Blob Blame Raw
#ifndef NNTRAIN_INC_C
#define NNTRAIN_INC_C


#include "nnlayer.inc.c"


typedef struct NeuralTrainer {
  int sizeX, sizeY, count;
  double *x, *y;
} NeuralTrainer;



NeuralTrainer* ntNew(int sizeX, int sizeY, int count) {
  assert(sizeX > 0);
  assert(sizeY > 0);
  assert(count > 0);
  NeuralTrainer *nt = calloc(sizeof(NeuralTrainer), 1);
  nt->sizeX = sizeX;
  nt->sizeY = sizeY;
  nt->count = count;
  nt->x = calloc(sizeof(double)*(sizeX + sizeY)*count, 1);
  nt->y = nt->x + sizeX*count;
  return nt;
}


void ntFree(NeuralTrainer *nt) {
  free(nt->x);
  free(nt);
}


double ntTrain(NeuralTrainer *nt, NeuralLayer *nl, int successCount, int blockSize, double qmin) {
  assert(!nl->prev);
  assert(nt->sizeX == nl->size);
  assert(nt->sizeY == nlBack(nl)->size);
  assert(blockSize > 0 && qmin > 0);

  printf("training: %d, %lf\n", blockSize, qmin);
  double **blockXY = calloc(sizeof(double)*2, blockSize);
  double qmin2 = qmin*0.75;
  double qmin3 = qmin2*0.75;

  int success = 0;
  int total = 0;
  int repeats, blockRepeats;
  double qmax0, qsum0, qmax, qsum;
  for(int i = 0; i < 10000; ++i) {
    for(int i = 0; i < blockSize; ++i) {
      int index = rand() % nt->count;
      blockXY[i*2 + 0] = nt->x + nt->sizeX*index;
      blockXY[i*2 + 1] = nt->y + nt->sizeY*index;
    }

    repeats = blockRepeats = 0;
    qmax0 = qsum0 = 0;
    for(int i = 0; i < 1000; ++i) {
      double **xy = blockXY;
      qmax = 0, qsum = 0;
      for(int i = 0; i < blockSize; ++i, xy += 2) {
        double q0 = 0;
        for(int i = 0; i < 100; ++i) {
          double q = nlTrainPass(nl, xy[0], xy[1], qmin3);
          if (!i) q0 = q;
          ++repeats;
          if (q < qmin3) break;
        }
        qsum += q0;
        if (qmax < q0) qmax = q0;
      }
      if (!i) { qmax0 = qmax; qsum0 = qsum; }
      ++blockRepeats;
      if (qmax <= qmin2) break;
    }
    total += repeats;

    printf("  blocks %d (samples: %d, total: %d, repeats: %3d (%lf)): %lf -> %lf, %lf -> %lf\n",
      i+1, (i+1)*blockSize, total, blockRepeats-1, repeats/(double)(blockRepeats*blockSize) - 1, qmax0, qmax, qsum0/blockSize, qsum/blockSize);

    if (qmax0 <= qmin) {
      if (++success == successCount) break;
    } else {
      success = 0;
    }
  }

  free(blockXY);
  printf("done\n");
  return qmax0;
}


NeuralTrainer* ntNewSymbolMap(const char *filename, int sizeX, int sizeY) {
  FILE *f = fopen(filename, "rb");
  if (!f)
    return printf("cannot open file '%s' for read\n", filename), NULL;
  fseek(f, 0, SEEK_END);
  size_t fs = ftell(f);
  fseek(f, 0, SEEK_SET);

  size_t testSize = sizeX + 1;
  int count = fs/testSize;
  if (!count)
    return printf("file '%s' is lesser minimal size\n", filename), fclose(f), NULL;

  unsigned char *data = calloc(testSize, count);
  if (count != fread(data, testSize, count, f))
    return printf("cannot read from file '%s'\n", filename), free(data), fclose(f), NULL;

  fclose(f);

  NeuralTrainer *nt = ntNew(sizeX, sizeY, count);
  const unsigned char *d = data;
  double *x = nt->x, *y = nt->y, *ey = y + sizeY*count;
  const double delta = 0;
  for(double *p = y; p < ey; ++p) *p = delta;
  while(y < ey) {
    for(double *e = x + sizeX; x < e; ++x, ++d)
      *x = *d/255.0;
    assert(*d < sizeY);
    y[*d++] = 1 - delta;
    y += sizeY;
  }
  return nt;
}


void ntPrintSymbol(NeuralTrainer *nt, int index, int width) {
  assert(index >= 0 && index < nt->count);
  assert(width > 0);
  for(int i = 0; i < nt->sizeX; ++i) {
    if (i && !(i % width)) printf("\n");
    printf("%c", nt->x[nt->sizeX*index + i] > 0 ? '#' : '.');
  }
  printf("\n");
  for(int i = 0; i < nt->sizeY; ++i)
    printf(" %4.1lf", nt->y[nt->sizeY*index + i]);
  printf("\n");
}


#endif