#include "tenv.h"
#include "tsystem.h"
#include "ino_common.h"
#include "tfxparam.h"
#include <sstream> /* std::ostringstream */
/* copy and paste from
igs_ifx_common.h */
namespace igs {
namespace image {
namespace rgba {
enum num { blu = 0, gre, red, alp, siz };
}
} // namespace image
} // namespace igs
//------------------------------------------------------------
namespace {
// T is TPixel32 or TPixel64
// U is unsigned char or unsigned short
template <class T, class U>
void ras_to_arr_(const TRasterPT<T> ras, U* arr, const int channels) {
using namespace igs::image::rgba;
for (int yy = 0; yy < ras->getLy(); ++yy) {
const T* ras_sl = ras->pixels(yy);
for (int xx = 0; xx < ras->getLx(); ++xx, arr += channels) {
if (red < channels) {
arr[red] = ras_sl[xx].r;
}
if (gre < channels) {
arr[gre] = ras_sl[xx].g;
}
if (blu < channels) {
arr[blu] = ras_sl[xx].b;
}
if (alp < channels) {
arr[alp] = ras_sl[xx].m;
}
}
}
}
// T is TPixel32, TPixel64 or TPixelF
// normalize to 0.0 - 1.0
template <class T>
void ras_to_float_arr_(const TRasterPT<T> ras, float* arr, const int channels) {
using namespace igs::image::rgba;
float fac = 1.f / (float)T::maxChannelValue;
for (int yy = 0; yy < ras->getLy(); ++yy) {
const T* ras_sl = ras->pixels(yy);
for (int xx = 0; xx < ras->getLx(); ++xx, arr += channels) {
if (red < channels) {
arr[red] = (float)ras_sl[xx].r * fac;
}
if (gre < channels) {
arr[gre] = (float)ras_sl[xx].g * fac;
}
if (blu < channels) {
arr[blu] = (float)ras_sl[xx].b * fac;
}
if (alp < channels) {
arr[alp] = (float)ras_sl[xx].m * fac;
}
}
}
}
template <class U, class T>
void arr_to_ras_(const U* arr, const int channels, TRasterPT<T> ras,
const int margin // default is 0
) {
arr +=
(ras->getLx() + margin + margin) * margin * channels + margin * channels;
using namespace igs::image::rgba;
for (int yy = 0; yy < ras->getLy();
++yy, arr += (ras->getLx() + margin + margin) * channels) {
const U* arrx = arr;
T* ras_sl = ras->pixels(yy);
for (int xx = 0; xx < ras->getLx(); ++xx, arrx += channels) {
if (red < channels) {
ras_sl[xx].r = arrx[red];
}
if (gre < channels) {
ras_sl[xx].g = arrx[gre];
}
if (blu < channels) {
ras_sl[xx].b = arrx[blu];
}
if (alp < channels) {
ras_sl[xx].m = arrx[alp];
}
}
}
}
template <class T>
void float_arr_to_ras_(const float* arr, const int channels, TRasterPT<T> ras,
const int margin // default is 0
) {
arr +=
(ras->getLx() + margin + margin) * margin * channels + margin * channels;
using namespace igs::image::rgba;
float fac = (float)T::maxChannelValue;
for (int yy = 0; yy < ras->getLy();
++yy, arr += (ras->getLx() + margin + margin) * channels) {
const float* arrx = arr;
T* ras_sl = ras->pixels(yy);
for (int xx = 0; xx < ras->getLx(); ++xx, arrx += channels) {
if (red < channels) {
ras_sl[xx].r =
(arrx[red] >= 1.f) ? T::maxChannelValue
: (arrx[red] <= 0.f)
? (typename T::Channel)0
: (typename T::Channel)(std::round(arrx[red] * fac + 0.5f));
}
if (gre < channels) {
ras_sl[xx].g =
(arrx[gre] >= 1.f) ? T::maxChannelValue
: (arrx[gre] <= 0.f)
? (typename T::Channel)0
: (typename T::Channel)(std::round(arrx[gre] * fac + 0.5f));
}
if (blu < channels) {
ras_sl[xx].b =
(arrx[blu] >= 1.f) ? T::maxChannelValue
: (arrx[blu] <= 0.f)
? (typename T::Channel)0
: (typename T::Channel)(std::round(arrx[blu] * fac + 0.5f));
}
if (alp < channels) {
ras_sl[xx].m =
(arrx[alp] >= 1.f) ? T::maxChannelValue
: (arrx[alp] <= 0.f)
? (typename T::Channel)0
: (typename T::Channel)(std::round(arrx[alp] * fac + 0.5f));
}
}
}
}
template <>
void float_arr_to_ras_<TPixelF>(const float* arr, const int channels,
TRasterFP ras,
const int margin // default is 0
) {
arr +=
(ras->getLx() + margin + margin) * margin * channels + margin * channels;
using namespace igs::image::rgba;
for (int yy = 0; yy < ras->getLy();
++yy, arr += (ras->getLx() + margin + margin) * channels) {
const float* arrx = arr;
TPixelF* ras_sl = ras->pixels(yy);
for (int xx = 0; xx < ras->getLx(); ++xx, arrx += channels) {
if (red < channels) ras_sl[xx].r = arrx[red];
if (gre < channels) ras_sl[xx].g = arrx[gre];
if (blu < channels) ras_sl[xx].b = arrx[blu];
if (alp < channels) ras_sl[xx].m = arrx[alp];
}
}
}
template <class T>
float getFactor() {
return 1.f / (float)T::maxChannelValue;
}
template <>
float getFactor<TPixelF>() {
return 1.f;
}
// T is either TPixel32, TPixel64, or TPixelF
template <class T>
void ras_to_ref_float_arr_(const TRasterPT<T> ras, float* arr,
const int refer_mode) {
float fac = getFactor<T>();
for (int yy = 0; yy < ras->getLy(); ++yy) {
const T* ras_sl = ras->pixels(yy);
for (int xx = 0; xx < ras->getLx(); ++xx, arr++, ras_sl++) {
switch (refer_mode) {
case 0:
*arr = static_cast<float>(ras_sl->r) * fac;
break;
case 1:
*arr = static_cast<float>(ras_sl->g) * fac;
break;
case 2:
*arr = static_cast<float>(ras_sl->b) * fac;
break;
case 3:
*arr = static_cast<float>(ras_sl->m) * fac;
break;
case 4:
*arr = /* 輝度(Luminance)(CCIR Rec.601) */
(0.298912f * static_cast<float>(ras_sl->r) +
0.586611f * static_cast<float>(ras_sl->g) +
0.114478f * static_cast<float>(ras_sl->b)) *
fac;
break;
}
// clamp 0.f to 1.f in case computing TPixelF
*arr = std::min(1.f, std::max(0.f, *arr));
}
}
}
} // namespace
//--------------------
void ino::ras_to_arr(const TRasterP in_ras, const int channels,
unsigned char* out_arr) {
if ((TRaster32P)in_ras) {
ras_to_arr_<TPixel32, unsigned char>(in_ras, out_arr, channels);
} else if ((TRaster64P)in_ras) {
ras_to_arr_<TPixel64, unsigned short>(
in_ras, reinterpret_cast<unsigned short*>(out_arr), channels);
} else if ((TRasterFP)in_ras) {
ras_to_float_arr(in_ras, channels, reinterpret_cast<float*>(out_arr));
}
}
void ino::ras_to_float_arr(const TRasterP in_ras, const int channels,
float* out_arr) {
if ((TRaster32P)in_ras) {
ras_to_float_arr_<TPixel32>(in_ras, out_arr, channels);
} else if ((TRaster64P)in_ras) {
ras_to_float_arr_<TPixel64>(in_ras, out_arr, channels);
} else if ((TRasterFP)in_ras) {
ras_to_float_arr_<TPixelF>(in_ras, out_arr, channels);
}
}
void ino::arr_to_ras(const unsigned char* in_arr, const int channels,
TRasterP out_ras, const int margin) {
if ((TRaster32P)out_ras) {
arr_to_ras_<unsigned char, TPixel32>(in_arr, channels, out_ras, margin);
} else if ((TRaster64P)out_ras) {
arr_to_ras_<unsigned short, TPixel64>(
reinterpret_cast<const unsigned short*>(in_arr), channels, out_ras,
margin);
} else if ((TRasterFP)out_ras) {
arr_to_ras_<float, TPixelF>(reinterpret_cast<const float*>(in_arr),
channels, out_ras, margin);
}
}
void ino::float_arr_to_ras(const unsigned char* in_arr, const int channels,
TRasterP out_ras, const int margin) {
if ((TRaster32P)out_ras) {
float_arr_to_ras_<TPixel32>(reinterpret_cast<const float*>(in_arr),
channels, out_ras, margin);
} else if ((TRaster64P)out_ras) {
float_arr_to_ras_<TPixel64>(reinterpret_cast<const float*>(in_arr),
channels, out_ras, margin);
} else if ((TRasterFP)out_ras) {
float_arr_to_ras_<TPixelF>(reinterpret_cast<const float*>(in_arr), channels,
out_ras, margin);
}
}
//--------------------
void ino::ras_to_vec(const TRasterP in_ras, const int channels,
std::vector<unsigned char>& out_vec) {
out_vec.resize(
in_ras->getLy() * in_ras->getLx() * channels *
(((TRaster64P)in_ras) ? sizeof(unsigned short) : sizeof(unsigned char)));
ino::ras_to_arr(in_ras, channels, &out_vec.at(0));
}
void ino::vec_to_ras(std::vector<unsigned char>& in_vec, const int channels,
TRasterP out_ras, const int margin // default is 0
) {
ino::arr_to_ras(&in_vec.at(0), channels, out_ras, margin);
in_vec.clear();
}
//--------------------
void ino::ras_to_ref_float_arr(const TRasterP in_ras, float* out_arr,
const int refer_mode) {
if ((TRaster32P)in_ras) {
ras_to_ref_float_arr_<TPixel32>(in_ras, out_arr, refer_mode);
} else if ((TRaster64P)in_ras) {
ras_to_ref_float_arr_<TPixel64>(in_ras, out_arr, refer_mode);
} else if ((TRasterFP)in_ras) {
ras_to_ref_float_arr_<TPixelF>(in_ras, out_arr, refer_mode);
}
}
//--------------------
#if 0 //---
void ino::Lx_to_wrap( TRasterP ras ) {
/*
ras->getLx() : 描画の幅
ras->getWrap() : データの存在幅
描画幅よりデータの存在幅の方が大きい場合、
存在幅位置に置き直し、残りをゼロクリア
*/
if ( ras->getWrap() <= ras->getLx() ) { return; }
const int rowSize = ras->getLx() * ras->getPixelSize();
const int wrapSize = ras->getWrap() * ras->getPixelSize();
const int restSize = wrapSize - rowSize;
const UCHAR *rowImg = ras->getRawData()+rowSize *(ras->getLy()-1);
UCHAR *wrapImg = ras->getRawData()+wrapSize*(ras->getLy()-1);
for (int yy = 0; yy < ras->getLy(); ++yy) {
::memcpy(wrapImg, rowImg, rowSize);
::memset(wrapImg+rowSize, 0, restSize); /* 上下にはみ出すとここで落ちる */
rowImg -= rowSize;
wrapImg -= wrapSize;
}
}
#endif //---
//------------------------------------------------------------
namespace {
bool enable_sw_ = true;
bool check_sw_ = true;
} // namespace
bool ino::log_enable_sw(void) {
if (check_sw_) {
TFileStatus file(
// ToonzFolder::getProfileFolder()
TEnv::getConfigDir() + "fx_ino_no_log.setup");
if (file.doesExist()) {
enable_sw_ = false;
}
check_sw_ = false;
}
return enable_sw_;
}
//------------------------------------------------------------
namespace {
/* より大きな四角エリアにPixel整数値で密着する */
void makeRectCoherent(TRectD& rect, const TPointD& pos) {
rect -= pos;
rect.x0 = tfloor(rect.x0); /* ((x)<(int)(x)? (int)(x)-1: (int)(x))*/
rect.y0 = tfloor(rect.y0);
rect.x1 = tceil(rect.x1); /* ((int)(x)<(x)? (int)(x)+1: (int)(x))*/
rect.y1 = tceil(rect.y1);
rect += pos;
}
inline void to_xyz(double* xyz, double const* bgr) {
xyz[0] = 0.6069 * bgr[2] + 0.1735 * bgr[1] + 0.2003 * bgr[0]; // X
xyz[1] = 0.2989 * bgr[2] + 0.5866 * bgr[1] + 0.1145 * bgr[0]; // Y
xyz[2] = 0.0000 * bgr[2] + 0.0661 * bgr[1] + 1.1162 * bgr[0]; // Z
}
inline void to_bgr(double* bgr, double const* xyz) {
bgr[0] = +0.0585 * xyz[0] - 0.1187 * xyz[1] + 0.9017 * xyz[2]; // blue
bgr[1] = -0.9844 * xyz[0] + 1.9985 * xyz[1] - 0.0279 * xyz[2]; // green
bgr[2] = +1.9104 * xyz[0] - 0.5338 * xyz[1] - 0.2891 * xyz[2]; // red
}
// convert sRGB color space to power space
template <typename T = double>
inline T to_linear_color_space(T nonlinear_color, T exposure, T gamma) {
// return -std::log(T(1) - std::pow(nonlinear_color, gamma)) / exposure;
if (nonlinear_color <= T(0)) return T(0);
return std::pow(nonlinear_color, gamma) / exposure;
}
// convert power space to sRGB color space
template <typename T = double>
inline T to_nonlinear_color_space(T linear_color, T exposure, T gamma) {
// return std::pow(T(1) - std::exp(-exposure * linear_color), T(1) / gamma);
if (linear_color <= T(0)) return T(0);
return std::pow(linear_color * exposure, T(1) / gamma);
}
template <class T = double>
const T& clamp(const T& v, const T& lo, const T& hi) {
assert(!(hi < lo));
return (v < lo) ? lo : (hi < v) ? hi : v;
}
} // namespace
//------------------------------------------------------------
TBlendForeBackRasterFx::TBlendForeBackRasterFx(bool clipping_mask,
bool has_alpha_option)
: m_opacity(1.0 * ino::param_range())
, m_clipping_mask(clipping_mask)
, m_linear(false)
, m_gamma(2.2)
, m_gammaAdjust(0.)
, m_premultiplied(true)
, m_colorSpaceMode(new TIntEnumParam(Auto, "Auto")) {
addInputPort("Fore", this->m_up);
addInputPort("Back", this->m_down);
bindParam(this, "opacity", this->m_opacity);
bindParam(this, "clipping_mask", this->m_clipping_mask);
bindParam(this, "linear", this->m_linear, true, true); // obsolete
bindParam(this, "colorSpaceMode", this->m_colorSpaceMode);
bindParam(this, "gamma", this->m_gamma);
bindParam(this, "gammaAdjust", this->m_gammaAdjust);
bindParam(this, "premultiplied", this->m_premultiplied);
this->m_opacity->setValueRange(0, 1.0 * ino::param_range());
this->m_gamma->setValueRange(0.2, 5.0);
this->m_gammaAdjust->setValueRange(-5., 5.);
m_colorSpaceMode->addItem(Linear, "Linear");
m_colorSpaceMode->addItem(Nonlinear, "Nonlinear");
if (has_alpha_option) {
m_alpha_rendering = TBoolParamP(true);
bindParam(this, "alpha_rendering", this->m_alpha_rendering);
}
enableComputeInFloat(true);
// version 1: Gamma had been diretory specified
// version 2: Gamma is computed by rs.m_colorSpaceGamma + gammaAdjust
setFxVersion(2);
}
//--------------------------------------------
void TBlendForeBackRasterFx::onFxVersionSet() {
bool useGamma = getFxVersion() == 1;
if (useGamma) {
// Automatically update version
if (m_gamma->getKeyframeCount() == 0 &&
areAlmostEqual(m_gamma->getDefaultValue(), 2.2)) {
useGamma = false;
// call onObsoleteParamLoaded here in case loading the old fx before
// introducing the linear option
onObsoleteParamLoaded("linear");
setFxVersion(2);
}
}
getParams()->getParamVar("gamma")->setIsHidden(!useGamma);
getParams()->getParamVar("gammaAdjust")->setIsHidden(useGamma);
}
//------------------------------------------------
// This will be called in TFx::loadData when obsolete "linear" value is
// loaded
void TBlendForeBackRasterFx::onObsoleteParamLoaded(
const std::string& paramName) {
if (paramName != "linear") return;
if (m_linear->getValue())
m_colorSpaceMode->setValue(Linear);
else
m_colorSpaceMode->setValue(Nonlinear);
}
//------------------------------------------------------------
bool TBlendForeBackRasterFx::doGetBBox(double frame, TRectD& bBox,
const TRenderSettings& rs) {
TRectD up_bx;
const bool up_sw =
(m_up.isConnected() ? m_up->doGetBBox(frame, up_bx, rs) : false);
TRectD dn_bx;
const bool dn_sw =
(m_down.isConnected() ? m_down->doGetBBox(frame, dn_bx, rs) : false);
if (up_sw && dn_sw) {
bBox = up_bx + dn_bx;
return !bBox.isEmpty();
} else if (up_sw) {
bBox = up_bx;
return true;
} else if (dn_sw) {
bBox = dn_bx;
return true;
} else {
bBox = TRectD();
return false;
}
}
//------------------------------------------------------------
void TBlendForeBackRasterFx::dryComputeUpAndDown(TRectD& rect, double frame,
const TRenderSettings& rs,
bool upComputesWholeTile) {
const bool up_is = (this->m_up.isConnected() &&
this->m_up.getFx()->getTimeRegion().contains(frame));
const bool down_is = (this->m_down.isConnected() &&
this->m_down.getFx()->getTimeRegion().contains(frame));
/* ------ 両方とも切断の時処理しない ---------------------- */
if (!up_is && !down_is) {
return;
}
/* ------ up接続かつdown切断の時 -------------------------- */
if (up_is && !down_is) {
this->m_up->dryCompute(rect, frame, rs);
return;
}
/* ------ down接続時 -------------------------------------- */
if (down_is) {
this->m_down->dryCompute(rect, frame, rs);
}
/* ------ up切断時 ---------------------------------------- */
if (!up_is) {
return;
}
/* ------ tileのgeometryを計算する ------------------------ */
TRectD upBBox;
if (upComputesWholeTile) {
upBBox = rect;
} else {
this->m_up->getBBox(frame, upBBox, rs);
upBBox *= rect;
makeRectCoherent(upBBox, rect.getP00());
}
if ((upBBox.getLx() > 0.5) && (upBBox.getLy() > 0.5)) {
this->m_up->dryCompute(upBBox, frame, rs);
}
}
//------------------------------------------------------------
void TBlendForeBackRasterFx::doCompute(TTile& tile, double frame,
const TRenderSettings& rs) {
/* ------ 画像生成 ---------------------------------------- */
TRasterP dn_ras, up_ras;
this->computeUpAndDown(tile, frame, rs, dn_ras, up_ras);
if (!up_ras) {
return;
}
// blend on the empty raster if the back port is not active
if (!dn_ras) {
dn_ras = tile.getRaster();
}
/* ------ 動作パラメータを得る ---------------------------- */
const double up_opacity =
this->m_opacity->getValue(frame) / ino::param_range();
double gamma;
if (getFxVersion() == 1)
gamma = this->m_gamma->getValue(frame);
else {
gamma = std::max(1., rs.m_colorSpaceGamma + m_gammaAdjust->getValue(frame));
}
bool linear_sw = toBeComputedInLinearColorSpace(rs.m_linearColorSpace,
tile.getRaster()->isLinear());
/* ------ (app_begin)log記憶 ------------------------------ */
const bool log_sw = ino::log_enable_sw();
if (log_sw) {
std::ostringstream os;
os << "params"
<< " up_opacity " << up_opacity << " dn_tile w " << dn_ras->getLx()
<< " wrap " << dn_ras->getWrap() << " h " << dn_ras->getLy()
<< " pixbits " << ino::pixel_bits(dn_ras) << " up_tile w "
<< up_ras->getLx() << " wrap " << up_ras->getWrap() << " h "
<< up_ras->getLy() << " pixbits " << ino::pixel_bits(up_ras)
<< " frame " << frame;
}
/* ------ fx処理 ------------------------------------------ */
try {
if (dn_ras) {
dn_ras->lock();
}
if (up_ras) {
up_ras->lock();
}
doComputeFx(dn_ras, up_ras, TPoint(), up_opacity,
gamma / rs.m_colorSpaceGamma, rs.m_colorSpaceGamma, linear_sw);
// fx_(dn_ras, up_ras, TPoint(), up_opacity,
// this->m_clipping_mask->getValue(),
// this->m_linear->getValue(), gamma, this->m_premultiplied->getValue());
if (up_ras) {
up_ras->unlock();
}
if (dn_ras) {
dn_ras->unlock();
}
}
/* ------ error処理 --------------------------------------- */
catch (std::exception& e) {
if (up_ras) {
up_ras->unlock();
}
if (dn_ras) {
dn_ras->unlock();
}
if (log_sw) {
std::string str("exception <");
str += e.what();
str += '>';
}
throw;
} catch (...) {
if (up_ras) {
up_ras->unlock();
}
if (dn_ras) {
dn_ras->unlock();
}
if (log_sw) {
std::string str("other exception");
}
throw;
}
}
//------------------------------------------------------------
void TBlendForeBackRasterFx::doComputeFx(
TRasterP& dn_ras_out, const TRasterP& up_ras, const TPoint& pos,
const double up_opacity, const double gammaDif,
const double colorSpaceGamma, const bool linear_sw) {
/* 交差したエリアを処理するようにする、いるのか??? */
TRect outRect(dn_ras_out->getBounds());
TRect upRect(up_ras->getBounds() + pos);
TRect intersection = outRect * upRect;
if (intersection.isEmpty()) return;
TRasterP cRout = dn_ras_out->extract(intersection);
TRect rr = intersection - pos;
TRasterP cRup = up_ras->extract(rr);
TRaster32P rout32 = cRout, rup32 = cRup;
TRaster64P rout64 = cRout, rup64 = cRup;
TRasterFP routF = cRout, rupF = cRup;
bool premultiplied_sw = this->m_premultiplied->getValue();
if (rout32 && rup32) {
if (linear_sw) {
if (!premultiplied_sw)
premultiToUnpremulti<TPixel32, UCHAR>(rout32, rup32, colorSpaceGamma);
linearTmpl<TPixel32, UCHAR>(rout32, rup32, up_opacity, gammaDif);
}
// linearAdd<TPixel32, UCHAR>(rout32, rup32, up_opacity, clipping_mask_sw,
// gamma, premultiplied_sw);
else
nonlinearTmpl<TPixel32, UCHAR>(rout32, rup32, up_opacity);
// tmpl_<TPixel32, UCHAR>(rout32, rup32, up_opacity, clipping_mask_sw);
} else if (rout64 && rup64) {
if (linear_sw) {
if (!premultiplied_sw)
premultiToUnpremulti<TPixel64, USHORT>(rout64, rup64, colorSpaceGamma);
linearTmpl<TPixel64, USHORT>(rout64, rup64, up_opacity, gammaDif);
} else
nonlinearTmpl<TPixel64, USHORT>(rout64, rup64, up_opacity);
} else if (routF && rupF) {
if (linear_sw) {
if (!premultiplied_sw)
premultiToUnpremulti<TPixelF, float>(routF, rupF, colorSpaceGamma);
linearTmpl<TPixelF, float>(routF, rupF, up_opacity, gammaDif);
} else
nonlinearTmpl<TPixelF, float>(routF, rupF, up_opacity);
} else {
throw TRopException("unsupported pixel type");
}
}
//------------------------------------------------------------
template <class T, class Q>
void TBlendForeBackRasterFx::nonlinearTmpl(TRasterPT<T> dn_ras_out,
const TRasterPT<T>& up_ras,
const double up_opacity) {
bool clipping_mask_sw = this->m_clipping_mask->getValue();
bool alpha_rendering_sw = (m_alpha_rendering.getPointer())
? this->m_alpha_rendering->getValue()
: true;
double maxi = static_cast<double>(T::maxChannelValue); // 255or65535
assert(dn_ras_out->getSize() == up_ras->getSize());
assert(dn_ras_out->isLinear() == up_ras->isLinear());
for (int yy = 0; yy < dn_ras_out->getLy(); ++yy) {
T* out_pix = dn_ras_out->pixels(yy);
const T* const out_end = out_pix + dn_ras_out->getLx();
const T* up_pix = up_ras->pixels(yy);
for (; out_pix < out_end; ++out_pix, ++up_pix) {
double upr = static_cast<double>(up_pix->r) / maxi;
double upg = static_cast<double>(up_pix->g) / maxi;
double upb = static_cast<double>(up_pix->b) / maxi;
double upa = static_cast<double>(up_pix->m) / maxi;
double dnr = static_cast<double>(out_pix->r) / maxi;
double dng = static_cast<double>(out_pix->g) / maxi;
double dnb = static_cast<double>(out_pix->b) / maxi;
double dna = static_cast<double>(out_pix->m) / maxi;
brendKernel(dnr, dng, dnb, dna, upr, upg, upb, upa,
clipping_mask_sw ? up_opacity * dna : up_opacity,
alpha_rendering_sw, true);
out_pix->r = static_cast<Q>(dnr * (maxi + 0.999999));
out_pix->g = static_cast<Q>(dng * (maxi + 0.999999));
out_pix->b = static_cast<Q>(dnb * (maxi + 0.999999));
out_pix->m = static_cast<Q>(dna * (maxi + 0.999999));
}
}
}
//------------------------------------------------------------
template <>
void TBlendForeBackRasterFx::nonlinearTmpl<TPixelF, float>(
TRasterFP dn_ras_out, const TRasterFP& up_ras, const double up_opacity) {
bool clipping_mask_sw = this->m_clipping_mask->getValue();
bool alpha_rendering_sw = (m_alpha_rendering.getPointer())
? this->m_alpha_rendering->getValue()
: true;
assert(dn_ras_out->getSize() == up_ras->getSize());
assert(dn_ras_out->isLinear() == up_ras->isLinear());
for (int yy = 0; yy < dn_ras_out->getLy(); ++yy) {
TPixelF* out_pix = dn_ras_out->pixels(yy);
const TPixelF* const out_end = out_pix + dn_ras_out->getLx();
const TPixelF* up_pix = up_ras->pixels(yy);
for (; out_pix < out_end; ++out_pix, ++up_pix) {
double dnr = static_cast<double>(out_pix->r);
double dng = static_cast<double>(out_pix->g);
double dnb = static_cast<double>(out_pix->b);
double dna = static_cast<double>(out_pix->m);
brendKernel(dnr, dng, dnb, dna, up_pix->r, up_pix->g, up_pix->b,
up_pix->m, clipping_mask_sw ? up_opacity * dna : up_opacity,
alpha_rendering_sw, false);
out_pix->r = dnr;
out_pix->g = dng;
out_pix->b = dnb;
out_pix->m = dna;
}
}
}
//------------------------------------------------------------
template <class T, class Q>
void TBlendForeBackRasterFx::linearTmpl(TRasterPT<T> dn_ras_out,
const TRasterPT<T>& up_ras,
const double up_opacity,
const double gammaDif) {
bool clipping_mask_sw = this->m_clipping_mask->getValue();
bool alpha_rendering_sw = (m_alpha_rendering.getPointer())
? this->m_alpha_rendering->getValue()
: true;
bool premultiplied_sw = this->m_premultiplied->getValue();
double maxi = static_cast<double>(T::maxChannelValue); // 255or65535
double limit = (maxi + 0.5) / (maxi + 1.0);
assert(dn_ras_out->getSize() == up_ras->getSize());
for (int yy = 0; yy < dn_ras_out->getLy(); ++yy) {
T* out_pix = dn_ras_out->pixels(yy);
const T* const out_end = out_pix + dn_ras_out->getLx();
const T* up_pix = up_ras->pixels(yy);
for (; out_pix < out_end; ++out_pix, ++up_pix) {
if (up_pix->m <= 0 || up_opacity <= 0) {
continue;
}
double dna = static_cast<double>(out_pix->m) / maxi;
double tmp_opacity = clipping_mask_sw ? up_opacity * dna : up_opacity;
if (tmp_opacity <= 0) continue;
double dnBGR[3];
dnBGR[0] = static_cast<double>(out_pix->b) / maxi;
dnBGR[1] = static_cast<double>(out_pix->g) / maxi;
dnBGR[2] = static_cast<double>(out_pix->r) / maxi;
double dnXYZ[3] = {0.0, 0.0, 0.0};
if (dna > 0.0) {
for (int c = 0; c < 3; c++) {
if (premultiplied_sw)
dnBGR[c] =
to_linear_color_space(dnBGR[c] / dna, 1.0, gammaDif) * dna;
else
dnBGR[c] = to_linear_color_space(dnBGR[c], 1.0, gammaDif);
}
to_xyz(dnXYZ, dnBGR);
}
double upBGR[3];
upBGR[0] = static_cast<double>(up_pix->b) / maxi;
upBGR[1] = static_cast<double>(up_pix->g) / maxi;
upBGR[2] = static_cast<double>(up_pix->r) / maxi;
double upa = static_cast<double>(up_pix->m) / maxi;
for (int c = 0; c < 3; c++) {
if (premultiplied_sw)
upBGR[c] = to_linear_color_space(upBGR[c] / upa, 1.0, gammaDif) * upa;
else
upBGR[c] = to_linear_color_space(upBGR[c], 1.0, gammaDif);
}
double upXYZ[3];
to_xyz(upXYZ, upBGR);
brendKernel(dnXYZ[0], dnXYZ[1], dnXYZ[2], dna, upXYZ[0], upXYZ[1],
upXYZ[2], upa, tmp_opacity, alpha_rendering_sw, false);
to_bgr(dnBGR, dnXYZ);
// premultiply the result
double nonlinear_b =
to_nonlinear_color_space(dnBGR[0] / dna, 1.0, gammaDif) * dna;
double nonlinear_g =
to_nonlinear_color_space(dnBGR[1] / dna, 1.0, gammaDif) * dna;
double nonlinear_r =
to_nonlinear_color_space(dnBGR[2] / dna, 1.0, gammaDif) * dna;
out_pix->r =
static_cast<Q>(clamp(nonlinear_r, 0.0, 1.0) * (maxi + 0.999999));
out_pix->g =
static_cast<Q>(clamp(nonlinear_g, 0.0, 1.0) * (maxi + 0.999999));
out_pix->b =
static_cast<Q>(clamp(nonlinear_b, 0.0, 1.0) * (maxi + 0.999999));
out_pix->m = static_cast<Q>(dna * (maxi + 0.999999));
}
}
}
//------------------------------------------------------------
template <>
void TBlendForeBackRasterFx::linearTmpl<TPixelF, float>(TRasterFP dn_ras_out,
const TRasterFP& up_ras,
const double up_opacity,
const double gammaDif) {
bool clipping_mask_sw = this->m_clipping_mask->getValue();
bool alpha_rendering_sw = (m_alpha_rendering.getPointer())
? this->m_alpha_rendering->getValue()
: true;
bool premultiplied_sw = this->m_premultiplied->getValue();
// double maxi = static_cast<double>(T::maxChannelValue); // 255or65535
// double limit = (maxi + 0.5) / (maxi + 1.0);
assert(dn_ras_out->getSize() == up_ras->getSize());
for (int yy = 0; yy < dn_ras_out->getLy(); ++yy) {
TPixelF* out_pix = dn_ras_out->pixels(yy);
const TPixelF* const out_end = out_pix + dn_ras_out->getLx();
const TPixelF* up_pix = up_ras->pixels(yy);
for (; out_pix < out_end; ++out_pix, ++up_pix) {
if (up_pix->m <= 0.f || up_opacity <= 0.f) {
continue;
}
double dna = static_cast<double>(out_pix->m);
double tmp_opacity = clipping_mask_sw ? up_opacity * dna : up_opacity;
if (tmp_opacity <= 0.) continue;
double dnBGR[3];
dnBGR[0] = static_cast<double>(out_pix->b);
dnBGR[1] = static_cast<double>(out_pix->g);
dnBGR[2] = static_cast<double>(out_pix->r);
double dnXYZ[3] = {0.0, 0.0, 0.0};
if (dna > 0.0) {
for (int c = 0; c < 3; c++) {
if (premultiplied_sw)
dnBGR[c] =
to_linear_color_space(dnBGR[c] / dna, 1.0, gammaDif) * dna;
else
dnBGR[c] = to_linear_color_space(dnBGR[c], 1.0, gammaDif);
}
to_xyz(dnXYZ, dnBGR);
}
double upBGR[3];
upBGR[0] = static_cast<double>(up_pix->b);
upBGR[1] = static_cast<double>(up_pix->g);
upBGR[2] = static_cast<double>(up_pix->r);
double upa = static_cast<double>(up_pix->m);
for (int c = 0; c < 3; c++) {
if (premultiplied_sw)
upBGR[c] = to_linear_color_space(upBGR[c] / upa, 1.0, gammaDif) * upa;
else
upBGR[c] = to_linear_color_space(upBGR[c], 1.0, gammaDif);
}
double upXYZ[3];
to_xyz(upXYZ, upBGR);
brendKernel(dnXYZ[0], dnXYZ[1], dnXYZ[2], dna, upXYZ[0], upXYZ[1],
upXYZ[2], upa, tmp_opacity, alpha_rendering_sw, false);
to_bgr(dnBGR, dnXYZ);
// premultiply the result
double nonlinear_b =
to_nonlinear_color_space(dnBGR[0] / dna, 1.0, gammaDif) * dna;
double nonlinear_g =
to_nonlinear_color_space(dnBGR[1] / dna, 1.0, gammaDif) * dna;
double nonlinear_r =
to_nonlinear_color_space(dnBGR[2] / dna, 1.0, gammaDif) * dna;
out_pix->r = nonlinear_r;
out_pix->g = nonlinear_g;
out_pix->b = nonlinear_b;
out_pix->m = dna;
}
}
}
//------------------------------------------------------------
template <class T, class Q>
void TBlendForeBackRasterFx::premultiToUnpremulti(
TRasterPT<T> dn_ras, const TRasterPT<T>& up_ras,
const double colorSpaceGamma) {
double maxi = static_cast<double>(T::maxChannelValue); // 255or65535
assert(dn_ras->getSize() == up_ras->getSize());
assert(dn_ras->isLinear() == up_ras->isLinear());
for (int yy = 0; yy < dn_ras->getLy(); ++yy) {
T* dn_pix = dn_ras->pixels(yy);
const T* const dn_end = dn_pix + dn_ras->getLx();
T* up_pix = up_ras->pixels(yy);
for (; dn_pix < dn_end; ++dn_pix, ++up_pix) {
double upa = static_cast<double>(up_pix->m) / maxi;
if (upa > 0. && upa < 1.) {
double upr = static_cast<double>(up_pix->r) / maxi;
double upg = static_cast<double>(up_pix->g) / maxi;
double upb = static_cast<double>(up_pix->b) / maxi;
double up_fac = std::pow(upa, colorSpaceGamma - 1.);
up_pix->r = static_cast<Q>(upr * up_fac * (maxi + 0.999999));
up_pix->g = static_cast<Q>(upg * up_fac * (maxi + 0.999999));
up_pix->b = static_cast<Q>(upb * up_fac * (maxi + 0.999999));
}
double dna = static_cast<double>(dn_pix->m) / maxi;
if (dna > 0. && dna < 1.) {
double dnr = static_cast<double>(dn_pix->r) / maxi;
double dng = static_cast<double>(dn_pix->g) / maxi;
double dnb = static_cast<double>(dn_pix->b) / maxi;
double dn_fac = std::pow(dna, colorSpaceGamma - 1.);
dn_pix->r = static_cast<Q>(dnr * dn_fac * (maxi + 0.999999));
dn_pix->g = static_cast<Q>(dng * dn_fac * (maxi + 0.999999));
dn_pix->b = static_cast<Q>(dnb * dn_fac * (maxi + 0.999999));
}
}
}
}
//------------------------------------------------------------
template <>
void TBlendForeBackRasterFx::premultiToUnpremulti<TPixelF, float>(
TRasterFP dn_ras, const TRasterFP& up_ras, const double colorSpaceGamma) {
assert(dn_ras->getSize() == up_ras->getSize());
assert(dn_ras->isLinear() == up_ras->isLinear());
for (int yy = 0; yy < dn_ras->getLy(); ++yy) {
TPixelF* dn_pix = dn_ras->pixels(yy);
const TPixelF* const dn_end = dn_pix + dn_ras->getLx();
TPixelF* up_pix = up_ras->pixels(yy);
for (; dn_pix < dn_end; ++dn_pix, ++up_pix) {
if (up_pix->m > 0.f && up_pix->m < 1.f) {
float up_fac =
std::pow(up_pix->m, static_cast<float>(colorSpaceGamma - 1.));
up_pix->r *= up_fac;
up_pix->g *= up_fac;
up_pix->b *= up_fac;
}
if (dn_pix->m > 0.f && dn_pix->m < 1.f) {
float dn_fac =
std::pow(dn_pix->m, static_cast<float>(colorSpaceGamma - 1.));
dn_pix->r *= dn_fac;
dn_pix->g *= dn_fac;
dn_pix->b *= dn_fac;
}
}
}
}
//------------------------------------------------------------
void TBlendForeBackRasterFx::computeUpAndDown(TTile& tile, double frame,
const TRenderSettings& rs,
TRasterP& dn_ras,
TRasterP& up_ras,
bool upComputesWholeTile) {
/* ------ サポートしていないPixelタイプはエラーを投げる --- */
if (!((TRaster32P)tile.getRaster()) && !((TRaster64P)tile.getRaster()) &&
!((TRasterFP)tile.getRaster())) {
throw TRopException("unsupported input pixel type");
}
/*
m_down,m_upは繋がっている方があればそれを表示する
両方とも接続していれば合成処理する
表示スイッチを切ってあるならm_upを表示する
fxをreplaceすると、
m_source --> m_up (=port0)
m_reference --> m_down(=port1)
となる
*/
const bool up_is = (this->m_up.isConnected() &&
this->m_up.getFx()->getTimeRegion().contains(frame));
const bool down_is = (this->m_down.isConnected() &&
this->m_down.getFx()->getTimeRegion().contains(frame));
/* ------ 両方とも切断の時処理しない ---------------------- */
if (!up_is && !down_is) {
tile.getRaster()->clear();
return;
}
/* ------ up接続かつdown切断の時 -------------------------- */
if (up_is && !down_is) {
TTile upTile;
this->m_up->allocateAndCompute(upTile, tile.m_pos,
tile.getRaster()->getSize(),
tile.getRaster(), frame, rs);
up_ras = upTile.getRaster();
return;
}
/* ------ down接続時 downのみ描画して... ------------------ */
if (down_is) {
this->m_down->compute(tile, frame, rs);
}
/* ------ up切断時 ---------------------------------------- */
if (!up_is) {
return;
}
/* upと重なる部分を描画する */
/* ------ tileの範囲 -------------------------------------- */
const TDimension tsz(tile.getRaster()->getSize()); /* 整数 */
const TRectD tileRect(tile.m_pos, TDimensionD(tsz.lx, tsz.ly));
TRectD upBBox;
if (upComputesWholeTile) {
upBBox = tileRect;
} /* tile全体を得る */
else { /* 厳密なエリア... */
this->m_up->getBBox(frame, upBBox, rs);
upBBox *= tileRect; /* upとtileの交差エリア */
/* より大きな四角エリアにPixel整数値で密着する */
makeRectCoherent(upBBox, tile.m_pos); // double-->int grid
}
TDimensionI upSize( /* TRectDをTDimensionIに変換 */
tround(upBBox.getLx()) // getLx() = "x1>=x0?x1-x0:0"
,
tround(upBBox.getLy()) // getLy() = "y1>=y0?y1-y0:0"
);
if ((upSize.lx <= 0) || (upSize.ly <= 0)) {
return;
}
/* ------ upのメモリ確保と描画 ---------------------------- */
TTile upTile;
this->m_up->allocateAndCompute(upTile, upBBox.getP00(), upSize,
tile.getRaster() /* 32/64bitsの判定に使う */
,
frame, rs);
/* ------ upとdownのTRasterを得る ------------------------- */
TRectI dnRect(upTile.getRaster()->getSize()); // TDimensionI(-)
dnRect += convert(upTile.m_pos - tile.m_pos); /* uptile->tile原点 */
/*
ここで問題はdoubleの位置を、四捨五入して整数値にしていること
移動してから四捨五入ではないの???
dnRectの元位置が整数位置なので、問題ないか...
*/
dn_ras = upComputesWholeTile ? tile.getRaster()
: tile.getRaster()->extract(dnRect);
up_ras = upTile.getRaster();
assert(dn_ras->getSize() == up_ras->getSize());
}
//------------------------------------------------------------
bool TBlendForeBackRasterFx::toBeComputedInLinearColorSpace(
bool settingsIsLinear, bool tileIsLinear) const {
ColorSpaceMode mode =
static_cast<ColorSpaceMode>(m_colorSpaceMode->getValue());
return mode == Linear || (mode == Auto && settingsIsLinear);
}