text string, and (b) issuing it later as a series of chunk data writes.
 * The compression_state structure is shared context for these functions
 * set up by the caller in order to make the whole mess thread-safe.
 */

typedef struct
	{
	char *input;		   /* the uncompressed input data */
	int input_len;		   /* its length */
	int num_output_ptr;	/* number of output pointers used */
	int max_output_ptr;	/* size of output_ptr */
	png_charpp output_ptr; /* array of pointers to output */
} compression_state;

/* compress given text into storage in the png_ptr structure */
static int /* PRIVATE */
	png_text_compress(png_structp png_ptr,
					  png_charp text, png_size_t text_len, int compression,
					  compression_state *comp)
{
	int ret;

	comp->num_output_ptr = comp->max_output_ptr = 0;
	comp->output_ptr = NULL;
	comp->input = NULL;

	/* we may just want to pass the text right through */
	if (compression == PNG_TEXT_COMPRESSION_NONE) {
		comp->input = text;
		comp->input_len = text_len;
		return ((int)text_len);
	}

	if (compression >= PNG_TEXT_COMPRESSION_LAST) {
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
		char msg[50];
		sprintf(msg, "Unknown compression type %d", compression);
		png_warning(png_ptr, msg);
#else
		png_warning(png_ptr, "Unknown compression type");
#endif
	}

	/* We can't write the chunk until we find out how much data we have,
    * which means we need to run the compressor first and save the
    * output.  This shouldn't be a problem, as the vast majority of
    * comments should be reasonable, but we will set up an array of
    * malloc'd pointers to be sure.
    *
    * If we knew the application was well behaved, we could simplify this
    * greatly by assuming we can always malloc an output buffer large
    * enough to hold the compressed text ((1001 * text_len / 1000) + 12)
    * and malloc this directly.  The only time this would be a bad idea is
    * if we can't malloc more than 64K and we have 64K of random input
    * data, or if the input string is incredibly large (although this
    * wouldn't cause a failure, just a slowdown due to swapping).
    */

	/* set up the compression buffers */
	png_ptr->zstream.avail_in = (uInt)text_len;
	png_ptr->zstream.next_in = (Bytef *)text;
	png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
	png_ptr->zstream.next_out = (Bytef *)png_ptr->zbuf;

	/* this is the same compression loop as in png_write_row() */
	do {
		/* compress the data */
		ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
		if (ret != Z_OK) {
			/* error */
			if (png_ptr->zstream.msg != NULL)
				png_error(png_ptr, png_ptr->zstream.msg);
			else
				png_error(png_ptr, "zlib error");
		}
		/* check to see if we need more room */
		if (!png_ptr->zstream.avail_out && png_ptr->zstream.avail_in) {
			/* make sure the output array has room */
			if (comp->num_output_ptr >= comp->max_output_ptr) {
				int old_max;

				old_max = comp->max_output_ptr;
				comp->max_output_ptr = comp->num_output_ptr + 4;
				if (comp->output_ptr != NULL) {
					png_charpp old_ptr;

					old_ptr = comp->output_ptr;
					comp->output_ptr = (png_charpp)png_malloc(png_ptr,
															  (png_uint_32)(comp->max_output_ptr * sizeof(png_charpp)));
					png_memcpy(comp->output_ptr, old_ptr, old_max * sizeof(png_charp));
					png_free(png_ptr, old_ptr);
				} else
					comp->output_ptr = (png_charpp)png_malloc(png_ptr,
															  (png_uint_32)(comp->max_output_ptr * sizeof(png_charp)));
			}

			/* save the data */
			comp->output_ptr[comp->num_output_ptr] = (png_charp)png_malloc(png_ptr,
																		   (png_uint_32)png_ptr->zbuf_size);
			png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf,
					   png_ptr->zbuf_size);
			comp->num_output_ptr++;

			/* and reset the buffer */
			png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
			png_ptr->zstream.next_out = png_ptr->zbuf;
		}
		/* continue until we don't have any more to compress */
	} while (png_ptr->zstream.avail_in);

	/* finish the compression */
	do {
		/* tell zlib we are finished */
		ret = deflate(&png_ptr->zstream, Z_FINISH);

		if (ret == Z_OK) {
			/* check to see if we need more room */
			if (!(png_ptr->zstream.avail_out)) {
				/* check to make sure our output array has room */
				if (comp->num_output_ptr >= comp->max_output_ptr) {
					int old_max;

					old_max = comp->max_output_ptr;
					comp->max_output_ptr = comp->num_output_ptr + 4;
					if (comp->output_ptr != NULL) {
						png_charpp old_ptr;

						old_ptr = comp->output_ptr;
						/* This could be optimized to realloc() */
						comp->output_ptr = (png_charpp)png_malloc(png_ptr,
																  (png_uint_32)(comp->max_output_ptr * sizeof(png_charpp)));
						png_memcpy(comp->output_ptr, old_ptr,
								   old_max * sizeof(png_charp));
						png_free(png_ptr, old_ptr);
					} else
						comp->output_ptr = (png_charpp)png_malloc(png_ptr,
																  (png_uint_32)(comp->max_output_ptr * sizeof(png_charp)));
				}

				/* save off the data */
				comp->output_ptr[comp->num_output_ptr] =
					(png_charp)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size);
				png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf,
						   png_ptr->zbuf_size);
				comp->num_output_ptr++;

				/* and reset the buffer pointers */
				png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
				png_ptr->zstream.next_out = png_ptr->zbuf;
			}
		} else if (ret != Z_STREAM_END) {
			/* we got an error */
			if (png_ptr->zstream.msg != NULL)
				png_error(png_ptr, png_ptr->zstream.msg);
			else
				png_error(png_ptr, "zlib error");
		}
	} while (ret != Z_STREAM_END);

	/* text length is number of buffers plus last buffer */
	text_len = png_ptr->zbuf_size * comp->num_output_ptr;
	if (png_ptr->zstream.avail_out < png_ptr->zbuf_size)
		text_len += png_ptr->zbuf_size - (png_size_t)png_ptr->zstream.avail_out;

	return ((int)text_len);
}

/* ship the compressed text out via chunk writes */
static void /* PRIVATE */
	png_write_compressed_data_out(png_structp png_ptr, compression_state *comp)
{
	int i;

	/* handle the no-compression case */
	if (comp->input) {
		png_write_chunk_data(png_ptr, (png_bytep)comp->input,
							 (png_size_t)comp->input_len);
		return;
	}

	/* write saved output buffers, if any */
	for (i = 0; i < comp->num_output_ptr; i++) {
		png_write_chunk_data(png_ptr, (png_bytep)comp->output_ptr[i],
							 png_ptr->zbuf_size);
		png_free(png_ptr, comp->output_ptr[i]);
		comp->output_ptr[i] = NULL;
	}
	if (comp->max_output_ptr != 0)
		png_free(png_ptr, comp->output_ptr);
	comp->output_ptr = NULL;
	/* write anything left in zbuf */
	if (png_ptr->zstream.avail_out < (png_uint_32)png_ptr->zbuf_size)
		png_write_chunk_data(png_ptr, png_ptr->zbuf,
							 png_ptr->zbuf_size - png_ptr->zstream.avail_out);

	/* reset zlib for another zTXt/iTXt or the image data */
	deflateReset(&png_ptr->zstream);
}
#endif

/* Write the IHDR chunk, and update the png_struct with the necessary
 * information.  Note that the rest of this code depends upon this
 * information being correct.
 */
void /* PRIVATE */
	png_write_IHDR(png_structp png_ptr, png_uint_32 width, png_uint_32 height,
				   int bit_depth, int color_type, int compression_type, int filter_type,
				   int interlace_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_IHDR;
#endif
	png_byte buf[13]; /* buffer to store the IHDR info */

	png_debug(1, "in png_write_IHDR\n");
	/* Check that we have valid input data from the application info */
	switch (color_type) {
	case PNG_COLOR_TYPE_GRAY:
		switch (bit_depth) {
		case 1:
		case 2:
		case 4:
		case 8:
		case 16:
			png_ptr->channels = 1;
			break;
		default:
			png_error(png_ptr, "Invalid bit depth for grayscale image");
		}
		break;
	case PNG_COLOR_TYPE_RGB:
		if (bit_depth != 8 && bit_depth != 16)
			png_error(png_ptr, "Invalid bit depth for RGB image");
		png_ptr->channels = 3;
		break;
	case PNG_COLOR_TYPE_PALETTE:
		switch (bit_depth) {
		case 1:
		case 2:
		case 4:
		case 8:
			png_ptr->channels = 1;
			break;
		default:
			png_error(png_ptr, "Invalid bit depth for paletted image");
		}
		break;
	case PNG_COLOR_TYPE_GRAY_ALPHA:
		if (bit_depth != 8 && bit_depth != 16)
			png_error(png_ptr, "Invalid bit depth for grayscale+alpha image");
		png_ptr->channels = 2;
		break;
	case PNG_COLOR_TYPE_RGB_ALPHA:
		if (bit_depth != 8 && bit_depth != 16)
			png_error(png_ptr, "Invalid bit depth for RGBA image");
		png_ptr->channels = 4;
		break;
	default:
		png_error(png_ptr, "Invalid image color type specified");
	}

	if (compression_type != PNG_COMPRESSION_TYPE_BASE) {
		png_warning(png_ptr, "Invalid compression type specified");
		compression_type = PNG_COMPRESSION_TYPE_BASE;
	}

	/* Write filter_method 64 (intrapixel differencing) only if
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
    * 2. Libpng did not write a PNG signature (this filter_method is only
    *    used in PNG datastreams that are embedded in MNG datastreams) and
    * 3. The application called png_permit_mng_features with a mask that
    *    included PNG_FLAG_MNG_FILTER_64 and
    * 4. The filter_method is 64 and
    * 5. The color_type is RGB or RGBA
    */
	if (
#if defined(PNG_MNG_FEATURES_SUPPORTED)
		!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
		  ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
		  (color_type == PNG_COLOR_TYPE_RGB ||
		   color_type == PNG_COLOR_TYPE_RGB_ALPHA) &&
		  (filter_type == PNG_INTRAPIXEL_DIFFERENCING)) &&
#endif
		filter_type != PNG_FILTER_TYPE_BASE) {
		png_warning(png_ptr, "Invalid filter type specified");
		filter_type = PNG_FILTER_TYPE_BASE;
	}

#ifdef PNG_WRITE_INTERLACING_SUPPORTED
	if (interlace_type != PNG_INTERLACE_NONE &&
		interlace_type != PNG_INTERLACE_ADAM7) {
		png_warning(png_ptr, "Invalid interlace type specified");
		interlace_type = PNG_INTERLACE_ADAM7;
	}
#else
	interlace_type = PNG_INTERLACE_NONE;
#endif

	/* save off the relevent information */
	png_ptr->bit_depth = (png_byte)bit_depth;
	png_ptr->color_type = (png_byte)color_type;
	png_ptr->interlaced = (png_byte)interlace_type;
#if defined(PNG_MNG_FEATURES_SUPPORTED)
	png_ptr->filter_type = (png_byte)filter_type;
#endif
	png_ptr->width = width;
	png_ptr->height = height;

	png_ptr->pixel_depth = (png_byte)(bit_depth * png_ptr->channels);
	png_ptr->rowbytes = ((width * (png_size_t)png_ptr->pixel_depth + 7) >> 3);
	/* set the usr info, so any transformations can modify it */
	png_ptr->usr_width = png_ptr->width;
	png_ptr->usr_bit_depth = png_ptr->bit_depth;
	png_ptr->usr_channels = png_ptr->channels;

	/* pack the header information into the buffer */
	png_save_uint_32(buf, width);
	png_save_uint_32(buf + 4, height);
	buf[8] = (png_byte)bit_depth;
	buf[9] = (png_byte)color_type;
	buf[10] = (png_byte)compression_type;
	buf[11] = (png_byte)filter_type;
	buf[12] = (png_byte)interlace_type;

	/* write the chunk */
	png_write_chunk(png_ptr, (png_bytep)png_IHDR, buf, (png_size_t)13);

	/* initialize zlib with PNG info */
	png_ptr->zstream.zalloc = png_zalloc;
	png_ptr->zstream.zfree = png_zfree;
	png_ptr->zstream.opaque = (voidpf)png_ptr;
	if (!(png_ptr->do_filter)) {
		if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE ||
			png_ptr->bit_depth < 8)
			png_ptr->do_filter = PNG_FILTER_NONE;
		else
			png_ptr->do_filter = PNG_ALL_FILTERS;
	}
	if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_STRATEGY)) {
		if (png_ptr->do_filter != PNG_FILTER_NONE)
			png_ptr->zlib_strategy = Z_FILTERED;
		else
			png_ptr->zlib_strategy = Z_DEFAULT_STRATEGY;
	}
	if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_LEVEL))
		png_ptr->zlib_level = Z_DEFAULT_COMPRESSION;
	if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL))
		png_ptr->zlib_mem_level = 8;
	if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS))
		png_ptr->zlib_window_bits = 15;
	if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_METHOD))
		png_ptr->zlib_method = 8;
	deflateInit2(&png_ptr->zstream, png_ptr->zlib_level,
				 png_ptr->zlib_method, png_ptr->zlib_window_bits,
				 png_ptr->zlib_mem_level, png_ptr->zlib_strategy);
	png_ptr->zstream.next_out = png_ptr->zbuf;
	png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;

	png_ptr->mode = PNG_HAVE_IHDR;
}

/* write the palette.  We are careful not to trust png_color to be in the
 * correct order for PNG, so people can redefine it to any convenient
 * structure.
 */
void /* PRIVATE */
	png_write_PLTE(png_structp png_ptr, png_colorp palette, png_uint_32 num_pal)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_PLTE;
#endif
	png_uint_32 i;
	png_colorp pal_ptr;
	png_byte buf[3];

	png_debug(1, "in png_write_PLTE\n");
	if ((
#if defined(PNG_MNG_FEATURES_SUPPORTED)
			!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) &&
#endif
			num_pal == 0) ||
		num_pal > 256) {
		if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) {
			png_error(png_ptr, "Invalid number of colors in palette");
		} else {
			png_warning(png_ptr, "Invalid number of colors in palette");
			return;
		}
	}

	if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) {
		png_warning(png_ptr,
					"Ignoring request to write a PLTE chunk in grayscale PNG");
		return;
	}

	png_ptr->num_palette = (png_uint_16)num_pal;
	png_debug1(3, "num_palette = %d\n", png_ptr->num_palette);

	png_write_chunk_start(png_ptr, (png_bytep)png_PLTE, num_pal * 3);
#ifndef PNG_NO_POINTER_INDEXING
	for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++) {
		buf[0] = pal_ptr->red;
		buf[1] = pal_ptr->green;
		buf[2] = pal_ptr->blue;
		png_write_chunk_data(png_ptr, buf, (png_size_t)3);
	}
#else
	/* This is a little slower but some buggy compilers need to do this instead */
	pal_ptr = palette;
	for (i = 0; i < num_pal; i++) {
		buf[0] = pal_ptr[i].red;
		buf[1] = pal_ptr[i].green;
		buf[2] = pal_ptr[i].blue;
		png_write_chunk_data(png_ptr, buf, (png_size_t)3);
	}
#endif
	png_write_chunk_end(png_ptr);
	png_ptr->mode |= PNG_HAVE_PLTE;
}

/* write an IDAT chunk */
void /* PRIVATE */
	png_write_IDAT(png_structp png_ptr, png_bytep data, png_size_t length)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_IDAT;
#endif
	png_debug(1, "in png_write_IDAT\n");
	png_write_chunk(png_ptr, (png_bytep)png_IDAT, data, length);
	png_ptr->mode |= PNG_HAVE_IDAT;
}

/* write an IEND chunk */
void /* PRIVATE */
	png_write_IEND(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_IEND;
#endif
	png_debug(1, "in png_write_IEND\n");
	png_write_chunk(png_ptr, (png_bytep)png_IEND, png_bytep_NULL,
					(png_size_t)0);
	png_ptr->mode |= PNG_HAVE_IEND;
}

#if defined(PNG_WRITE_gAMA_SUPPORTED)
/* write a gAMA chunk */
#ifdef PNG_FLOATING_POINT_SUPPORTED
void /* PRIVATE */
	png_write_gAMA(png_structp png_ptr, double file_gamma)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_gAMA;
#endif
	png_uint_32 igamma;
	png_byte buf[4];

	png_debug(1, "in png_write_gAMA\n");
	/* file_gamma is saved in 1/100,000ths */
	igamma = (png_uint_32)(file_gamma * 100000.0 + 0.5);
	png_save_uint_32(buf, igamma);
	png_write_chunk(png_ptr, (png_bytep)png_gAMA, buf, (png_size_t)4);
}
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
void /* PRIVATE */
	png_write_gAMA_fixed(png_structp png_ptr, png_fixed_point file_gamma)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_gAMA;
#endif
	png_byte buf[4];

	png_debug(1, "in png_write_gAMA\n");
	/* file_gamma is saved in 1/100,000ths */
	png_save_uint_32(buf, (png_uint_32)file_gamma);
	png_write_chunk(png_ptr, (png_bytep)png_gAMA, buf, (png_size_t)4);
}
#endif
#endif

#if defined(PNG_WRITE_sRGB_SUPPORTED)
/* write a sRGB chunk */
void /* PRIVATE */
	png_write_sRGB(png_structp png_ptr, int srgb_intent)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_sRGB;
#endif
	png_byte buf[1];

	png_debug(1, "in png_write_sRGB\n");
	if (srgb_intent >= PNG_sRGB_INTENT_LAST)
		png_warning(png_ptr,
					"Invalid sRGB rendering intent specified");
	buf[0] = (png_byte)srgb_intent;
	png_write_chunk(png_ptr, (png_bytep)png_sRGB, buf, (png_size_t)1);
}
#endif

#if defined(PNG_WRITE_iCCP_SUPPORTED)
/* write an iCCP chunk */
void /* PRIVATE */
	png_write_iCCP(png_structp png_ptr, png_charp name, int compression_type,
				   png_charp profile, int profile_len)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_iCCP;
#endif
	png_size_t name_len;
	png_charp new_name;
	compression_state comp;

	png_debug(1, "in png_write_iCCP\n");
	if (name == NULL || (name_len = png_check_keyword(png_ptr, name, &new_name)) == 0) {
		png_warning(png_ptr, "Empty keyword in iCCP chunk");
		return;
	}

	if (compression_type != PNG_COMPRESSION_TYPE_BASE)
		png_warning(png_ptr, "Unknown compression type in iCCP chunk");

	if (profile == NULL)
		profile_len = 0;

	if (profile_len)
		profile_len = png_text_compress(png_ptr, profile, (png_size_t)profile_len,
										PNG_COMPRESSION_TYPE_BASE, &comp);

	/* make sure we include the NULL after the name and the compression type */
	png_write_chunk_start(png_ptr, (png_bytep)png_iCCP,
						  (png_uint_32)name_len + profile_len + 2);
	new_name[name_len + 1] = 0x00;
	png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 2);

	if (profile_len)
		png_write_compressed_data_out(png_ptr, &comp);

	png_write_chunk_end(png_ptr);
	png_free(png_ptr, new_name);
}
#endif

#if defined(PNG_WRITE_sPLT_SUPPORTED)
/* write a sPLT chunk */
void /* PRIVATE */
	png_write_sPLT(png_structp png_ptr, png_sPLT_tp spalette)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_sPLT;
#endif
	png_size_t name_len;
	png_charp new_name;
	png_byte entrybuf[10];
	int entry_size = (spalette->depth == 8 ? 6 : 10);
	int palette_size = entry_size * spalette->nentries;
	png_sPLT_entryp ep;
#ifdef PNG_NO_POINTER_INDEXING
	int i;
#endif

	png_debug(1, "in png_write_sPLT\n");
	if (spalette->name == NULL || (name_len = png_check_keyword(png_ptr, spalette->name, &new_name)) == 0) {
		png_warning(png_ptr, "Empty keyword in sPLT chunk");
		return;
	}

	/* make sure we include the NULL after the name */
	png_write_chunk_start(png_ptr, (png_bytep)png_sPLT,
						  (png_uint_32)(name_len + 2 + palette_size));
	png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 1);
	png_write_chunk_data(png_ptr, (png_bytep)&spalette->depth, 1);

/* loop through each palette entry, writing appropriately */
#ifndef PNG_NO_POINTER_INDEXING
	for (ep = spalette->entries; ep < spalette->entries + spalette->nentries; ep++) {
		if (spalette->depth == 8) {
			entrybuf[0] = (png_byte)ep->red;
			entrybuf[1] = (png_byte)ep->green;
			entrybuf[2] = (png_byte)ep->blue;
			entrybuf[3] = (png_byte)ep->alpha;
			png_save_uint_16(entrybuf + 4, ep->frequency);
		} else {
			png_save_uint_16(entrybuf + 0, ep->red);
			png_save_uint_16(entrybuf + 2, ep->green);
			png_save_uint_16(entrybuf + 4, ep->blue);
			png_save_uint_16(entrybuf + 6, ep->alpha);
			png_save_uint_16(entrybuf + 8, ep->frequency);
		}
		png_write_chunk_data(png_ptr, entrybuf, (png_size_t)entry_size);
	}
#else
	ep = spalette->entries;
	for (i = 0; i > spalette->nentries; i++) {
		if (spalette->depth == 8) {
			entrybuf[0] = (png_byte)ep[i].red;
			entrybuf[1] = (png_byte)ep[i].green;
			entrybuf[2] = (png_byte)ep[i].blue;
			entrybuf[3] = (png_byte)ep[i].alpha;
			png_save_uint_16(entrybuf + 4, ep[i].frequency);
		} else {
			png_save_uint_16(entrybuf + 0, ep[i].red);
			png_save_uint_16(entrybuf + 2, ep[i].green);
			png_save_uint_16(entrybuf + 4, ep[i].blue);
			png_save_uint_16(entrybuf + 6, ep[i].alpha);
			png_save_uint_16(entrybuf + 8, ep[i].frequency);
		}
		png_write_chunk_data(png_ptr, entrybuf, entry_size);
	}
#endif

	png_write_chunk_end(png_ptr);
	png_free(png_ptr, new_name);
}
#endif

#if defined(PNG_WRITE_sBIT_SUPPORTED)
/* write the sBIT chunk */
void /* PRIVATE */
	png_write_sBIT(png_structp png_ptr, png_color_8p sbit, int color_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_sBIT;
#endif
	png_byte buf[4];
	png_size_t size;

	png_debug(1, "in png_write_sBIT\n");
	/* make sure we don't depend upon the order of PNG_COLOR_8 */
	if (color_type & PNG_COLOR_MASK_COLOR) {
		png_byte maxbits;

		maxbits = (png_byte)(color_type == PNG_COLOR_TYPE_PALETTE ? 8 : png_ptr->usr_bit_depth);
		if (sbit->red == 0 || sbit->red > maxbits ||
			sbit->green == 0 || sbit->green > maxbits ||
			sbit->blue == 0 || sbit->blue > maxbits) {
			png_warning(png_ptr, "Invalid sBIT depth specified");
			return;
		}
		buf[0] = sbit->red;
		buf[1] = sbit->green;
		buf[2] = sbit->blue;
		size = 3;
	} else {
		if (sbit->gray == 0 || sbit->gray > png_ptr->usr_bit_depth) {
			png_warning(png_ptr, "Invalid sBIT depth specified");
			return;
		}
		buf[0] = sbit->gray;
		size = 1;
	}

	if (color_type & PNG_COLOR_MASK_ALPHA) {
		if (sbit->alpha == 0 || sbit->alpha > png_ptr->usr_bit_depth) {
			png_warning(png_ptr, "Invalid sBIT depth specified");
			return;
		}
		buf[size++] = sbit->alpha;
	}

	png_write_chunk(png_ptr, (png_bytep)png_sBIT, buf, size);
}
#endif

#if defined(PNG_WRITE_cHRM_SUPPORTED)
/* write the cHRM chunk */
#ifdef PNG_FLOATING_POINT_SUPPORTED
void /* PRIVATE */
	png_write_cHRM(png_structp png_ptr, double white_x, double white_y,
				   double red_x, double red_y, double green_x, double green_y,
				   double blue_x, double blue_y)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_cHRM;
#endif
	png_byte buf[32];
	png_uint_32 itemp;

	png_debug(1, "in png_write_cHRM\n");
	/* each value is saved in 1/100,000ths */
	if (white_x < 0 || white_x > 0.8 || white_y < 0 || white_y > 0.8 ||
		white_x + white_y > 1.0) {
		png_warning(png_ptr, "Invalid cHRM white point specified");
#if !defined(PNG_NO_CONSOLE_IO)
		fprintf(stderr, "white_x=%f, white_y=%f\n", white_x, white_y);
#endif
		return;
	}
	itemp = (png_uint_32)(white_x * 100000.0 + 0.5);
	png_save_uint_32(buf, itemp);
	itemp = (png_uint_32)(white_y * 100000.0 + 0.5);
	png_save_uint_32(buf + 4, itemp);

	if (red_x < 0 || red_x > 0.8 || red_y < 0 || red_y > 0.8 ||
		red_x + red_y > 1.0) {
		png_warning(png_ptr, "Invalid cHRM red point specified");
		return;
	}
	itemp = (png_uint_32)(red_x * 100000.0 + 0.5);
	png_save_uint_32(buf + 8, itemp);
	itemp = (png_uint_32)(red_y * 100000.0 + 0.5);
	png_save_uint_32(buf + 12, itemp);

	if (green_x < 0 || green_x > 0.8 || green_y < 0 || green_y > 0.8 ||
		green_x + green_y > 1.0) {
		png_warning(png_ptr, "Invalid cHRM green point specified");
		return;
	}
	itemp = (png_uint_32)(green_x * 100000.0 + 0.5);
	png_save_uint_32(buf + 16, itemp);
	itemp = (png_uint_32)(green_y * 100000.0 + 0.5);
	png_save_uint_32(buf + 20, itemp);

	if (blue_x < 0 || blue_x > 0.8 || blue_y < 0 || blue_y > 0.8 ||
		blue_x + blue_y > 1.0) {
		png_warning(png_ptr, "Invalid cHRM blue point specified");
		return;
	}
	itemp = (png_uint_32)(blue_x * 100000.0 + 0.5);
	png_save_uint_32(buf + 24, itemp);
	itemp = (png_uint_32)(blue_y * 100000.0 + 0.5);
	png_save_uint_32(buf + 28, itemp);

	png_write_chunk(png_ptr, (png_bytep)png_cHRM, buf, (png_size_t)32);
}
#endif
#ifdef PNG_FIXED_POINT_SUPPORTED
void /* PRIVATE */
	png_write_cHRM_fixed(png_structp png_ptr, png_fixed_point white_x,
						 png_fixed_point white_y, png_fixed_point red_x, png_fixed_point red_y,
						 png_fixed_point green_x, png_fixed_point green_y, png_fixed_point blue_x,
						 png_fixed_point blue_y)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_cHRM;
#endif
	png_byte buf[32];

	png_debug(1, "in png_write_cHRM\n");
	/* each value is saved in 1/100,000ths */
	if (white_x > 80000L || white_y > 80000L || white_x + white_y > 100000L) {
		png_warning(png_ptr, "Invalid fixed cHRM white point specified");
#if !defined(PNG_NO_CONSOLE_IO)
		fprintf(stderr, "white_x=%d, white_y=%d\n", white_x, white_y);
#endif
		return;
	}
	png_save_uint_32(buf, (png_uint_32)white_x);
	png_save_uint_32(buf + 4, (png_uint_32)white_y);

	if (red_x > 80000L || red_y > 80000L || red_x + red_y > 100000L) {
		png_warning(png_ptr, "Invalid cHRM fixed red point specified");
		return;
	}
	png_save_uint_32(buf + 8, (png_uint_32)red_x);
	png_save_uint_32(buf + 12, (png_uint_32)red_y);

	if (green_x > 80000L || green_y > 80000L || green_x + green_y > 100000L) {
		png_warning(png_ptr, "Invalid fixed cHRM green point specified");
		return;
	}
	png_save_uint_32(buf + 16, (png_uint_32)green_x);
	png_save_uint_32(buf + 20, (png_uint_32)green_y);

	if (blue_x > 80000L || blue_y > 80000L || blue_x + blue_y > 100000L) {
		png_warning(png_ptr, "Invalid fixed cHRM blue point specified");
		return;
	}
	png_save_uint_32(buf + 24, (png_uint_32)blue_x);
	png_save_uint_32(buf + 28, (png_uint_32)blue_y);

	png_write_chunk(png_ptr, (png_bytep)png_cHRM, buf, (png_size_t)32);
}
#endif
#endif

#if defined(PNG_WRITE_tRNS_SUPPORTED)
/* write the tRNS chunk */
void /* PRIVATE */
	png_write_tRNS(png_structp png_ptr, png_bytep trans, png_color_16p tran,
				   int num_trans, int color_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_tRNS;
#endif
	png_byte buf[6];

	png_debug(1, "in png_write_tRNS\n");
	if (color_type == PNG_COLOR_TYPE_PALETTE) {
		if (num_trans <= 0 || num_trans > (int)png_ptr->num_palette) {
			png_warning(png_ptr, "Invalid number of transparent colors specified");
			return;
		}
		/* write the chunk out as it is */
		png_write_chunk(png_ptr, (png_bytep)png_tRNS, trans, (png_size_t)num_trans);
	} else if (color_type == PNG_COLOR_TYPE_GRAY) {
		/* one 16 bit value */
		if (tran->gray >= (1 << png_ptr->bit_depth)) {
			png_warning(png_ptr,
						"Ignoring attempt to write tRNS chunk out-of-range for bit_depth");
			return;
		}
		png_save_uint_16(buf, tran->gray);
		png_write_chunk(png_ptr, (png_bytep)png_tRNS, buf, (png_size_t)2);
	} else if (color_type == PNG_COLOR_TYPE_RGB) {
		/* three 16 bit values */
		png_save_uint_16(buf, tran->red);
		png_save_uint_16(buf + 2, tran->green);
		png_save_uint_16(buf + 4, tran->blue);
		if (png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4])) {
			png_warning(png_ptr,
						"Ignoring attempt to write 16-bit tRNS chunk when bit_depth is 8");
			return;
		}
		png_write_chunk(png_ptr, (png_bytep)png_tRNS, buf, (png_size_t)6);
	} else {
		png_warning(png_ptr, "Can't write tRNS with an alpha channel");
	}
}
#endif

#if defined(PNG_WRITE_bKGD_SUPPORTED)
/* write the background chunk */
void /* PRIVATE */
	png_write_bKGD(png_structp png_ptr, png_color_16p back, int color_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_bKGD;
#endif
	png_byte buf[6];

	png_debug(1, "in png_write_bKGD\n");
	if (color_type == PNG_COLOR_TYPE_PALETTE) {
		if (
#if defined(PNG_MNG_FEATURES_SUPPORTED)
			(png_ptr->num_palette ||
			 (!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE))) &&
#endif
			back->index > png_ptr->num_palette) {
			png_warning(png_ptr, "Invalid background palette index");
			return;
		}
		buf[0] = back->index;
		png_write_chunk(png_ptr, (png_bytep)png_bKGD, buf, (png_size_t)1);
	} else if (color_type & PNG_COLOR_MASK_COLOR) {
		png_save_uint_16(buf, back->red);
		png_save_uint_16(buf + 2, back->green);
		png_save_uint_16(buf + 4, back->blue);
		if (png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4])) {
			png_warning(png_ptr,
						"Ignoring attempt to write 16-bit bKGD chunk when bit_depth is 8");
			return;
		}
		png_write_chunk(png_ptr, (png_bytep)png_bKGD, buf, (png_size_t)6);
	} else {
		if (back->gray >= (1 << png_ptr->bit_depth)) {
			png_warning(png_ptr,
						"Ignoring attempt to write bKGD chunk out-of-range for bit_depth");
			return;
		}
		png_save_uint_16(buf, back->gray);
		png_write_chunk(png_ptr, (png_bytep)png_bKGD, buf, (png_size_t)2);
	}
}
#endif

#if defined(PNG_WRITE_hIST_SUPPORTED)
/* write the histogram */
void /* PRIVATE */
	png_write_hIST(png_structp png_ptr, png_uint_16p hist, int num_hist)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_hIST;
#endif
	int i;
	png_byte buf[3];

	png_debug(1, "in png_write_hIST\n");
	if (num_hist > (int)png_ptr->num_palette) {
		png_debug2(3, "num_hist = %d, num_palette = %d\n", num_hist,
				   png_ptr->num_palette);
		png_warning(png_ptr, "Invalid number of histogram entries specified");
		return;
	}

	png_write_chunk_start(png_ptr, (png_bytep)png_hIST, (png_uint_32)(num_hist * 2));
	for (i = 0; i < num_hist; i++) {
		png_save_uint_16(buf, hist[i]);
		png_write_chunk_data(png_ptr, buf, (png_size_t)2);
	}
	png_write_chunk_end(png_ptr);
}
#endif

#if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \
	defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED)
/* Check that the tEXt or zTXt keyword is valid per PNG 1.0 specification,
 * and if invalid, correct the keyword rather than discarding the entire
 * chunk.  The PNG 1.0 specification requires keywords 1-79 characters in
 * length, forbids leading or trailing whitespace, multiple internal spaces,
 * and the non-break space (0x80) from ISO 8859-1.  Returns keyword length.
 *
 * The new_key is allocated to hold the corrected keyword and must be freed
 * by the calling routine.  This avoids problems with trying to write to
 * static keywords without having to have duplicate copies of the strings.
 */
png_size_t /* PRIVATE */
	png_check_keyword(png_structp png_ptr, png_charp key, png_charpp new_key)
{
	png_size_t key_len;
	png_charp kp, dp;
	int kflag;
	int kwarn = 0;

	png_debug(1, "in png_check_keyword\n");
	*new_key = NULL;

	if (key == NULL || (key_len = png_strlen(key)) == 0) {
		png_warning(png_ptr, "zero length keyword");
		return ((png_size_t)0);
	}

	png_debug1(2, "Keyword to be checked is '%s'\n", key);

	*new_key = (png_charp)png_malloc(png_ptr, (png_uint_32)(key_len + 2));

	/* Replace non-printing characters with a blank and print a warning */
	for (kp = key, dp = *new_key; *kp != '\0'; kp++, dp++) {
		if (*kp < 0x20 || (*kp > 0x7E && (png_byte)*kp < 0xA1)) {
#if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE)
			char msg[40];

			sprintf(msg, "invalid keyword character 0x%02X", *kp);
			png_warning(png_ptr, msg);
#else
			png_warning(png_ptr, "invalid character in keyword");
#endif
			*dp = ' ';
		} else {
			*dp = *kp;
		}
	}
	*dp = '\0';

	/* Remove any trailing white space. */
	kp = *new_key + key_len - 1;
	if (*kp == ' ') {
		png_warning(png_ptr, "trailing spaces removed from keyword");

		while (*kp == ' ') {
			*(kp--) = '\0';
			key_len--;
		}
	}

	/* Remove any leading white space. */
	kp = *new_key;
	if (*kp == ' ') {
		png_warning(png_ptr, "leading spaces removed from keyword");

		while (*kp == ' ') {
			kp++;
			key_len--;
		}
	}

	png_debug1(2, "Checking for multiple internal spaces in '%s'\n", kp);

	/* Remove multiple internal spaces. */
	for (kflag = 0, dp = *new_key; *kp != '\0'; kp++) {
		if (*kp == ' ' && kflag == 0) {
			*(dp++) = *kp;
			kflag = 1;
		} else if (*kp == ' ') {
			key_len--;
			kwarn = 1;
		} else {
			*(dp++) = *kp;
			kflag = 0;
		}
	}
	*dp = '\0';
	if (kwarn)
		png_warning(png_ptr, "extra interior spaces removed from keyword");

	if (key_len == 0) {
		png_free(png_ptr, *new_key);
		*new_key = NULL;
		png_warning(png_ptr, "Zero length keyword");
	}

	if (key_len > 79) {
		png_warning(png_ptr, "keyword length must be 1 - 79 characters");
		new_key[79] = '\0';
		key_len = 79;
	}

	return (key_len);
}
#endif

#if defined(PNG_WRITE_tEXt_SUPPORTED)
/* write a tEXt chunk */
void /* PRIVATE */
	png_write_tEXt(png_structp png_ptr, png_charp key, png_charp text,
				   png_size_t text_len)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_tEXt;
#endif
	png_size_t key_len;
	png_charp new_key;

	png_debug(1, "in png_write_tEXt\n");
	if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key)) == 0) {
		png_warning(png_ptr, "Empty keyword in tEXt chunk");
		return;
	}

	if (text == NULL || *text == '\0')
		text_len = 0;
	else
		text_len = png_strlen(text);

	/* make sure we include the 0 after the key */
	png_write_chunk_start(png_ptr, (png_bytep)png_tEXt, (png_uint_32)key_len + text_len + 1);
	/*
    * We leave it to the application to meet PNG-1.0 requirements on the
    * contents of the text.  PNG-1.0 through PNG-1.2 discourage the use of
    * any non-Latin-1 characters except for NEWLINE.  ISO PNG will forbid them.
    * The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
    */
	png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1);
	if (text_len)
		png_write_chunk_data(png_ptr, (png_bytep)text, text_len);

	png_write_chunk_end(png_ptr);
	png_free(png_ptr, new_key);
}
#endif

#if defined(PNG_WRITE_zTXt_SUPPORTED)
/* write a compressed text chunk */
void /* PRIVATE */
	png_write_zTXt(png_structp png_ptr, png_charp key, png_charp text,
				   png_size_t text_len, int compression)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_zTXt;
#endif
	png_size_t key_len;
	char buf[1];
	png_charp new_key;
	compression_state comp;

	png_debug(1, "in png_write_zTXt\n");

	if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key)) == 0) {
		png_warning(png_ptr, "Empty keyword in zTXt chunk");
		return;
	}

	if (text == NULL || *text == '\0' || compression == PNG_TEXT_COMPRESSION_NONE) {
		png_write_tEXt(png_ptr, new_key, text, (png_size_t)0);
		png_free(png_ptr, new_key);
		return;
	}

	text_len = png_strlen(text);

	png_free(png_ptr, new_key);

	/* compute the compressed data; do it now for the length */
	text_len = png_text_compress(png_ptr, text, text_len, compression,
								 &comp);

	/* write start of chunk */
	png_write_chunk_start(png_ptr, (png_bytep)png_zTXt, (png_uint_32)(key_len + text_len + 2));
	/* write key */
	png_write_chunk_data(png_ptr, (png_bytep)key, key_len + 1);
	buf[0] = (png_byte)compression;
	/* write compression */
	png_write_chunk_data(png_ptr, (png_bytep)buf, (png_size_t)1);
	/* write the compressed data */
	png_write_compressed_data_out(png_ptr, &comp);

	/* close the chunk */
	png_write_chunk_end(png_ptr);
}
#endif

#if defined(PNG_WRITE_iTXt_SUPPORTED)
/* write an iTXt chunk */
void /* PRIVATE */
	png_write_iTXt(png_structp png_ptr, int compression, png_charp key,
				   png_charp lang, png_charp lang_key, png_charp text)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_iTXt;
#endif
	png_size_t lang_len, key_len, lang_key_len, text_len;
	png_charp new_lang, new_key;
	png_byte cbuf[2];
	compression_state comp;

	png_debug(1, "in png_write_iTXt\n");

	if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key)) == 0) {
		png_warning(png_ptr, "Empty keyword in iTXt chunk");
		return;
	}
	if (lang == NULL || (lang_len = png_check_keyword(png_ptr, lang, &new_lang)) == 0) {
		png_warning(png_ptr, "Empty language field in iTXt chunk");
		new_lang = NULL;
		lang_len = 0;
	}

	if (lang_key == NULL)
		lang_key_len = 0;
	else
		lang_key_len = png_strlen(lang_key);

	if (text == NULL)
		text_len = 0;
	else
		text_len = png_strlen(text);

	/* compute the compressed data; do it now for the length */
	text_len = png_text_compress(png_ptr, text, text_len, compression - 2,
								 &comp);

	/* make sure we include the compression flag, the compression byte,
    * and the NULs after the key, lang, and lang_key parts */

	png_write_chunk_start(png_ptr, (png_bytep)png_iTXt,
						  (png_uint_32)(
							  5 /* comp byte, comp flag, terminators for key, lang and lang_key */
							  + key_len + lang_len + lang_key_len + text_len));

	/*
    * We leave it to the application to meet PNG-1.0 requirements on the
    * contents of the text.  PNG-1.0 through PNG-1.2 discourage the use of
    * any non-Latin-1 characters except for NEWLINE.  ISO PNG will forbid them.
    * The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG.
    */
	png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1);

	/* set the compression flag */
	if (compression == PNG_ITXT_COMPRESSION_NONE ||
		compression == PNG_TEXT_COMPRESSION_NONE)
		cbuf[0] = 0;
	else /* compression == PNG_ITXT_COMPRESSION_zTXt */
		cbuf[0] = 1;
	/* set the compression method */
	cbuf[1] = 0;
	png_write_chunk_data(png_ptr, cbuf, 2);

	cbuf[0] = 0;
	png_write_chunk_data(png_ptr, (new_lang ? (png_bytep)new_lang : cbuf), lang_len + 1);
	png_write_chunk_data(png_ptr, (lang_key ? (png_bytep)lang_key : cbuf), lang_key_len + 1);
	png_write_compressed_data_out(png_ptr, &comp);

	png_write_chunk_end(png_ptr);
	png_free(png_ptr, new_key);
	if (new_lang)
		png_free(png_ptr, new_lang);
}
#endif

#if defined(PNG_WRITE_oFFs_SUPPORTED)
/* write the oFFs chunk */
void /* PRIVATE */
	png_write_oFFs(png_structp png_ptr, png_int_32 x_offset, png_int_32 y_offset,
				   int unit_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_oFFs;
#endif
	png_byte buf[9];

	png_debug(1, "in png_write_oFFs\n");
	if (unit_type >= PNG_OFFSET_LAST)
		png_warning(png_ptr, "Unrecognized unit type for oFFs chunk");

	png_save_int_32(buf, x_offset);
	png_save_int_32(buf + 4, y_offset);
	buf[8] = (png_byte)unit_type;

	png_write_chunk(png_ptr, (png_bytep)png_oFFs, buf, (png_size_t)9);
}
#endif

#if defined(PNG_WRITE_pCAL_SUPPORTED)
/* write the pCAL chunk (described in the PNG extensions document) */
void /* PRIVATE */
	png_write_pCAL(png_structp png_ptr, png_charp purpose, png_int_32 X0,
				   png_int_32 X1, int type, int nparams, png_charp units, png_charpp params)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_pCAL;
#endif
	png_size_t purpose_len, units_len, total_len;
	png_uint_32p params_len;
	png_byte buf[10];
	png_charp new_purpose;
	int i;

	png_debug1(1, "in png_write_pCAL (%d parameters)\n", nparams);
	if (type >= PNG_EQUATION_LAST)
		png_warning(png_ptr, "Unrecognized equation type for pCAL chunk");

	purpose_len = png_check_keyword(png_ptr, purpose, &new_purpose) + 1;
	png_debug1(3, "pCAL purpose length = %d\n", (int)purpose_len);
	units_len = png_strlen(units) + (nparams == 0 ? 0 : 1);
	png_debug1(3, "pCAL units length = %d\n", (int)units_len);
	total_len = purpose_len + units_len + 10;

	params_len = (png_uint_32p)png_malloc(png_ptr, (png_uint_32)(nparams * sizeof(png_uint_32)));

	/* Find the length of each parameter, making sure we don't count the
      null terminator for the last parameter. */
	for (i = 0; i < nparams; i++) {
		params_len[i] = png_strlen(params[i]) + (i == nparams - 1 ? 0 : 1);
		png_debug2(3, "pCAL parameter %d length = %lu\n", i, params_len[i]);
		total_len += (png_size_t)params_len[i];
	}

	png_debug1(3, "pCAL total length = %d\n", (int)total_len);
	png_write_chunk_start(png_ptr, (png_bytep)png_pCAL, (png_uint_32)total_len);
	png_write_chunk_data(png_ptr, (png_bytep)new_purpose, purpose_len);
	png_save_int_32(buf, X0);
	png_save_int_32(buf + 4, X1);
	buf[8] = (png_byte)type;
	buf[9] = (png_byte)nparams;
	png_write_chunk_data(png_ptr, buf, (png_size_t)10);
	png_write_chunk_data(png_ptr, (png_bytep)units, (png_size_t)units_len);

	png_free(png_ptr, new_purpose);

	for (i = 0; i < nparams; i++) {
		png_write_chunk_data(png_ptr, (png_bytep)params[i],
							 (png_size_t)params_len[i]);
	}

	png_free(png_ptr, params_len);
	png_write_chunk_end(png_ptr);
}
#endif

#if defined(PNG_WRITE_sCAL_SUPPORTED)
/* write the sCAL chunk */
#if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO)
void /* PRIVATE */
	png_write_sCAL(png_structp png_ptr, int unit, double width, double height)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_sCAL;
#endif
	png_size_t total_len;
	char wbuf[32], hbuf[32];

	png_debug(1, "in png_write_sCAL\n");

#if defined(_WIN32_WCE)
	/* sprintf() function is not supported on WindowsCE */
	{
		wchar_t wc_buf[32];
		swprintf(wc_buf, TEXT("%12.12e"), width);
		WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, wbuf, 32, NULL, NULL);
		swprintf(wc_buf, TEXT("%12.12e"), height);
		WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, hbuf, 32, NULL, NULL);
	}
#else
	sprintf(wbuf, "%12.12e", width);
	sprintf(hbuf, "%12.12e", height);
#endif
	total_len = 1 + png_strlen(wbuf) + 1 + png_strlen(hbuf);

	png_debug1(3, "sCAL total length = %d\n", (int)total_len);
	png_write_chunk_start(png_ptr, (png_bytep)png_sCAL, (png_uint_32)total_len);
	png_write_chunk_data(png_ptr, (png_bytep)&unit, 1);
	png_write_chunk_data(png_ptr, (png_bytep)wbuf, png_strlen(wbuf) + 1);
	png_write_chunk_data(png_ptr, (png_bytep)hbuf, png_strlen(hbuf));

	png_write_chunk_end(png_ptr);
}
#else
#ifdef PNG_FIXED_POINT_SUPPORTED
void /* PRIVATE */
	png_write_sCAL_s(png_structp png_ptr, int unit, png_charp width,
					 png_charp height)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_sCAL;
#endif
	png_size_t total_len;
	char wbuf[32], hbuf[32];

	png_debug(1, "in png_write_sCAL_s\n");

	png_strcpy(wbuf, (const char *)width);
	png_strcpy(hbuf, (const char *)height);
	total_len = 1 + png_strlen(wbuf) + 1 + png_strlen(hbuf);

	png_debug1(3, "sCAL total length = %d\n", total_len);
	png_write_chunk_start(png_ptr, (png_bytep)png_sCAL, (png_uint_32)total_len);
	png_write_chunk_data(png_ptr, (png_bytep)&unit, 1);
	png_write_chunk_data(png_ptr, (png_bytep)wbuf, png_strlen(wbuf) + 1);
	png_write_chunk_data(png_ptr, (png_bytep)hbuf, png_strlen(hbuf));

	png_write_chunk_end(png_ptr);
}
#endif
#endif
#endif

#if defined(PNG_WRITE_pHYs_SUPPORTED)
/* write the pHYs chunk */
void /* PRIVATE */
	png_write_pHYs(png_structp png_ptr, png_uint_32 x_pixels_per_unit,
				   png_uint_32 y_pixels_per_unit,
				   int unit_type)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_pHYs;
#endif
	png_byte buf[9];

	png_debug(1, "in png_write_pHYs\n");
	if (unit_type >= PNG_RESOLUTION_LAST)
		png_warning(png_ptr, "Unrecognized unit type for pHYs chunk");

	png_save_uint_32(buf, x_pixels_per_unit);
	png_save_uint_32(buf + 4, y_pixels_per_unit);
	buf[8] = (png_byte)unit_type;

	png_write_chunk(png_ptr, (png_bytep)png_pHYs, buf, (png_size_t)9);
}
#endif

#if defined(PNG_WRITE_tIME_SUPPORTED)
/* Write the tIME chunk.  Use either png_convert_from_struct_tm()
 * or png_convert_from_time_t(), or fill in the structure yourself.
 */
void /* PRIVATE */
	png_write_tIME(png_structp png_ptr, png_timep mod_time)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	PNG_tIME;
#endif
	png_byte buf[7];

	png_debug(1, "in png_write_tIME\n");
	if (mod_time->month > 12 || mod_time->month < 1 ||
		mod_time->day > 31 || mod_time->day < 1 ||
		mod_time->hour > 23 || mod_time->second > 60) {
		png_warning(png_ptr, "Invalid time specified for tIME chunk");
		return;
	}

	png_save_uint_16(buf, mod_time->year);
	buf[2] = mod_time->month;
	buf[3] = mod_time->day;
	buf[4] = mod_time->hour;
	buf[5] = mod_time->minute;
	buf[6] = mod_time->second;

	png_write_chunk(png_ptr, (png_bytep)png_tIME, buf, (png_size_t)7);
}
#endif

/* initializes the row writing capability of libpng */
void /* PRIVATE */
	png_write_start_row(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */

	/* start of interlace block */
	int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};

	/* offset to next interlace block */
	int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};

	/* start of interlace block in the y direction */
	int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};

	/* offset to next interlace block in the y direction */
	int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif

	png_size_t buf_size;

	png_debug(1, "in png_write_start_row\n");
	buf_size = (png_size_t)(((png_ptr->width * png_ptr->usr_channels *
								  png_ptr->usr_bit_depth +
							  7) >>
							 3) +
							1);

	/* set up row buffer */
	png_ptr->row_buf = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size);
	png_ptr->row_buf[0] = PNG_FILTER_VALUE_NONE;

	/* set up filtering buffer, if using this filter */
	if (png_ptr->do_filter & PNG_FILTER_SUB) {
		png_ptr->sub_row = (png_bytep)png_malloc(png_ptr,
												 (png_ptr->rowbytes + 1));
		png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB;
	}

	/* We only need to keep the previous row if we are using one of these. */
	if (png_ptr->do_filter & (PNG_FILTER_AVG | PNG_FILTER_UP | PNG_FILTER_PAETH)) {
		/* set up previous row buffer */
		png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size);
		png_memset(png_ptr->prev_row, 0, buf_size);

		if (png_ptr->do_filter & PNG_FILTER_UP) {
			png_ptr->up_row = (png_bytep)png_malloc(png_ptr,
													(png_ptr->rowbytes + 1));
			png_ptr->up_row[0] = PNG_FILTER_VALUE_UP;
		}

		if (png_ptr->do_filter & PNG_FILTER_AVG) {
			png_ptr->avg_row = (png_bytep)png_malloc(png_ptr,
													 (png_ptr->rowbytes + 1));
			png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG;
		}

		if (png_ptr->do_filter & PNG_FILTER_PAETH) {
			png_ptr->paeth_row = (png_bytep)png_malloc(png_ptr,
													   (png_ptr->rowbytes + 1));
			png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH;
		}
	}

#ifdef PNG_WRITE_INTERLACING_SUPPORTED
	/* if interlaced, we need to set up width and height of pass */
	if (png_ptr->interlaced) {
		if (!(png_ptr->transformations & PNG_INTERLACE)) {
			png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 -
								 png_pass_ystart[0]) /
								png_pass_yinc[0];
			png_ptr->usr_width = (png_ptr->width + png_pass_inc[0] - 1 -
								  png_pass_start[0]) /
								 png_pass_inc[0];
		} else {
			png_ptr->num_rows = png_ptr->height;
			png_ptr->usr_width = png_ptr->width;
		}
	} else
#endif
	{
		png_ptr->num_rows = png_ptr->height;
		png_ptr->usr_width = png_ptr->width;
	}
	png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
	png_ptr->zstream.next_out = png_ptr->zbuf;
}

/* Internal use only.  Called when finished processing a row of data. */
void /* PRIVATE */
	png_write_finish_row(png_structp png_ptr)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */

	/* start of interlace block */
	int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};

	/* offset to next interlace block */
	int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};

	/* start of interlace block in the y direction */
	int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};

	/* offset to next interlace block in the y direction */
	int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif

	int ret;

	png_debug(1, "in png_write_finish_row\n");
	/* next row */
	png_ptr->row_number++;

	/* see if we are done */
	if (png_ptr->row_number < png_ptr->num_rows)
		return;

#ifdef PNG_WRITE_INTERLACING_SUPPORTED
	/* if interlaced, go to next pass */
	if (png_ptr->interlaced) {
		png_ptr->row_number = 0;
		if (png_ptr->transformations & PNG_INTERLACE) {
			png_ptr->pass++;
		} else {
			/* loop until we find a non-zero width or height pass */
			do {
				png_ptr->pass++;
				if (png_ptr->pass >= 7)
					break;
				png_ptr->usr_width = (png_ptr->width +
									  png_pass_inc[png_ptr->pass] - 1 -
									  png_pass_start[png_ptr->pass]) /
									 png_pass_inc[png_ptr->pass];
				png_ptr->num_rows = (png_ptr->height +
									 png_pass_yinc[png_ptr->pass] - 1 -
									 png_pass_ystart[png_ptr->pass]) /
									png_pass_yinc[png_ptr->pass];
				if (png_ptr->transformations & PNG_INTERLACE)
					break;
			} while (png_ptr->usr_width == 0 || png_ptr->num_rows == 0);
		}

		/* reset the row above the image for the next pass */
		if (png_ptr->pass < 7) {
			if (png_ptr->prev_row != NULL)
				png_memset(png_ptr->prev_row, 0,
						   (png_size_t)(((png_uint_32)png_ptr->usr_channels *
											 (png_uint_32)png_ptr->usr_bit_depth *
											 png_ptr->width +
										 7) >>
										3) +
							   1);
			return;
		}
	}
#endif

	/* if we get here, we've just written the last row, so we need
      to flush the compressor */
	do {
		/* tell the compressor we are done */
		ret = deflate(&png_ptr->zstream, Z_FINISH);
		/* check for an error */
		if (ret == Z_OK) {
			/* check to see if we need more room */
			if (!(png_ptr->zstream.avail_out)) {
				png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
				png_ptr->zstream.next_out = png_ptr->zbuf;
				png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
			}
		} else if (ret != Z_STREAM_END) {
			if (png_ptr->zstream.msg != NULL)
				png_error(png_ptr, png_ptr->zstream.msg);
			else
				png_error(png_ptr, "zlib error");
		}
	} while (ret != Z_STREAM_END);

	/* write any extra space */
	if (png_ptr->zstream.avail_out < png_ptr->zbuf_size) {
		png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size -
												   png_ptr->zstream.avail_out);
	}

	deflateReset(&png_ptr->zstream);
}

#if defined(PNG_WRITE_INTERLACING_SUPPORTED)
/* Pick out the correct pixels for the interlace pass.
 * The basic idea here is to go through the row with a source
 * pointer and a destination pointer (sp and dp), and copy the
 * correct pixels for the pass.  As the row gets compacted,
 * sp will always be >= dp, so we should never overwrite anything.
 * See the default: case for the easiest code to understand.
 */
void /* PRIVATE */
	png_do_write_interlace(png_row_infop row_info, png_bytep row, int pass)
{
#ifdef PNG_USE_LOCAL_ARRAYS
	/* arrays to facilitate easy interlacing - use pass (0 - 6) as index */

	/* start of interlace block */
	int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};

	/* offset to next interlace block */
	int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
#endif

	png_debug(1, "in png_do_write_interlace\n");
/* we don't have to do anything on the last pass (6) */
#if defined(PNG_USELESS_TESTS_SUPPORTED)
	if (row != NULL && row_info != NULL && pass < 6)
#else
	if (pass < 6)
#endif
	{
		/* each pixel depth is handled separately */
		switch (row_info->pixel_depth) {
		case 1: {
			png_bytep sp;
			png_bytep dp;
			int shift;
			int d;
			int value;
			png_uint_32 i;
			png_uint_32 row_width = row_info->width;

			dp = row;
			d = 0;
			shift = 7;
			for (i = png_pass_start[pass]; i < row_width;
				 i += png_pass_inc[pass]) {
				sp = row + (png_size_t)(i >> 3);
				value = (int)(*sp >> (7 - (int)(i & 0x07))) & 0x01;
				d |= (value << shift);

				if (shift == 0) {
					shift = 7;
					*dp++ = (png_byte)d;
					d = 0;
				} else
					shift--;
			}
			if (shift != 7)
				*dp = (png_byte)d;
			break;
		}
		case 2: {
			png_bytep sp;
			png_bytep dp;
			int shift;
			int d;
			int value;
			png_uint_32 i;
			png_uint_32 row_width = row_info->width;

			dp = row;
			shift = 6;
			d = 0;
			for (i = png_pass_start[pass]; i < row_width;
				 i += png_pass_inc[pass]) {
				sp = row + (png_size_t)(i >> 2);
				value = (*sp >> ((3 - (int)(i & 0x03)) << 1)) & 0x03;
				d |= (value << shift);

				if (shift == 0) {
					shift = 6;
					*dp++ = (png_byte)d;
					d = 0;
				} else
					shift -= 2;
			}
			if (shift != 6)
				*dp = (png_byte)d;
			break;
		}
		case 4: {
			png_bytep sp;
			png_bytep dp;
			int shift;
			int d;
			int value;
			png_uint_32 i;
			png_uint_32 row_width = row_info->width;

			dp = row;
			shift = 4;
			d = 0;
			for (i = png_pass_start[pass]; i < row_width;
				 i += png_pass_inc[pass]) {
				sp = row + (png_size_t)(i >> 1);
				value = (*sp >> ((1 - (int)(i & 0x01)) << 2)) & 0x0f;
				d |= (value << shift);

				if (shift == 0) {
					shift = 4;
					*dp++ = (png_byte)d;
					d = 0;
				} else
					shift -= 4;
			}
			if (shift != 4)
				*dp = (png_byte)d;
			break;
		}
		default: {
			png_bytep sp;
			png_bytep dp;
			png_uint_32 i;
			png_uint_32 row_width = row_info->width;
			png_size_t pixel_bytes;

			/* start at the beginning */
			dp = row;
			/* find out how many bytes each pixel takes up */
			pixel_bytes = (row_info->pixel_depth >> 3);
			/* loop through the row, only looking at the pixels that
               matter */
			for (i = png_pass_start[pass]; i < row_width;
				 i += png_pass_inc[pass]) {
				/* find out where the original pixel is */
				sp = row + (png_size_t)i * pixel_bytes;
				/* move the pixel */
				if (dp != sp)
					png_memcpy(dp, sp, pixel_bytes);
				/* next pixel */
				dp += pixel_bytes;
			}
			break;
		}
		}
		/* set new row width */
		row_info->width = (row_info->width +
						   png_pass_inc[pass] - 1 -
						   png_pass_start[pass]) /
						  png_pass_inc[pass];
		row_info->rowbytes = ((row_info->width *
								   row_info->pixel_depth +
							   7) >>
							  3);
	}
}
#endif

/* This filters the row, chooses which filter to use, if it has not already
 * been specified by the application, and then writes the row out with the
 * chosen filter.
 */
#define PNG_MAXSUM (~((png_uint_32)0) >> 1)
#define PNG_HISHIFT 10
#define PNG_LOMASK ((png_uint_32)0xffffL)
#define PNG_HIMASK ((png_uint_32)(~PNG_LOMASK >> PNG_HISHIFT))
void /* PRIVATE */
	png_write_find_filter(png_structp png_ptr, png_row_infop row_info)
{
	png_bytep prev_row, best_row, row_buf;
	png_uint_32 mins, bpp;
	png_byte filter_to_do = png_ptr->do_filter;
	png_uint_32 row_bytes = row_info->rowbytes;
#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
	int num_p_filters = (int)png_ptr->num_prev_filters;
#endif

	png_debug(1, "in png_write_find_filter\n");
	/* find out how many bytes offset each pixel is */
	bpp = (row_info->pixel_depth + 7) / 8;

	prev_row = png_ptr->prev_row;
	best_row = row_buf = png_ptr->row_buf;
	mins = PNG_MAXSUM;

	/* The prediction method we use is to find which method provides the
    * smallest value when summing the absolute values of the distances
    * from zero, using anything >= 128 as negative numbers.  This is known
    * as the "minimum sum of absolute differences" heuristic.  Other
    * heuristics are the "weighted minimum sum of absolute differences"
    * (experimental and can in theory improve compression), and the "zlib
    * predictive" method (not implemented yet), which does test compressions
    * of lines using different filter methods, and then chooses the
    * (series of) filter(s) that give minimum compressed data size (VERY
    * computationally expensive).
    *
    * GRR 980525:  consider also
    *   (1) minimum sum of absolute differences from running average (i.e.,
    *       keep running sum of non-absolute differences & count of bytes)
    *       [track dispersion, too?  restart average if dispersion too large?]
    *  (1b) minimum sum of absolute differences from sliding average, probably
    *       with window size <= deflate window (usually 32K)
    *   (2) minimum sum of squared differences from zero or running average
    *       (i.e., ~ root-mean-square approach)
    */

	/* We don't need to test the 'no filter' case if this is the only filter
    * that has been chosen, as it doesn't actually do anything to the data.
    */
	if ((filter_to_do & PNG_FILTER_NONE) &&
		filter_to_do != PNG_FILTER_NONE) {
		png_bytep rp;
		png_uint_32 sum = 0;
		png_uint_32 i;
		int v;

		for (i = 0, rp = row_buf + 1; i < row_bytes; i++, rp++) {
			v = *rp;
			sum += (v < 128) ? v : 256 - v;
		}

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			png_uint_32 sumhi, sumlo;
			int j;
			sumlo = sum & PNG_LOMASK;
			sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; /* Gives us some footroom */

			/* Reduce the sum if we match any of the previous rows */
			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE) {
					sumlo = (sumlo * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
					sumhi = (sumhi * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
				}
			}

			/* Factor in the cost of this filter (this is here for completeness,
          * but it makes no sense to have a "cost" for the NONE filter, as
          * it has the minimum possible computational cost - none).
          */
			sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
					PNG_COST_SHIFT;
			sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >>
					PNG_COST_SHIFT;

			if (sumhi > PNG_HIMASK)
				sum = PNG_MAXSUM;
			else
				sum = (sumhi << PNG_HISHIFT) + sumlo;
		}
#endif
		mins = sum;
	}

	/* sub filter */
	if (filter_to_do == PNG_FILTER_SUB)
	/* it's the only filter so no testing is needed */
	{
		png_bytep rp, lp, dp;
		png_uint_32 i;
		for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
			 i++, rp++, dp++) {
			*dp = *rp;
		}
		for (lp = row_buf + 1; i < row_bytes;
			 i++, rp++, lp++, dp++) {
			*dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);
		}
		best_row = png_ptr->sub_row;
	}

	else if (filter_to_do & PNG_FILTER_SUB) {
		png_bytep rp, dp, lp;
		png_uint_32 sum = 0, lmins = mins;
		png_uint_32 i;
		int v;

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		/* We temporarily increase the "minimum sum" by the factor we
       * would reduce the sum of this filter, so that we can do the
       * early exit comparison without scaling the sum each time.
       */
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 lmhi, lmlo;
			lmlo = lmins & PNG_LOMASK;
			lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB) {
					lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
					lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
				}
			}

			lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
				   PNG_COST_SHIFT;
			lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
				   PNG_COST_SHIFT;

			if (lmhi > PNG_HIMASK)
				lmins = PNG_MAXSUM;
			else
				lmins = (lmhi << PNG_HISHIFT) + lmlo;
		}
#endif

		for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp;
			 i++, rp++, dp++) {
			v = *dp = *rp;

			sum += (v < 128) ? v : 256 - v;
		}
		for (lp = row_buf + 1; i < row_info->rowbytes;
			 i++, rp++, lp++, dp++) {
			v = *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff);

			sum += (v < 128) ? v : 256 - v;

			if (sum > lmins) /* We are already worse, don't continue. */
				break;
		}

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 sumhi, sumlo;
			sumlo = sum & PNG_LOMASK;
			sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB) {
					sumlo = (sumlo * png_ptr->inv_filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
					sumhi = (sumhi * png_ptr->inv_filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
				}
			}

			sumlo = (sumlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
					PNG_COST_SHIFT;
			sumhi = (sumhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >>
					PNG_COST_SHIFT;

			if (sumhi > PNG_HIMASK)
				sum = PNG_MAXSUM;
			else
				sum = (sumhi << PNG_HISHIFT) + sumlo;
		}
#endif

		if (sum < mins) {
			mins = sum;
			best_row = png_ptr->sub_row;
		}
	}

	/* up filter */
	if (filter_to_do == PNG_FILTER_UP) {
		png_bytep rp, dp, pp;
		png_uint_32 i;

		for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
			pp = prev_row + 1;
			 i < row_bytes;
			 i++, rp++, pp++, dp++) {
			*dp = (png_byte)(((int)*rp - (int)*pp) & 0xff);
		}
		best_row = png_ptr->up_row;
	}

	else if (filter_to_do & PNG_FILTER_UP) {
		png_bytep rp, dp, pp;
		png_uint_32 sum = 0, lmins = mins;
		png_uint_32 i;
		int v;

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 lmhi, lmlo;
			lmlo = lmins & PNG_LOMASK;
			lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP) {
					lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
					lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
				}
			}

			lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
				   PNG_COST_SHIFT;
			lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >>
				   PNG_COST_SHIFT;

			if (lmhi > PNG_HIMASK)
				lmins = PNG_MAXSUM;
			else
				lmins = (lmhi << PNG_HISHIFT) + lmlo;
		}
#endif

		for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1,
			pp = prev_row + 1;
			 i < row_bytes; i++) {
			v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);

			sum += (v < 128) ? v : 256 - v;

			if (sum > lmins) /* We are already worse, don't continue. */
				break;
		}

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 sumhi, sumlo;
			sumlo = sum & PNG_LOMASK;
			sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP) {
					sumlo = (sumlo * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
					sumhi = (sumhi * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
				}
			}

			sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
					PNG_COST_SHIFT;
			sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >>
					PNG_COST_SHIFT;

			if (sumhi > PNG_HIMASK)
				sum = PNG_MAXSUM;
			else
				sum = (sumhi << PNG_HISHIFT) + sumlo;
		}
#endif

		if (sum < mins) {
			mins = sum;
			best_row = png_ptr->up_row;
		}
	}

	/* avg filter */
	if (filter_to_do == PNG_FILTER_AVG) {
		png_bytep rp, dp, pp, lp;
		png_uint_32 i;
		for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
			pp = prev_row + 1;
			 i < bpp; i++) {
			*dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);
		}
		for (lp = row_buf + 1; i < row_bytes; i++) {
			*dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff);
		}
		best_row = png_ptr->avg_row;
	}

	else if (filter_to_do & PNG_FILTER_AVG) {
		png_bytep rp, dp, pp, lp;
		png_uint_32 sum = 0, lmins = mins;
		png_uint_32 i;
		int v;

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 lmhi, lmlo;
			lmlo = lmins & PNG_LOMASK;
			lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_AVG) {
					lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
					lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
				}
			}

			lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
				   PNG_COST_SHIFT;
			lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >>
				   PNG_COST_SHIFT;

			if (lmhi > PNG_HIMASK)
				lmins = PNG_MAXSUM;
			else
				lmins = (lmhi << PNG_HISHIFT) + lmlo;
		}
#endif

		for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1,
			pp = prev_row + 1;
			 i < bpp; i++) {
			v = *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff);

			sum += (v < 128) ? v : 256 - v;
		}
		for (lp = row_buf + 1; i < row_bytes; i++) {
			v = *dp++ =
				(png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff);

			sum += (v < 128) ? v : 256 - v;

			if (sum > lmins) /* We are already worse, don't continue. */
				break;
		}

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 sumhi, sumlo;
			sumlo = sum & PNG_LOMASK;
			sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE) {
					sumlo = (sumlo * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
					sumhi = (sumhi * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
				}
			}

			sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
					PNG_COST_SHIFT;
			sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >>
					PNG_COST_SHIFT;

			if (sumhi > PNG_HIMASK)
				sum = PNG_MAXSUM;
			else
				sum = (sumhi << PNG_HISHIFT) + sumlo;
		}
#endif

		if (sum < mins) {
			mins = sum;
			best_row = png_ptr->avg_row;
		}
	}

	/* Paeth filter */
	if (filter_to_do == PNG_FILTER_PAETH) {
		png_bytep rp, dp, pp, cp, lp;
		png_uint_32 i;
		for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
			pp = prev_row + 1;
			 i < bpp; i++) {
			*dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);
		}

		for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++) {
			int a, b, c, pa, pb, pc, p;

			b = *pp++;
			c = *cp++;
			a = *lp++;

			p = b - c;
			pc = a - c;

#ifdef PNG_USE_ABS
			pa = abs(p);
			pb = abs(pc);
			pc = abs(p + pc);
#else
			pa = p < 0 ? -p : p;
			pb = pc < 0 ? -pc : pc;
			pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif

			p = (pa <= pb && pa <= pc) ? a : (pb <= pc) ? b : c;

			*dp++ = (png_byte)(((int)*rp++ - p) & 0xff);
		}
		best_row = png_ptr->paeth_row;
	}

	else if (filter_to_do & PNG_FILTER_PAETH) {
		png_bytep rp, dp, pp, cp, lp;
		png_uint_32 sum = 0, lmins = mins;
		png_uint_32 i;
		int v;

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 lmhi, lmlo;
			lmlo = lmins & PNG_LOMASK;
			lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH) {
					lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
					lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >>
						   PNG_WEIGHT_SHIFT;
				}
			}

			lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
				   PNG_COST_SHIFT;
			lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >>
				   PNG_COST_SHIFT;

			if (lmhi > PNG_HIMASK)
				lmins = PNG_MAXSUM;
			else
				lmins = (lmhi << PNG_HISHIFT) + lmlo;
		}
#endif

		for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1,
			pp = prev_row + 1;
			 i < bpp; i++) {
			v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff);

			sum += (v < 128) ? v : 256 - v;
		}

		for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++) {
			int a, b, c, pa, pb, pc, p;

			b = *pp++;
			c = *cp++;
			a = *lp++;

#ifndef PNG_SLOW_PAETH
			p = b - c;
			pc = a - c;
#ifdef PNG_USE_ABS
			pa = abs(p);
			pb = abs(pc);
			pc = abs(p + pc);
#else
			pa = p < 0 ? -p : p;
			pb = pc < 0 ? -pc : pc;
			pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
			p = (pa <= pb && pa <= pc) ? a : (pb <= pc) ? b : c;
#else  /* PNG_SLOW_PAETH */
			p = a + b - c;
			pa = abs(p - a);
			pb = abs(p - b);
			pc = abs(p - c);
			if (pa <= pb && pa <= pc)
				p = a;
			else if (pb <= pc)
				p = b;
			else
				p = c;
#endif /* PNG_SLOW_PAETH */

			v = *dp++ = (png_byte)(((int)*rp++ - p) & 0xff);

			sum += (v < 128) ? v : 256 - v;

			if (sum > lmins) /* We are already worse, don't continue. */
				break;
		}

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
		if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) {
			int j;
			png_uint_32 sumhi, sumlo;
			sumlo = sum & PNG_LOMASK;
			sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK;

			for (j = 0; j < num_p_filters; j++) {
				if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH) {
					sumlo = (sumlo * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
					sumhi = (sumhi * png_ptr->filter_weights[j]) >>
							PNG_WEIGHT_SHIFT;
				}
			}

			sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
					PNG_COST_SHIFT;
			sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >>
					PNG_COST_SHIFT;

			if (sumhi > PNG_HIMASK)
				sum = PNG_MAXSUM;
			else
				sum = (sumhi << PNG_HISHIFT) + sumlo;
		}
#endif

		if (sum < mins) {
			best_row = png_ptr->paeth_row;
		}
	}

	/* Do the actual writing of the filtered row data from the chosen filter. */

	png_write_filtered_row(png_ptr, best_row);

#if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED)
	/* Save the type of filter we picked this time for future calculations */
	if (png_ptr->num_prev_filters > 0) {
		int j;
		for (j = 1; j < num_p_filters; j++) {
			png_ptr->prev_filters[j] = png_ptr->prev_filters[j - 1];
		}
		png_ptr->prev_filters[j] = best_row[0];
	}
#endif
}

/* Do the actual writing of a previously filtered row. */
void /* PRIVATE */
	png_write_filtered_row(png_structp png_ptr, png_bytep filtered_row)
{
	png_debug(1, "in png_write_filtered_row\n");
	png_debug1(2, "filter = %d\n", filtered_row[0]);
	/* set up the zlib input buffer */

	png_ptr->zstream.next_in = filtered_row;
	png_ptr->zstream.avail_in = (uInt)png_ptr->row_info.rowbytes + 1;
	/* repeat until we have compressed all the data */
	do {
		int ret; /* return of zlib */

		/* compress the data */
		ret = deflate(&png_ptr->zstream, Z_NO_FLUSH);
		/* check for compression errors */
		if (ret != Z_OK) {
			if (png_ptr->zstream.msg != NULL)
				png_error(png_ptr, png_ptr->zstream.msg);
			else
				png_error(png_ptr, "zlib error");
		}

		/* see if it is time to write another IDAT */
		if (!(png_ptr->zstream.avail_out)) {
			/* write the IDAT and reset the zlib output buffer */
			png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
			png_ptr->zstream.next_out = png_ptr->zbuf;
			png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size;
		}
		/* repeat until all data has been compressed */
	} while (png_ptr->zstream.avail_in);

	/* swap the current and previous rows */
	if (png_ptr->prev_row != NULL) {
		png_bytep tptr;

		tptr = png_ptr->prev_row;
		png_ptr->prev_row = png_ptr->row_buf;
		png_ptr->row_buf = tptr;
	}

	/* finish row - updates counters and flushes zlib if last row */
	png_write_finish_row(png_ptr);

#if defined(PNG_WRITE_FLUSH_SUPPORTED)
	png_ptr->flush_rows++;

	if (png_ptr->flush_dist > 0 &&
		png_ptr->flush_rows >= png_ptr->flush_dist) {
		png_write_flush(png_ptr);
	}
#endif
}
#endif /* PNG_WRITE_SUPPORTED */