#ifndef TRAIN_IMAGE_INC_CPP
#define TRAIN_IMAGE_INC_CPP
#include <set>
#include "train.inc.cpp"
#include "layer.simple.inc.cpp"
class TrainerImage: public Trainer {
protected:
std::vector<unsigned char> data;
std::vector<unsigned char> tmpdata;
std::vector<int> shuffle;
std::vector<int> shuffle2;
Layout pbl;
Layout::List flist, blist;
FILE *f;
size_t imgsize;
int count;
int workCount;
public:
int pad;
const char *datafile;
const char *outfile;
Layer *dataLayer;
TrainerImage(): f(), imgsize(), count(), workCount(), pad(), datafile(), outfile(), dataLayer() { }
protected:
bool prepare() override {
assert(datafile);
assert(fl->layout.getD() == 3);
#ifndef NDEBUG
Layer *dl = dataLayer ? dataLayer : fl;
assert(dl->layout.getW() == bl->layout.getW());
assert(dl->layout.getH() == bl->layout.getH());
assert(dl->layout.getD() == bl->layout.getD());
#endif
imgsize = fl->layout.getActiveCount();
fl->layout.split(flist, threadsCount);
bl->layout.split(blist, threadsCount);
pbl = bl->layout;
pbl.padXY(pad);
f = fopen(datafile, "rb");
if (!f) return false;
fseeko64(f, 0, SEEK_END);
long long size = ftello64(f);
count = size/imgsize;
if (count < 1) return fclose(f), f = nullptr, false;
workCount = itersPerBlock > count ? count : itersPerBlock;
printf("allocated size: %lld\n", (long long)(imgsize*workCount));
data.resize(workCount*imgsize);
shuffle.resize(count);
for(int i = 0; i < count; ++i)
shuffle[i] = i;
shuffle2.resize(workCount);
for(int i = 0; i < workCount; ++i)
shuffle2[i] = i;
return loadBlocks();
//return true;
}
void finish() override
{ if (f) fclose(f), f = nullptr; }
bool loadBlocks() {
for(int i = 0; i < workCount; ++i) {
int j = rand()%count;
if (i != j) std::swap(shuffle[i], shuffle[j]);
}
typedef std::pair<int, int> Pair;
typedef std::set<Pair> Set;
Set set;
for(int i = 0; i < workCount; ++i)
set.insert(Pair(shuffle[i], i));
for(Set::iterator i = set.begin(); i != set.end(); ++i) {
fseeko64(f, i->first*imgsize, SEEK_SET);
if (!fread(data.data() + i->second*imgsize, imgsize, 1, f))
return fclose(f), f = nullptr, false;
}
return true;
}
bool prepareBlock() override {
for(int i = 0; i < workCount; ++i) {
int j = rand()%workCount;
if (i != j) std::swap(shuffle2[i], shuffle2[j]);
}
//return loadBlocks();
return true;
}
void finishBlock() override {
if (outfile && !dataLayer) {
std::string outfile0(outfile);
std::string outfile1 = outfile0 + ".1.tga";
outfile0 += ".0.tga";
unsigned char *id0 = data.data() + shuffle2[(itersPerBlock-1)%workCount]*imgsize;
tgaSave(outfile0.c_str(), id0, fl->layout.getW(), fl->layout.getH(), fl->layout.getD());
struct I: public Iter {
typedef unsigned char* DataType;
static inline void iter4(Neuron &n, DataType d, DataAccumType&) { *d = n.v < 0 ? 0 : n.v > 1 ? 255 : (unsigned char)(n.v*255.999); }
};
tmpdata.resize(imgsize);
unsigned char *id1 = tmpdata.data();
iterateNeurons2<I>(bl->layout, bl->layout, bl->neurons, id1);
tgaSave(outfile1.c_str(), id1, bl->layout.getW(), bl->layout.getH(), bl->layout.getD());
}
}
void loadData(Barrier &barrier, int, int iter) override {
struct I: public Iter {
typedef const unsigned char* DataType;
static inline void iter4(Neuron &n, DataType d, DataAccumType&) { n.v = *d/(NeuronReal)255; }
};
const unsigned char *id = data.data() + shuffle2[iter%workCount]*imgsize;
iterateNeurons2<I>(flist[barrier.tid], fl->layout, fl->neurons, id);
}
Quality verifyData(Barrier &barrier, int, int iter) override {
Layout l = blist[barrier.tid];
Layout dl = bl->layout;
Layout pl = pbl;
int d = l.getD();
int w = l.getW();
int dx = l.sz - d;
int dy = (l.sx - w)*l.sz;
int ddx = dl.getD();
int ddy = (dl.getW() - w)*ddx;
AccumReal aq = 0;
NeuronReal ratio = this->ratio;
Neuron *in = bl->neurons + (l.y0*l.sx + l.x0)*l.sz + l.z0;
const unsigned char *id = data.data() + shuffle2[iter%workCount]*imgsize + ((l.y0-dl.y0)*l.sx + l.x0-dl.x0)*l.sz + l.z0-dl.z0;
for(int y = l.y0; y < l.y1; ++y, in += dy, id += ddy) {
bool outside = y < pl.y0 || y >= pl.y1;
for(int x = l.x0; x < l.x1; ++x, in += dx, id += ddx) {
if (outside || x < pl.x0 || x >= pl.x1) {
for(Neuron *e = in + d; in < e; ++in) in->d = 0;
} else {
const unsigned char *iid = id;
for(Neuron *e = in + d; in < e; ++in, ++iid) {
NeuronReal v1 = *iid/(NeuronReal)255;
NeuronReal v0 = in->v;
NeuronReal diff = v1 - v0;
in->d *= diff*ratio;
aq += diff*diff;
}
}
}
}
return Quality( sqrt(aq/pbl.getActiveCount()) );
}
};
#endif