#ifndef TRAIN_DIGIT_INC_CPP
#define TRAIN_DIGIT_INC_CPP
#include "train.inc.cpp"
#include "layer.simple.inc.cpp"
class TrainerDigit: public Trainer {
protected:
std::vector<unsigned char> data;
std::vector<unsigned int> shuffle;
Layout ofl, obl;
Layout::List oflist, oblist;
int stride, count;
public:
TrainerDigit(): stride(), count() { }
bool loadSymbolMap(const char *filename) {
data.clear();
FILE *f = fopen(filename, "rb");
if (!f)
return printf("cannot open file for read: %s\n", filename), false;
fseek(f, 0, SEEK_END);
size_t fs = ftello(f);
fseek(f, 0, SEEK_SET);
data.resize(fs, 0);
if (!fread(data.data(), fs, 1, f))
return printf("cannot read from file: %s\n", filename), fclose(f), data.clear(), false;
fclose(f);
return true;
}
static void printSymbol(const unsigned char *data, int w, int h, int index = -1) {
if (index >= 0) printf("\nsymbol %d (%d):\n", (int)data[w*h], index);
else printf("\nsymbol %d:\n", (int)data[w*h]);
for(int i = 0; i < h; ++i) {
for(int j = 0; j < w; ++j) printf("%s", data[i*w+j] > 128u ? "#" : " ");
printf("\n");
}
printf("\n");
}
void printSymbol(int index) {
const Layout &l = layer->layout;
printSymbol(&data[(l.getActiveCount()+1)*index], l.getW(), l.getH(), index);
}
protected:
bool prepare() override {
ofl = optimizeLayoutSimple(fl->layout);
obl = optimizeLayoutSimple(bl->layout);
ofl.split(oflist, threadsCount);
obl.split(oblist, threadsCount);
stride = ofl.getActiveCount() + 1;
count = data.size()/stride;
if (count <= 0) return false;
shuffle.resize(count);
for(int i = 0; i < count; ++i)
shuffle[i] = i;
return true;
}
bool prepareBlock() override {
int cnt = itersPerBlock > count ? count : itersPerBlock;
for(int i = 0; i < cnt; ++i) {
int j = rand()%count;
if (i != j) std::swap(shuffle[i], shuffle[j]);
}
return true;
}
void loadData(Barrier &barrier, int, int iter) override {
struct I: public Iter {
typedef const unsigned char* DataType;
static inline void iter4(Neuron &n, DataType d, DataAccumType&) { n.v = *d/(NeuronReal)255; }
};
const unsigned char *id = data.data() + shuffle[iter%count]*stride;
iterateNeurons2<I>(oflist[barrier.tid], ofl, fl->neurons, id);
}
Quality verifyData(Barrier &barrier, int, int iter) override {
Quality q;
if (barrier.tid) return q;
struct I: public Iter {
typedef int DataType;
struct DataAccumType { int ri, mi; NeuronReal m, ratio, q; };
static inline void iter4(Neuron &n, DataType d, DataAccumType &a) {
NeuronReal v1 = d == a.ri;
NeuronReal v0 = n.v;
NeuronReal diff = v1 - v0;
n.d *= diff*a.ratio;
a.q += diff*diff;
if (a.m < v0) { a.m = v0; a.mi = d; }
}
};
int index = shuffle[iter%count];
if (index == 59915) {
++skipBackpass;
return q;
}
I::DataAccumType a = { data[ (index + 1)*stride - 1 ], 0, 0, ratio };
iterateNeurons2<I>(obl, obl, bl->neurons, 0, 1, &a);
q.train = sqrt(a.q/obl.getActiveCount());
q.human = a.mi != a.ri;
//if (!q.human && q.train < 0.01) ++skipBackpass;
//if (!q.human) ++skipBackpass;
//if (q.human) printSymbol(index);
return q;
}
};
#endif