Blame gtkmm-osx/jpeg-6b/jidctflt.c

darco 56a656
/*
darco 56a656
 * jidctflt.c
darco 56a656
 *
darco 56a656
 * Copyright (C) 1994-1998, Thomas G. Lane.
darco 56a656
 * This file is part of the Independent JPEG Group's software.
darco 56a656
 * For conditions of distribution and use, see the accompanying README file.
darco 56a656
 *
darco 56a656
 * This file contains a floating-point implementation of the
darco 56a656
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
darco 56a656
 * must also perform dequantization of the input coefficients.
darco 56a656
 *
darco 56a656
 * This implementation should be more accurate than either of the integer
darco 56a656
 * IDCT implementations.  However, it may not give the same results on all
darco 56a656
 * machines because of differences in roundoff behavior.  Speed will depend
darco 56a656
 * on the hardware's floating point capacity.
darco 56a656
 *
darco 56a656
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
darco 56a656
 * on each row (or vice versa, but it's more convenient to emit a row at
darco 56a656
 * a time).  Direct algorithms are also available, but they are much more
darco 56a656
 * complex and seem not to be any faster when reduced to code.
darco 56a656
 *
darco 56a656
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
darco 56a656
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
darco 56a656
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
darco 56a656
 * JPEG textbook (see REFERENCES section in file README).  The following code
darco 56a656
 * is based directly on figure 4-8 in P&M.
darco 56a656
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
darco 56a656
 * possible to arrange the computation so that many of the multiplies are
darco 56a656
 * simple scalings of the final outputs.  These multiplies can then be
darco 56a656
 * folded into the multiplications or divisions by the JPEG quantization
darco 56a656
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
darco 56a656
 * to be done in the DCT itself.
darco 56a656
 * The primary disadvantage of this method is that with a fixed-point
darco 56a656
 * implementation, accuracy is lost due to imprecise representation of the
darco 56a656
 * scaled quantization values.  However, that problem does not arise if
darco 56a656
 * we use floating point arithmetic.
darco 56a656
 */
darco 56a656
darco 56a656
#define JPEG_INTERNALS
darco 56a656
#include "jinclude.h"
darco 56a656
#include "jpeglib.h"
darco 56a656
#include "jdct.h"		/* Private declarations for DCT subsystem */
darco 56a656
darco 56a656
#ifdef DCT_FLOAT_SUPPORTED
darco 56a656
darco 56a656
darco 56a656
/*
darco 56a656
 * This module is specialized to the case DCTSIZE = 8.
darco 56a656
 */
darco 56a656
darco 56a656
#if DCTSIZE != 8
darco 56a656
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
darco 56a656
#endif
darco 56a656
darco 56a656
darco 56a656
/* Dequantize a coefficient by multiplying it by the multiplier-table
darco 56a656
 * entry; produce a float result.
darco 56a656
 */
darco 56a656
darco 56a656
#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
darco 56a656
darco 56a656
darco 56a656
/*
darco 56a656
 * Perform dequantization and inverse DCT on one block of coefficients.
darco 56a656
 */
darco 56a656
darco 56a656
GLOBAL(void)
darco 56a656
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
darco 56a656
		 JCOEFPTR coef_block,
darco 56a656
		 JSAMPARRAY output_buf, JDIMENSION output_col)
darco 56a656
{
darco 56a656
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
darco 56a656
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
darco 56a656
  FAST_FLOAT z5, z10, z11, z12, z13;
darco 56a656
  JCOEFPTR inptr;
darco 56a656
  FLOAT_MULT_TYPE * quantptr;
darco 56a656
  FAST_FLOAT * wsptr;
darco 56a656
  JSAMPROW outptr;
darco 56a656
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
darco 56a656
  int ctr;
darco 56a656
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
darco 56a656
  SHIFT_TEMPS
darco 56a656
darco 56a656
  /* Pass 1: process columns from input, store into work array. */
darco 56a656
darco 56a656
  inptr = coef_block;
darco 56a656
  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
darco 56a656
  wsptr = workspace;
darco 56a656
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
darco 56a656
    /* Due to quantization, we will usually find that many of the input
darco 56a656
     * coefficients are zero, especially the AC terms.  We can exploit this
darco 56a656
     * by short-circuiting the IDCT calculation for any column in which all
darco 56a656
     * the AC terms are zero.  In that case each output is equal to the
darco 56a656
     * DC coefficient (with scale factor as needed).
darco 56a656
     * With typical images and quantization tables, half or more of the
darco 56a656
     * column DCT calculations can be simplified this way.
darco 56a656
     */
darco 56a656
    
darco 56a656
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
darco 56a656
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
darco 56a656
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
darco 56a656
	inptr[DCTSIZE*7] == 0) {
darco 56a656
      /* AC terms all zero */
darco 56a656
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
darco 56a656
      
darco 56a656
      wsptr[DCTSIZE*0] = dcval;
darco 56a656
      wsptr[DCTSIZE*1] = dcval;
darco 56a656
      wsptr[DCTSIZE*2] = dcval;
darco 56a656
      wsptr[DCTSIZE*3] = dcval;
darco 56a656
      wsptr[DCTSIZE*4] = dcval;
darco 56a656
      wsptr[DCTSIZE*5] = dcval;
darco 56a656
      wsptr[DCTSIZE*6] = dcval;
darco 56a656
      wsptr[DCTSIZE*7] = dcval;
darco 56a656
      
darco 56a656
      inptr++;			/* advance pointers to next column */
darco 56a656
      quantptr++;
darco 56a656
      wsptr++;
darco 56a656
      continue;
darco 56a656
    }
darco 56a656
    
darco 56a656
    /* Even part */
darco 56a656
darco 56a656
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
darco 56a656
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
darco 56a656
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
darco 56a656
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
darco 56a656
darco 56a656
    tmp10 = tmp0 + tmp2;	/* phase 3 */
darco 56a656
    tmp11 = tmp0 - tmp2;
darco 56a656
darco 56a656
    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
darco 56a656
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
darco 56a656
darco 56a656
    tmp0 = tmp10 + tmp13;	/* phase 2 */
darco 56a656
    tmp3 = tmp10 - tmp13;
darco 56a656
    tmp1 = tmp11 + tmp12;
darco 56a656
    tmp2 = tmp11 - tmp12;
darco 56a656
    
darco 56a656
    /* Odd part */
darco 56a656
darco 56a656
    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
darco 56a656
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
darco 56a656
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
darco 56a656
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
darco 56a656
darco 56a656
    z13 = tmp6 + tmp5;		/* phase 6 */
darco 56a656
    z10 = tmp6 - tmp5;
darco 56a656
    z11 = tmp4 + tmp7;
darco 56a656
    z12 = tmp4 - tmp7;
darco 56a656
darco 56a656
    tmp7 = z11 + z13;		/* phase 5 */
darco 56a656
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
darco 56a656
darco 56a656
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
darco 56a656
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
darco 56a656
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
darco 56a656
darco 56a656
    tmp6 = tmp12 - tmp7;	/* phase 2 */
darco 56a656
    tmp5 = tmp11 - tmp6;
darco 56a656
    tmp4 = tmp10 + tmp5;
darco 56a656
darco 56a656
    wsptr[DCTSIZE*0] = tmp0 + tmp7;
darco 56a656
    wsptr[DCTSIZE*7] = tmp0 - tmp7;
darco 56a656
    wsptr[DCTSIZE*1] = tmp1 + tmp6;
darco 56a656
    wsptr[DCTSIZE*6] = tmp1 - tmp6;
darco 56a656
    wsptr[DCTSIZE*2] = tmp2 + tmp5;
darco 56a656
    wsptr[DCTSIZE*5] = tmp2 - tmp5;
darco 56a656
    wsptr[DCTSIZE*4] = tmp3 + tmp4;
darco 56a656
    wsptr[DCTSIZE*3] = tmp3 - tmp4;
darco 56a656
darco 56a656
    inptr++;			/* advance pointers to next column */
darco 56a656
    quantptr++;
darco 56a656
    wsptr++;
darco 56a656
  }
darco 56a656
  
darco 56a656
  /* Pass 2: process rows from work array, store into output array. */
darco 56a656
  /* Note that we must descale the results by a factor of 8 == 2**3. */
darco 56a656
darco 56a656
  wsptr = workspace;
darco 56a656
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
darco 56a656
    outptr = output_buf[ctr] + output_col;
darco 56a656
    /* Rows of zeroes can be exploited in the same way as we did with columns.
darco 56a656
     * However, the column calculation has created many nonzero AC terms, so
darco 56a656
     * the simplification applies less often (typically 5% to 10% of the time).
darco 56a656
     * And testing floats for zero is relatively expensive, so we don't bother.
darco 56a656
     */
darco 56a656
    
darco 56a656
    /* Even part */
darco 56a656
darco 56a656
    tmp10 = wsptr[0] + wsptr[4];
darco 56a656
    tmp11 = wsptr[0] - wsptr[4];
darco 56a656
darco 56a656
    tmp13 = wsptr[2] + wsptr[6];
darco 56a656
    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
darco 56a656
darco 56a656
    tmp0 = tmp10 + tmp13;
darco 56a656
    tmp3 = tmp10 - tmp13;
darco 56a656
    tmp1 = tmp11 + tmp12;
darco 56a656
    tmp2 = tmp11 - tmp12;
darco 56a656
darco 56a656
    /* Odd part */
darco 56a656
darco 56a656
    z13 = wsptr[5] + wsptr[3];
darco 56a656
    z10 = wsptr[5] - wsptr[3];
darco 56a656
    z11 = wsptr[1] + wsptr[7];
darco 56a656
    z12 = wsptr[1] - wsptr[7];
darco 56a656
darco 56a656
    tmp7 = z11 + z13;
darco 56a656
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
darco 56a656
darco 56a656
    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
darco 56a656
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
darco 56a656
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
darco 56a656
darco 56a656
    tmp6 = tmp12 - tmp7;
darco 56a656
    tmp5 = tmp11 - tmp6;
darco 56a656
    tmp4 = tmp10 + tmp5;
darco 56a656
darco 56a656
    /* Final output stage: scale down by a factor of 8 and range-limit */
darco 56a656
darco 56a656
    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
darco 56a656
			    & RANGE_MASK];
darco 56a656
    
darco 56a656
    wsptr += DCTSIZE;		/* advance pointer to next row */
darco 56a656
  }
darco 56a656
}
darco 56a656
darco 56a656
#endif /* DCT_FLOAT_SUPPORTED */