SUBROUTINE DTPMVF( UPLO, TRANS, DIAG, N, AP, X, INCX ) * .. Scalar Arguments .. INTEGER INCX, N CHARACTER*1 DIAG, TRANS, UPLO * .. Array Arguments .. DOUBLE PRECISION AP( * ), X( * ) * .. * * Purpose * ======= * * DTPMV performs one of the matrix-vector operations * * x := A*x, or x := A'*x, * * where x is an n element vector and A is an n by n unit, or non-unit, * upper or lower triangular matrix, supplied in packed form. * * Parameters * ========== * * UPLO - CHARACTER*1. * On entry, UPLO specifies whether the matrix is an upper or * lower triangular matrix as follows: * * UPLO = 'U' or 'u' A is an upper triangular matrix. * * UPLO = 'L' or 'l' A is a lower triangular matrix. * * Unchanged on exit. * * TRANS - CHARACTER*1. * On entry, TRANS specifies the operation to be performed as * follows: * * TRANS = 'N' or 'n' x := A*x. * * TRANS = 'T' or 't' x := A'*x. * * TRANS = 'C' or 'c' x := A'*x. * * Unchanged on exit. * * DIAG - CHARACTER*1. * On entry, DIAG specifies whether or not A is unit * triangular as follows: * * DIAG = 'U' or 'u' A is assumed to be unit triangular. * * DIAG = 'N' or 'n' A is not assumed to be unit * triangular. * * Unchanged on exit. * * N - INTEGER. * On entry, N specifies the order of the matrix A. * N must be at least zero. * Unchanged on exit. * * AP - DOUBLE PRECISION array of DIMENSION at least * ( ( n*( n + 1 ) )/2 ). * Before entry with UPLO = 'U' or 'u', the array AP must * contain the upper triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) * respectively, and so on. * Before entry with UPLO = 'L' or 'l', the array AP must * contain the lower triangular matrix packed sequentially, * column by column, so that AP( 1 ) contains a( 1, 1 ), * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) * respectively, and so on. * Note that when DIAG = 'U' or 'u', the diagonal elements of * A are not referenced, but are assumed to be unity. * Unchanged on exit. * * X - DOUBLE PRECISION array of dimension at least * ( 1 + ( n - 1 )*abs( INCX ) ). * Before entry, the incremented array X must contain the n * element vector x. On exit, X is overwritten with the * tranformed vector x. * * INCX - INTEGER. * On entry, INCX specifies the increment for the elements of * X. INCX must not be zero. * Unchanged on exit. * * * Level 2 Blas routine. * * -- Written on 22-October-1986. * Jack Dongarra, Argonne National Lab. * Jeremy Du Croz, Nag Central Office. * Sven Hammarling, Nag Central Office. * Richard Hanson, Sandia National Labs. * * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. Local Scalars .. DOUBLE PRECISION TEMP INTEGER I, INFO, IX, J, JX, K, KK, KX LOGICAL NOUNIT * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT.LSAME( UPLO , 'U' ).AND. $ .NOT.LSAME( UPLO , 'L' ) )THEN INFO = 1 ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND. $ .NOT.LSAME( TRANS, 'T' ).AND. $ .NOT.LSAME( TRANS, 'C' ) )THEN INFO = 2 ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND. $ .NOT.LSAME( DIAG , 'N' ) )THEN INFO = 3 ELSE IF( N.LT.0 )THEN INFO = 4 ELSE IF( INCX.EQ.0 )THEN INFO = 7 END IF IF( INFO.NE.0 )THEN CALL XERBLA( 'DTPMVF', INFO ) RETURN END IF * * Quick return if possible. * IF( N.EQ.0 ) $ RETURN * NOUNIT = LSAME( DIAG, 'N' ) * * Set up the start point in X if the increment is not unity. This * will be ( N - 1 )*INCX too small for descending loops. * IF( INCX.LE.0 )THEN KX = 1 - ( N - 1 )*INCX ELSE IF( INCX.NE.1 )THEN KX = 1 END IF * * Start the operations. In this version the elements of AP are * accessed sequentially with one pass through AP. * IF( LSAME( TRANS, 'N' ) )THEN * * Form x:= A*x. * IF( LSAME( UPLO, 'U' ) )THEN KK =1 IF( INCX.EQ.1 )THEN DO 20, J = 1, N IF( X( J ).NE.ZERO )THEN TEMP = X( J ) K = KK DO 10, I = 1, J - 1 X( I ) = X( I ) + TEMP*AP( K ) K = K + 1 10 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*AP( KK + J - 1 ) END IF KK = KK + J 20 CONTINUE ELSE JX = KX DO 40, J = 1, N IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 30, K = KK, KK + J - 2 X( IX ) = X( IX ) + TEMP*AP( K ) IX = IX + INCX 30 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*AP( KK + J - 1 ) END IF JX = JX + INCX KK = KK + J 40 CONTINUE END IF ELSE KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 60, J = N, 1, -1 IF( X( J ).NE.ZERO )THEN TEMP = X( J ) K = KK DO 50, I = N, J + 1, -1 X( I ) = X( I ) + TEMP*AP( K ) K = K - 1 50 CONTINUE IF( NOUNIT ) $ X( J ) = X( J )*AP( KK - N + J ) END IF KK = KK - ( N - J + 1 ) 60 CONTINUE ELSE KX = KX + ( N - 1 )*INCX JX = KX DO 80, J = N, 1, -1 IF( X( JX ).NE.ZERO )THEN TEMP = X( JX ) IX = KX DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1 X( IX ) = X( IX ) + TEMP*AP( K ) IX = IX - INCX 70 CONTINUE IF( NOUNIT ) $ X( JX ) = X( JX )*AP( KK - N + J ) END IF JX = JX - INCX KK = KK - ( N - J + 1 ) 80 CONTINUE END IF END IF ELSE * * Form x := A'*x. * IF( LSAME( UPLO, 'U' ) )THEN KK = ( N*( N + 1 ) )/2 IF( INCX.EQ.1 )THEN DO 100, J = N, 1, -1 TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) K = KK - 1 DO 90, I = J - 1, 1, -1 TEMP = TEMP + AP( K )*X( I ) K = K - 1 90 CONTINUE X( J ) = TEMP KK = KK - J 100 CONTINUE ELSE JX = KX + ( N - 1 )*INCX DO 120, J = N, 1, -1 TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) DO 110, K = KK - 1, KK - J + 1, -1 IX = IX - INCX TEMP = TEMP + AP( K )*X( IX ) 110 CONTINUE X( JX ) = TEMP JX = JX - INCX KK = KK - J 120 CONTINUE END IF ELSE KK = 1 IF( INCX.EQ.1 )THEN DO 140, J = 1, N TEMP = X( J ) IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) K = KK + 1 DO 130, I = J + 1, N TEMP = TEMP + AP( K )*X( I ) K = K + 1 130 CONTINUE X( J ) = TEMP KK = KK + ( N - J + 1 ) 140 CONTINUE ELSE JX = KX DO 160, J = 1, N TEMP = X( JX ) IX = JX IF( NOUNIT ) $ TEMP = TEMP*AP( KK ) DO 150, K = KK + 1, KK + N - J IX = IX + INCX TEMP = TEMP + AP( K )*X( IX ) 150 CONTINUE X( JX ) = TEMP JX = JX + INCX KK = KK + ( N - J + 1 ) 160 CONTINUE END IF END IF END IF * RETURN * * End of DTPMV . * END