#include "tcenterlinevectP.h"
//==========================================================================
//============================================
// Sequence conversion into TStroke
//============================================
// Globals
namespace {
const double Polyg_eps_max = 1; // Sequence simplification max error
const double Polyg_eps_mul = 0.75; // Sequence simpl. thickness-multiplier
// error
const double Quad_eps_max =
infinity; // As above, for sequence conversion into strokes
// const double Quad_eps_mul= 0.2; //NOTE: Substituted by
// globals->currConfig->m_penalty
}
//--------------------------------------------------------------------------
//-------------------------------
// Simplify Sequences
//-------------------------------
// EXPLANATION: Before converting sequences in strokes, we simplify them
// by eliminating sequence of points which lie on the same straight line,
// leaving the extremities only.
class SequenceSimplifier {
const Sequence *m_s;
const SkeletonGraph *m_graph;
private:
class Length {
public:
int n;
double l;
UINT firstNode, secondNode;
Length() : n(0), l(0) {}
Length(int n_, double l_) : n(n_), l(l_) {}
inline void infty(void) {
n = infinity;
l = infinity;
}
inline bool operator<(Length sl) {
return n < sl.n ? 1 : n > sl.n ? 0 : l < sl.l ? 1 : 0;
}
inline Length operator+(Length sl) { return Length(n + sl.n, l + sl.l); }
};
Length lengthOf(UINT a, UINT aLink, UINT b);
public:
// Methods
SequenceSimplifier(const Sequence *s) : m_s(s), m_graph(m_s->m_graphHolder) {}
void simplify(std::vector<unsigned int> &result);
};
//--------------------------------------------------------------------------
// Bellman algorithm for Sequences
// NOTE: Circular Sequences are dealt.
void SequenceSimplifier::simplify(std::vector<unsigned int> &result) {
// Initialize variables
unsigned int n;
unsigned int i, j, iLink, jLink;
// NOTE: If s is circular, we have to protect
i = m_s->m_head;
iLink = m_s->m_headLink;
// NOTE: If m_head==m_tail then we have to force the first step by "|| n==1"
for (n = 1; i != m_s->m_tail || n == 1; ++n, m_s->next(i, iLink))
;
Length L_att, L_min, l_min, l_ji;
unsigned int p_i, a, b;
std::vector<Length> M(n);
std::vector<Length> K(n);
std::vector<unsigned int> P(n);
// Search for minimal path
i = m_s->m_head;
iLink = m_s->m_headLink;
for (a = 1; i != m_s->m_tail || a == 1; m_s->next(i, iLink), ++a) {
L_min.infty();
l_min.infty();
p_i = 0;
j = m_s->m_head;
jLink = m_s->m_headLink;
unsigned int iNext = m_graph->getNode(i).getLink(iLink).getNext();
for (b = 0; j != iNext || b == 0; m_s->next(j, jLink), ++b) {
if ((L_att = M[b] + (l_ji = lengthOf(j, jLink, iNext))) < L_min) {
L_min = L_att;
p_i = b;
l_min = l_ji;
}
}
M[a] = L_min;
K[a] = l_min;
P[a] = p_i;
}
// Copies minimal path found to the output reducedIndices vector
// NOTE: size() is added due to circular sequences case handling
unsigned int redSize = result.size();
result.resize(redSize + M[n - 1].n + 1);
result[redSize + M[n - 1].n] = K[n - 1].secondNode;
for (b = n - 1, a = redSize + M[n - 1].n - 1; b > 0; b = P[b], --a)
result[a] = K[b].firstNode;
}
//--------------------------------------------------------------------------
// Length between two sequence points
SequenceSimplifier::Length SequenceSimplifier::lengthOf(UINT a, UINT aLink,
UINT b) {
UINT curr, old;
T3DPointD v;
double d, vv;
Length res;
res.n = 1;
res.firstNode = a;
res.secondNode = b;
v = *m_graph->getNode(b) - *m_graph->getNode(a);
vv = norm(v);
curr = m_graph->getNode(a).getLink(aLink).getNext();
old = a;
// If the distance between extremities is small, check if the same holds
// for internal points; if so, ok - otherwise set infty().
if (vv < 0.1) {
for (; curr != b; m_s->advance(old, curr)) {
d = tdistance(*m_graph->getNode(curr), *m_graph->getNode(a));
if (d > 0.1) res.infty();
}
return res;
}
// Otherwise, check distances from line passing from a and b
v = v * (1 / vv);
for (; curr != b; m_s->advance(old, curr)) {
d = tdistance2(*m_graph->getNode(curr), v, *m_graph->getNode(a));
if (d >
std::min(m_graph->getNode(curr)->z * Polyg_eps_mul, Polyg_eps_max)) {
res.infty();
return res;
} else
res.l += d;
}
return res;
}
//==========================================================================
//===============================
// Sequence conversion
//===============================
// EXPLANATION: Sequences convert into TStrokes by applying a SequenceConverter
// class. A graph minimal-path algorithm is run by using a
// lexicographic-ordered
// (number of quadratics, error) length.
class SequenceConverter {
const Sequence *m_s;
const SkeletonGraph *m_graph;
double m_penalty;
public:
// Length construction globals (see 'lengthOf' method)
unsigned int middle;
std::vector<double> pars;
class Length {
public:
int n;
double l;
std::vector<T3DPointD> CPs;
Length() : n(0), l(0) {}
Length(int n_, double l_) : n(n_), l(l_) {}
inline void infty(void) {
n = infinity;
l = infinity;
}
inline bool operator<(Length sl) {
return n < sl.n ? 1 : n > sl.n ? 0 : l < sl.l ? 1 : 0;
}
inline Length operator+(Length sl) { return Length(n + sl.n, l + sl.l); }
void set_CPs(const T3DPointD &a, const T3DPointD &b, const T3DPointD &c) {
CPs.resize(3);
CPs[0] = a;
CPs[1] = b;
CPs[2] = c;
}
void set_CPs(const T3DPointD &a, const T3DPointD &b, const T3DPointD &c,
const T3DPointD &d, const T3DPointD &e) {
CPs.resize(5);
CPs[0] = a;
CPs[1] = b;
CPs[2] = c;
CPs[3] = d;
CPs[4] = e;
}
};
// Intermediate Sequence form
std::vector<T3DPointD> middleAddedSequence;
std::vector<unsigned int> *inputIndices;
// Methods
SequenceConverter(const Sequence *s, double penalty)
: m_s(s), m_graph(m_s->m_graphHolder), m_penalty(penalty) {}
Length lengthOf(unsigned int a, unsigned int b);
void addMiddlePoints();
TStroke *operator()(std::vector<unsigned int> *indices);
// Length construction methods
bool parametrize(unsigned int a, unsigned int b);
void lengthOfTriplet(unsigned int i, Length &len);
bool calculateCPs(unsigned int i, unsigned int j, Length &len);
bool penalty(unsigned int a, unsigned int b, Length &len);
};
//--------------------------------------------------------------------------
// Changes in stroke thickness are considered more penalizating
inline double ellProd(const T3DPointD &a, const T3DPointD &b) {
return a.x * b.x + a.y * b.y + 5 * a.z * b.z;
}
//--------------------------------------------------------------------------
// EXPLANATION: After simplification, we receive a vector<UINT> of indices
// corresponding to the vertices of the simplified current sequence.
// Before beginning conversion, we need to add middle points between the
// above vertex points.
inline void SequenceConverter::addMiddlePoints() {
unsigned int i, j, n;
n = inputIndices->size();
middleAddedSequence.clear();
if (n == 2) {
middleAddedSequence.resize(3);
middleAddedSequence[0] = *m_graph->getNode((*inputIndices)[0]);
middleAddedSequence[1] = (*m_graph->getNode((*inputIndices)[0]) +
*m_graph->getNode((*inputIndices)[1])) *
0.5;
middleAddedSequence[2] = *m_graph->getNode((*inputIndices)[1]);
} else {
middleAddedSequence.resize(2 * n - 3);
middleAddedSequence[0] = *m_graph->getNode((*inputIndices)[0]);
for (i = j = 1; i < n - 2; ++i, j += 2) {
middleAddedSequence[j] = *m_graph->getNode((*inputIndices)[i]);
middleAddedSequence[j + 1] = (*m_graph->getNode((*inputIndices)[i]) +
*m_graph->getNode((*inputIndices)[i + 1])) *
0.5;
}
middleAddedSequence[j] = *m_graph->getNode((*inputIndices)[n - 2]);
middleAddedSequence[j + 1] = *m_graph->getNode((*inputIndices)[n - 1]);
}
}
//--------------------------------------------------------------------------
TStroke *SequenceConverter::operator()(std::vector<unsigned int> *indices) {
// Prepare Sequence
inputIndices = indices;
addMiddlePoints();
// Initialize local variables
unsigned int n =
(middleAddedSequence.size() + 1) / 2; // Number of middle points
// unsigned int i, j;
unsigned int i;
int j;
Length L_att, L_min, l_min, l_ji;
unsigned int p_i, a, b;
std::vector<Length> M(n);
std::vector<Length> K(n);
std::vector<unsigned int> P(n);
// Bellman algorithm
for (i = 2, a = 1; i < middleAddedSequence.size(); i += 2, ++a) {
L_min.infty();
l_min.infty();
p_i = 0;
// for(j=0, b=0; j<i; j+=2, ++b)
for (j = i - 2, b = j / 2; j >= 0; j -= 2, --b) {
if ((L_att = M[b] + (l_ji = lengthOf(j, i))) < L_min) {
L_min = L_att;
p_i = b;
l_min = l_ji;
}
// NOTE: The following else may be taken out to perform a deeper
// search for optimal result. However, it prevents quadratic complexities
// on large-scale images.
else if (l_ji.n == infinity)
break; // Stops searching for current i
}
M[a] = L_min;
K[a] = l_min;
P[a] = p_i;
}
// Read off the output
std::vector<TThickPoint> controlPoints(2 * M[n - 1].n + 1);
for (b = n - 1, a = 2 * M[n - 1].n; b > 0; b = P[b]) {
for (i = K[b].CPs.size() - 1; i > 0; --i, --a)
controlPoints[a] = K[b].CPs[i];
}
controlPoints[0] = middleAddedSequence[0];
TStroke *res = new TStroke(controlPoints);
return res;
}
//--------------------------------------------------------------------------
//--------------------------------------
// Conversion Length build-up
//--------------------------------------
SequenceConverter::Length SequenceConverter::lengthOf(unsigned int a,
unsigned int b) {
Length l;
// If we have a triplet, apply a specific procedure
if (b == a + 2) {
lengthOfTriplet(a, l);
return l;
}
// otherwise
if (!parametrize(a, b) || !calculateCPs(a, b, l) || !penalty(a, b, l))
l.infty();
return l;
}
//--------------------------------------------------------------------------
void SequenceConverter::lengthOfTriplet(unsigned int i, Length &len) {
T3DPointD A = middleAddedSequence[i];
T3DPointD B = middleAddedSequence[i + 1];
T3DPointD C = middleAddedSequence[i + 2];
// We assume that this convertion is faithful, avoiding length penalty
len.l = 0;
double d = tdistance(B, C - A, A);
if (d <= 2) {
len.n = 1;
len.set_CPs(A, B, C);
} else if (d <= 6) {
len.n = 2;
d = (d - 1) / d;
T3DPointD U = A + d * (B - A), V = C + d * (B - C);
len.set_CPs(A, U, (U + V) * 0.5, V, C);
} else {
len.n = 2;
len.set_CPs(A, (A + B) * 0.5, B, (B + C) * 0.5, C);
}
}
//--------------------------------------------------------------------------
bool SequenceConverter::parametrize(unsigned int a, unsigned int b) {
unsigned int curr, old;
unsigned int i;
double w, t;
double den;
pars.clear();
pars.push_back(0);
for (old = a, curr = a + 1, den = 0; curr < b; old = curr, curr += 2) {
w = norm(middleAddedSequence[curr] - middleAddedSequence[old]);
den += w;
pars.push_back(w);
}
w = norm(middleAddedSequence[b] - middleAddedSequence[old]);
den += w;
pars.push_back(w);
if (den < 0.1) return 0;
for (i = 1, t = 0; i < pars.size(); ++i) {
t += 2 * pars[i] / den;
pars[i] = t;
}
// Seek the interval which holds 1 - the middle interval
for (middle = 0; middle < pars.size() && pars[middle + 1] <= 1; ++middle)
;
return 1;
}
//==========================================================================
//------------------------
// CP construcion
//------------------------
// NOTE: Check my thesis for variable meanings (int_ stands for 'integral').
// Some integrals (int_) for the CP linear system resolution
inline T3DPointD int_H(const T3DPointD &A, const T3DPointD &B, double t1,
double t2) {
return -(0.375 * (pow(t2, 4) - pow(t1, 4))) * B +
(pow(t2, 3) - pow(t1, 3)) * (B * 0.6667 - A * 0.5) +
(pow(t2, 2) - pow(t1, 2)) * A;
}
//--------------------------------------------------------------------------
inline T3DPointD int_K(const T3DPointD &A, const T3DPointD &B, double t1,
double t2) {
return (pow(t2, 4) - pow(t1, 4)) * (B * 0.125) +
(pow(t2, 3) - pow(t1, 3)) * (A * 0.1667);
}
//--------------------------------------------------------------------------
bool SequenceConverter::calculateCPs(unsigned int i, unsigned int j,
Length &len) {
unsigned int curr, old;
TAffine M;
TPointD l;
T3DPointD a, e, x, y, A, B;
T3DPointD IH, IK, IM, IN_; //"IN" seems to be reserved word
double HxL, KyL, MxO, NyO;
unsigned int k;
a = middleAddedSequence[i];
e = middleAddedSequence[j];
x = middleAddedSequence[i + 1] - a;
y = middleAddedSequence[j - 1] - e;
// Build TAffine M
double par = ellProd(x, y) / 5;
M = TAffine(ellProd(x, x) / 3, par, 0, par, ellProd(y, y) / 3, 0);
// Costruisco il termine noto b:
// Calculate polygonal integrals
// Integral from 0.0 to 1.0
for (k = 0, old = i, curr = i + 1; k < middle; ++k, old = curr, curr += 2) {
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k + 1] - pars[k]));
A = middleAddedSequence[old] - pars[k] * B;
IH += int_H(A, B, pars[k], pars[k + 1]);
IK += int_K(A, B, pars[k], pars[k + 1]);
}
if (curr == j + 1) curr = j;
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k + 1] - pars[k]));
A = middleAddedSequence[old] - pars[k] * B;
IH += int_H(A, B, pars[k], 1.0);
IK += int_K(A, B, pars[k], 1.0);
// Integral from 1.0 to 2.0
for (k = pars.size() - 1, old = j, curr = j - 1; k > middle + 1;
--k, old = curr, curr -= 2) {
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k] - pars[k - 1]));
A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;
IM += int_K(A, B, 2 - pars[k], 2 - pars[k - 1]);
IN_ += int_H(A, B, 2 - pars[k], 2 - pars[k - 1]);
}
if (old == i + 1) curr = i;
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k] - pars[k - 1]));
A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;
IM += int_K(A, B, 2 - pars[k], 1.0);
IN_ += int_H(A, B, 2 - pars[k], 1.0);
// Polygonal-free integrals
T3DPointD f = (a + e) * 0.5;
HxL = (ellProd(a, x) * 0.3) + (ellProd(f, x) / 5.0);
NyO = (ellProd(e, y) * 0.3) + (ellProd(f, y) / 5.0);
KyL = (ellProd(a, y) / 15.0) + (ellProd(f, y) / 10.0);
MxO = ((e * x) / 15.0) + (ellProd(f, x) / 10.0);
// Infine, ho il termine noto
l = TPointD(ellProd(IH, x) - HxL + ellProd(IM, x) - MxO,
ellProd(IK, y) - KyL + ellProd(IN_, y) - NyO);
M.a13 = -l.x;
M.a23 = -l.y;
// Check validity conditions:
// a) System is not singular
if (fabs(M.det()) < 0.01) return 0;
M = M.inv();
// b) Shift (solution) is positive
if (M.a13 < 0 || M.a23 < 0) return 0;
T3DPointD b = a + M.a13 * x;
T3DPointD d = e + M.a23 * y;
// c) The height of every CP must be >=0
if (b.z < 0 || d.z < 0) return 0;
len.set_CPs(a, b, (b + d) * 0.5, d, e);
return 1;
}
//==========================================================================
//------------------------
// Penalties
//------------------------
inline T3DPointD int_B0a(const T3DPointD &A, const T3DPointD &B, double t1,
double t2) {
return (0.25 * (pow(t2, 4) - pow(t1, 4))) * B +
((pow(t2, 3) - pow(t1, 3)) / 3.0) * (A - 2.0 * B) +
(0.5 * (pow(t2, 2) - pow(t1, 2))) * (B - 2.0 * A) + (t2 - t1) * A;
}
//--------------------------------------------------------------------------
inline T3DPointD int_B1a(const T3DPointD &A, const T3DPointD &B, double t1,
double t2) {
return -(0.5 * (pow(t2, 4) - pow(t1, 4))) * B +
(2.0 * ((pow(t2, 3) - pow(t1, 3)) / 3.0) * (B - A) +
(pow(t2, 2) - pow(t1, 2)) * A);
}
//--------------------------------------------------------------------------
inline T3DPointD int_B2a(const T3DPointD &A, const T3DPointD &B, double t1,
double t2) {
return (0.25 * (pow(t2, 4) - pow(t1, 4))) * B +
((pow(t2, 3) - pow(t1, 3)) / 3.0) * A;
}
//--------------------------------------------------------------------------
inline double int_a2(const T3DPointD &A, const T3DPointD &B, double t1,
double t2) {
return ellProd(A, A) * (t2 - t1) + ellProd(A, B) * (pow(t2, 2) - pow(t1, 2)) +
(ellProd(B, B) * (pow(t2, 3) - pow(t1, 3)) / 3.0);
}
//--------------------------------------------------------------------------
// Penalty is the integral of the square norm of differences between polygonal
// and quadratics.
bool SequenceConverter::penalty(unsigned int a, unsigned int b, Length &len) {
unsigned int curr, old;
const std::vector<T3DPointD> &CPs = len.CPs;
T3DPointD A, B, P0, P1, P2;
double p, p_max;
unsigned int k;
len.n = 2; // A couple of arcs
// Prepare max penalty p_max
p_max = 0;
for (curr = a + 1, old = a, k = 0; curr < b; ++k, old = curr, curr += 2) {
p_max += (middleAddedSequence[curr].z + middleAddedSequence[old].z) *
(pars[k + 1] - pars[k]) / 2;
}
p_max += (middleAddedSequence[b].z + middleAddedSequence[old].z) *
(pars[k + 1] - pars[k]) / 2;
// Confronting 4th power of error with mean polygonal thickness
// - can be changed
p_max = std::min(sqrt(p_max) * m_penalty, Quad_eps_max);
// CP only integral
p = (ellProd(CPs[0], CPs[0]) + 2 * ellProd(CPs[2], CPs[2]) +
ellProd(CPs[4], CPs[4]) + ellProd(CPs[0], CPs[1]) +
ellProd(CPs[1], CPs[2]) + ellProd(CPs[2], CPs[3]) +
ellProd(CPs[3], CPs[4])) /
5.0 +
(2 * (ellProd(CPs[1], CPs[1]) + ellProd(CPs[3], CPs[3])) +
ellProd(CPs[0], CPs[2]) + ellProd(CPs[2], CPs[4])) /
15.0;
// Penalty from 0.0 to 1.0
P0 = P1 = P2 = T3DPointD();
for (k = 0, old = a, curr = a + 1; k < middle; ++k, old = curr, curr += 2) {
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k + 1] - pars[k]));
A = middleAddedSequence[old] - pars[k] * B;
// Mixed integral
P0 += int_B0a(A, B, pars[k], pars[k + 1]);
P1 += int_B1a(A, B, pars[k], pars[k + 1]);
P2 += int_B2a(A, B, pars[k], pars[k + 1]);
// Sequence integral
p += int_a2(A, B, pars[k], pars[k + 1]);
}
if (curr == b + 1) curr = b;
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k + 1] - pars[k]));
A = middleAddedSequence[old] - pars[k] * B;
// Mixed integral
P0 += int_B0a(A, B, pars[k], 1.0);
P1 += int_B1a(A, B, pars[k], 1.0);
P2 += int_B2a(A, B, pars[k], 1.0);
// Sequence integral
p += int_a2(A, B, pars[k], 1.0);
p -= 2 * (ellProd(P0, CPs[0]) + ellProd(P1, CPs[1]) + ellProd(P2, CPs[2]));
// Penalty from 1.0 to 2.0
P0 = P1 = P2 = T3DPointD();
for (k = pars.size() - 1, old = b, curr = b - 1; k > middle + 1;
--k, old = curr, curr -= 2) {
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k] - pars[k - 1]));
A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;
// Mixed integral
P0 += int_B0a(A, B, 2 - pars[k], 2 - pars[k - 1]);
P1 += int_B1a(A, B, 2 - pars[k], 2 - pars[k - 1]);
P2 += int_B2a(A, B, 2 - pars[k], 2 - pars[k - 1]);
// Sequence integral
p += int_a2(A, B, 2 - pars[k], 2 - pars[k - 1]);
}
if (old == a + 1) curr = a;
B = (middleAddedSequence[curr] - middleAddedSequence[old]) *
(1 / (pars[k] - pars[k - 1]));
A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;
// Mixed integral
P0 += int_B0a(A, B, 2 - pars[k], 1.0);
P1 += int_B1a(A, B, 2 - pars[k], 1.0);
P2 += int_B2a(A, B, 2 - pars[k], 1.0);
// Sequence integral
p += int_a2(A, B, 2 - pars[k], 1.0);
p -= 2 * (ellProd(P0, CPs[4]) + ellProd(P1, CPs[3]) + ellProd(P2, CPs[2]));
// OCCHIO! Ho visto ancora qualche p<0! Da rivedere - non dovrebbe...
if (p > p_max || p < 0)
return 0;
else
len.l = p;
return 1;
}
//--------------------------------------------------------------------------
//-----------------------------
// Convertion Mains
//-----------------------------
inline TStroke *convert(const Sequence &s, double penalty) {
SkeletonGraph *graph = s.m_graphHolder;
TStroke *result;
// First, we simplify the skeleton sequences found
std::vector<unsigned int> reducedIndices;
// NOTE: If s is circular, we have to protect head==tail 's adjacent nodes.
// We then move away s tail and head, and insert them in the reducedIndices
// apart from simplification.
if (s.m_head == s.m_tail && graph->getNode(s.m_head).degree() == 2) {
Sequence t = s;
SequenceSimplifier simplifier(&t);
reducedIndices.push_back(s.m_head);
t.m_head = graph->getNode(s.m_head).getLink(0).getNext();
t.m_headLink = !graph->getNode(t.m_head).linkOfNode(s.m_head);
t.m_tail = graph->getNode(s.m_tail).getLink(1).getNext();
t.m_tailLink = !graph->getNode(t.m_tail).linkOfNode(s.m_tail);
simplifier.simplify(reducedIndices);
reducedIndices.push_back(s.m_tail);
} else {
SequenceSimplifier simplifier(&s);
simplifier.simplify(reducedIndices);
}
// For segments, apply this immediate conversion
if (reducedIndices.size() == 2) {
std::vector<TThickPoint> segment(3);
segment[0] = *graph->getNode(s.m_head);
segment[1] = (*graph->getNode(s.m_head) + *graph->getNode(s.m_tail)) * 0.5;
segment[2] = *graph->getNode(s.m_tail);
return new TStroke(segment);
}
// Then, we convert the sequence in a quadratic stroke
SequenceConverter converter(&s, penalty);
result = converter(&reducedIndices);
// If it is a circular stroke, setSelfLoop
// NOTA: Sembra che pero' in questo modo non venga assegnato colore al confine
// con la cornice!!!
// => Solo nel caso outline...?
// NOTA: Considera anche che pure le outline possono essere splittate per la
// colorazione!!
// if(globals->currConfig->m_maxThickness == 0.0 && s.m_head == s.m_tail &&
// s.m_graphHolder->getNode(s.m_head).degree() == 2)
// //globals->currConfig->m_outline
// result->setSelfLoop(true);
// Pass the SkeletonArc::SS_OUTLINE attribute to the output stroke
if (graph->getNode(s.m_head)
.getLink(s.m_headLink)
->hasAttribute(SkeletonArc::SS_OUTLINE))
result->setFlag(SkeletonArc::SS_OUTLINE, true);
else if (graph->getNode(s.m_head)
.getLink(s.m_headLink)
->hasAttribute(SkeletonArc::SS_OUTLINE_REVERSED))
result->setFlag(SkeletonArc::SS_OUTLINE_REVERSED, true);
return result;
}
//--------------------------------------------------------------------------
// Converts each forward or single Sequence of the image in its corresponding
// TStroke. Output is a vector<TStroke*>* whose ownership belongs to the user.
// This allow sorts on the TStroke vector *before* adding any stroke to the
// output TVectorImage.
// std::vector<TStroke*>* conversionToStrokes(void)
void conversionToStrokes(std::vector<TStroke *> &strokes,
VectorizerCoreGlobals &g) {
SequenceList &singleSequences = g.singleSequences;
JointSequenceGraphList &organizedGraphs = g.organizedGraphs;
double penalty = g.currConfig->m_penalty;
unsigned int i, j, k;
// Convert single sequences
for (i = 0; i < singleSequences.size(); ++i) {
if (singleSequences[i].m_head == singleSequences[i].m_tail) {
// If the sequence is circular, move your endpoints to an edge middle, in
// order
// to allow a soft junction
SkeletonGraph *currGraph = singleSequences[i].m_graphHolder;
unsigned int head = singleSequences[i].m_head;
unsigned int headLink = singleSequences[i].m_headLink;
unsigned int next = currGraph->getNode(head).getLink(headLink).getNext();
unsigned int nextLink = currGraph->getNode(next).linkOfNode(head);
unsigned int addedNode = singleSequences[i].m_graphHolder->newNode(
(*currGraph->getNode(head) + *currGraph->getNode(next)) * 0.5);
singleSequences[i].m_graphHolder->insert(addedNode, head, headLink);
*singleSequences[i].m_graphHolder->node(addedNode).link(0) =
*singleSequences[i].m_graphHolder->node(head).link(headLink);
singleSequences[i].m_graphHolder->insert(addedNode, next, nextLink);
*singleSequences[i].m_graphHolder->node(addedNode).link(1) =
*singleSequences[i].m_graphHolder->node(next).link(nextLink);
singleSequences[i].m_head = addedNode;
singleSequences[i].m_headLink = 0;
singleSequences[i].m_tail = addedNode;
singleSequences[i].m_tailLink = 1;
}
strokes.push_back(convert(singleSequences[i], penalty));
}
// Convert graph sequences
for (i = 0; i < organizedGraphs.size(); ++i)
for (j = 0; j < organizedGraphs[i].getNodesCount(); ++j)
if (!organizedGraphs[i].getNode(j).hasAttribute(
JointSequenceGraph::ELIMINATED))
// Otherwise eliminated by junction recovery
for (k = 0; k < organizedGraphs[i].getNode(j).getLinksCount(); ++k) {
// A sequence is taken at both extremities in our organized graphs
if (organizedGraphs[i].getNode(j).getLink(k)->isForward())
strokes.push_back(
convert(*organizedGraphs[i].getNode(j).getLink(k), penalty));
}
}