SUBROUTINE CGEMM3MF(TRA,TRB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) * .. Scalar Arguments .. COMPLEX ALPHA,BETA INTEGER K,LDA,LDB,LDC,M,N CHARACTER TRA,TRB * .. * .. Array Arguments .. COMPLEX A(LDA,*),B(LDB,*),C(LDC,*) * .. * * Purpose * ======= * * CGEMM performs one of the matrix-matrix operations * * C := alpha*op( A )*op( B ) + beta*C, * * where op( X ) is one of * * op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), * * alpha and beta are scalars, and A, B and C are matrices, with op( A ) * an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. * * Arguments * ========== * * TRA - CHARACTER*1. * On entry, TRA specifies the form of op( A ) to be used in * the matrix multiplication as follows: * * TRA = 'N' or 'n', op( A ) = A. * * TRA = 'T' or 't', op( A ) = A'. * * TRA = 'C' or 'c', op( A ) = conjg( A' ). * * Unchanged on exit. * * TRB - CHARACTER*1. * On entry, TRB specifies the form of op( B ) to be used in * the matrix multiplication as follows: * * TRB = 'N' or 'n', op( B ) = B. * * TRB = 'T' or 't', op( B ) = B'. * * TRB = 'C' or 'c', op( B ) = conjg( B' ). * * Unchanged on exit. * * M - INTEGER. * On entry, M specifies the number of rows of the matrix * op( A ) and of the matrix C. M must be at least zero. * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the number of columns of the matrix * op( B ) and the number of columns of the matrix C. N must be * at least zero. * Unchanged on exit. * * K - INTEGER. * On entry, K specifies the number of columns of the matrix * op( A ) and the number of rows of the matrix op( B ). K must * be at least zero. * Unchanged on exit. * * ALPHA - COMPLEX . * On entry, ALPHA specifies the scalar alpha. * Unchanged on exit. * * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is * k when TRA = 'N' or 'n', and is m otherwise. * Before entry with TRA = 'N' or 'n', the leading m by k * part of the array A must contain the matrix A, otherwise * the leading k by m part of the array A must contain the * matrix A. * Unchanged on exit. * * LDA - INTEGER. * On entry, LDA specifies the first dimension of A as declared * in the calling (sub) program. When TRA = 'N' or 'n' then * LDA must be at least max( 1, m ), otherwise LDA must be at * least max( 1, k ). * Unchanged on exit. * * B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is * n when TRB = 'N' or 'n', and is k otherwise. * Before entry with TRB = 'N' or 'n', the leading k by n * part of the array B must contain the matrix B, otherwise * the leading n by k part of the array B must contain the * matrix B. * Unchanged on exit. * * LDB - INTEGER. * On entry, LDB specifies the first dimension of B as declared * in the calling (sub) program. When TRB = 'N' or 'n' then * LDB must be at least max( 1, k ), otherwise LDB must be at * least max( 1, n ). * Unchanged on exit. * * BETA - COMPLEX . * On entry, BETA specifies the scalar beta. When BETA is * supplied as zero then C need not be set on input. * Unchanged on exit. * * C - COMPLEX array of DIMENSION ( LDC, n ). * Before entry, the leading m by n part of the array C must * contain the matrix C, except when beta is zero, in which * case C need not be set on entry. * On exit, the array C is overwritten by the m by n matrix * ( alpha*op( A )*op( B ) + beta*C ). * * LDC - INTEGER. * On entry, LDC specifies the first dimension of C as declared * in the calling (sub) program. LDC must be at least * max( 1, m ). * Unchanged on exit. * * * Level 3 Blas routine. * * -- Written on 8-February-1989. * Jack Dongarra, Argonne National Laboratory. * Iain Duff, AERE Harwell. * Jeremy Du Croz, Numerical Algorithms Group Ltd. * Sven Hammarling, Numerical Algorithms Group Ltd. * * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG,MAX * .. * .. Local Scalars .. COMPLEX TEMP INTEGER I,INFO,J,L,NCOLA,NROWA,NROWB LOGICAL CONJA,CONJB,NOTA,NOTB * .. * .. Parameters .. COMPLEX ONE PARAMETER (ONE= (1.0E+0,0.0E+0)) COMPLEX ZERO PARAMETER (ZERO= (0.0E+0,0.0E+0)) * .. * * Set NOTA and NOTB as true if A and B respectively are not * conjugated or transposed, set CONJA and CONJB as true if A and * B respectively are to be transposed but not conjugated and set * NROWA, NCOLA and NROWB as the number of rows and columns of A * and the number of rows of B respectively. * NOTA = LSAME(TRA,'N') NOTB = LSAME(TRB,'N') CONJA = LSAME(TRA,'C') CONJB = LSAME(TRB,'C') IF (NOTA) THEN NROWA = M NCOLA = K ELSE NROWA = K NCOLA = M END IF IF (NOTB) THEN NROWB = K ELSE NROWB = N END IF * * Test the input parameters. * INFO = 0 IF ((.NOT.NOTA) .AND. (.NOT.CONJA) .AND. + (.NOT.LSAME(TRA,'T'))) THEN INFO = 1 ELSE IF ((.NOT.NOTB) .AND. (.NOT.CONJB) .AND. + (.NOT.LSAME(TRB,'T'))) THEN INFO = 2 ELSE IF (M.LT.0) THEN INFO = 3 ELSE IF (N.LT.0) THEN INFO = 4 ELSE IF (K.LT.0) THEN INFO = 5 ELSE IF (LDA.LT.MAX(1,NROWA)) THEN INFO = 8 ELSE IF (LDB.LT.MAX(1,NROWB)) THEN INFO = 10 ELSE IF (LDC.LT.MAX(1,M)) THEN INFO = 13 END IF IF (INFO.NE.0) THEN CALL XERBLA('CGEMM ',INFO) RETURN END IF * * Quick return if possible. * IF ((M.EQ.0) .OR. (N.EQ.0) .OR. + (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN * * And when alpha.eq.zero. * IF (ALPHA.EQ.ZERO) THEN IF (BETA.EQ.ZERO) THEN DO 20 J = 1,N DO 10 I = 1,M C(I,J) = ZERO 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1,N DO 30 I = 1,M C(I,J) = BETA*C(I,J) 30 CONTINUE 40 CONTINUE END IF RETURN END IF * * Start the operations. * IF (NOTB) THEN IF (NOTA) THEN * * Form C := alpha*A*B + beta*C. * DO 90 J = 1,N IF (BETA.EQ.ZERO) THEN DO 50 I = 1,M C(I,J) = ZERO 50 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 60 I = 1,M C(I,J) = BETA*C(I,J) 60 CONTINUE END IF DO 80 L = 1,K IF (B(L,J).NE.ZERO) THEN TEMP = ALPHA*B(L,J) DO 70 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 70 CONTINUE END IF 80 CONTINUE 90 CONTINUE ELSE IF (CONJA) THEN * * Form C := alpha*conjg( A' )*B + beta*C. * DO 120 J = 1,N DO 110 I = 1,M TEMP = ZERO DO 100 L = 1,K TEMP = TEMP + CONJG(A(L,I))*B(L,J) 100 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 110 CONTINUE 120 CONTINUE ELSE * * Form C := alpha*A'*B + beta*C * DO 150 J = 1,N DO 140 I = 1,M TEMP = ZERO DO 130 L = 1,K TEMP = TEMP + A(L,I)*B(L,J) 130 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 140 CONTINUE 150 CONTINUE END IF ELSE IF (NOTA) THEN IF (CONJB) THEN * * Form C := alpha*A*conjg( B' ) + beta*C. * DO 200 J = 1,N IF (BETA.EQ.ZERO) THEN DO 160 I = 1,M C(I,J) = ZERO 160 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 170 I = 1,M C(I,J) = BETA*C(I,J) 170 CONTINUE END IF DO 190 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*CONJG(B(J,L)) DO 180 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 180 CONTINUE END IF 190 CONTINUE 200 CONTINUE ELSE * * Form C := alpha*A*B' + beta*C * DO 250 J = 1,N IF (BETA.EQ.ZERO) THEN DO 210 I = 1,M C(I,J) = ZERO 210 CONTINUE ELSE IF (BETA.NE.ONE) THEN DO 220 I = 1,M C(I,J) = BETA*C(I,J) 220 CONTINUE END IF DO 240 L = 1,K IF (B(J,L).NE.ZERO) THEN TEMP = ALPHA*B(J,L) DO 230 I = 1,M C(I,J) = C(I,J) + TEMP*A(I,L) 230 CONTINUE END IF 240 CONTINUE 250 CONTINUE END IF ELSE IF (CONJA) THEN IF (CONJB) THEN * * Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. * DO 280 J = 1,N DO 270 I = 1,M TEMP = ZERO DO 260 L = 1,K TEMP = TEMP + CONJG(A(L,I))*CONJG(B(J,L)) 260 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 270 CONTINUE 280 CONTINUE ELSE * * Form C := alpha*conjg( A' )*B' + beta*C * DO 310 J = 1,N DO 300 I = 1,M TEMP = ZERO DO 290 L = 1,K TEMP = TEMP + CONJG(A(L,I))*B(J,L) 290 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 300 CONTINUE 310 CONTINUE END IF ELSE IF (CONJB) THEN * * Form C := alpha*A'*conjg( B' ) + beta*C * DO 340 J = 1,N DO 330 I = 1,M TEMP = ZERO DO 320 L = 1,K TEMP = TEMP + A(L,I)*CONJG(B(J,L)) 320 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 330 CONTINUE 340 CONTINUE ELSE * * Form C := alpha*A'*B' + beta*C * DO 370 J = 1,N DO 360 I = 1,M TEMP = ZERO DO 350 L = 1,K TEMP = TEMP + A(L,I)*B(J,L) 350 CONTINUE IF (BETA.EQ.ZERO) THEN C(I,J) = ALPHA*TEMP ELSE C(I,J) = ALPHA*TEMP + BETA*C(I,J) END IF 360 CONTINUE 370 CONTINUE END IF END IF * RETURN * * End of CGEMM . * END