;
; jidctfst.asm - fast integer IDCT (SSE2)
;
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
; Copyright (C) 2016, D. R. Commander.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains a fast, not so accurate integer implementation of
; the inverse DCT (Discrete Cosine Transform). The following code is
; based directly on the IJG's original jidctfst.c; see the jidctfst.c
; for more details.
%include "jsimdext.inc"
%include "jdct.inc"
; --------------------------------------------------------------------------
%define CONST_BITS 8 ; 14 is also OK.
%define PASS1_BITS 2
%if IFAST_SCALE_BITS != PASS1_BITS
%error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
%endif
%if CONST_BITS == 8
F_1_082 equ 277 ; FIX(1.082392200)
F_1_414 equ 362 ; FIX(1.414213562)
F_1_847 equ 473 ; FIX(1.847759065)
F_2_613 equ 669 ; FIX(2.613125930)
F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
%else
; NASM cannot do compile-time arithmetic on floating-point constants.
%define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n))
F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200)
F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562)
F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065)
F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930)
F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1)
%endif
; --------------------------------------------------------------------------
SECTION SEG_CONST
; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
%define PRE_MULTIPLY_SCALE_BITS 2
%define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
alignz 32
GLOBAL_DATA(jconst_idct_ifast_sse2)
EXTN(jconst_idct_ifast_sse2):
PW_F1414 times 8 dw F_1_414 << CONST_SHIFT
PW_F1847 times 8 dw F_1_847 << CONST_SHIFT
PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT
PW_F1082 times 8 dw F_1_082 << CONST_SHIFT
PB_CENTERJSAMP times 16 db CENTERJSAMPLE
alignz 32
; --------------------------------------------------------------------------
SECTION SEG_TEXT
BITS 32
;
; Perform dequantization and inverse DCT on one block of coefficients.
;
; GLOBAL(void)
; jsimd_idct_ifast_sse2(void *dct_table, JCOEFPTR coef_block,
; JSAMPARRAY output_buf, JDIMENSION output_col)
;
%define dct_table(b) (b) + 8 ; jpeg_component_info *compptr
%define coef_block(b) (b) + 12 ; JCOEFPTR coef_block
%define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf
%define output_col(b) (b) + 20 ; JDIMENSION output_col
%define original_ebp ebp + 0
%define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD
; xmmword wk[WK_NUM]
%define WK_NUM 2
align 32
GLOBAL_FUNCTION(jsimd_idct_ifast_sse2)
EXTN(jsimd_idct_ifast_sse2):
push ebp
mov eax, esp ; eax = original ebp
sub esp, byte 4
and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits
mov [esp], eax
mov ebp, esp ; ebp = aligned ebp
lea esp, [wk(0)]
pushpic ebx
; push ecx ; unused
; push edx ; need not be preserved
push esi
push edi
get_GOT ebx ; get GOT address
; ---- Pass 1: process columns from input.
; mov eax, [original_ebp]
mov edx, POINTER [dct_table(eax)] ; quantptr
mov esi, JCOEFPTR [coef_block(eax)] ; inptr
%ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2
mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
jnz near .columnDCT
movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
por xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
por xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
por xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
por xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
por xmm1, xmm0
packsswb xmm1, xmm1
packsswb xmm1, xmm1
movd eax, xmm1
test eax, eax
jnz short .columnDCT
; -- AC terms all zero
movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
movdqa xmm7, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07)
punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03)
punpckhwd xmm7, xmm7 ; xmm7=(04 04 05 05 06 06 07 07)
pshufd xmm6, xmm0, 0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00)
pshufd xmm2, xmm0, 0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01)
pshufd xmm5, xmm0, 0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02)
pshufd xmm0, xmm0, 0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03)
pshufd xmm1, xmm7, 0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04)
pshufd xmm4, xmm7, 0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05)
pshufd xmm3, xmm7, 0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06)
pshufd xmm7, xmm7, 0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07)
movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1
movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3
jmp near .column_end
alignx 16, 7
%endif
.columnDCT:
; -- Even part
movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movdqa xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
movdqa xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
pmullw xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movdqa xmm4, xmm0
movdqa xmm5, xmm1
psubw xmm0, xmm2 ; xmm0=tmp11
psubw xmm1, xmm3
paddw xmm4, xmm2 ; xmm4=tmp10
paddw xmm5, xmm3 ; xmm5=tmp13
psllw xmm1, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm1, [GOTOFF(ebx,PW_F1414)]
psubw xmm1, xmm5 ; xmm1=tmp12
movdqa xmm6, xmm4
movdqa xmm7, xmm0
psubw xmm4, xmm5 ; xmm4=tmp3
psubw xmm0, xmm1 ; xmm0=tmp2
paddw xmm6, xmm5 ; xmm6=tmp0
paddw xmm7, xmm1 ; xmm7=tmp1
movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3
movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2
; -- Odd part
movdqa xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
movdqa xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
pmullw xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movdqa xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
movdqa xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
pmullw xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
pmullw xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
movdqa xmm4, xmm2
movdqa xmm0, xmm5
psubw xmm2, xmm1 ; xmm2=z12
psubw xmm5, xmm3 ; xmm5=z10
paddw xmm4, xmm1 ; xmm4=z11
paddw xmm0, xmm3 ; xmm0=z13
movdqa xmm1, xmm5 ; xmm1=z10(unscaled)
psllw xmm2, PRE_MULTIPLY_SCALE_BITS
psllw xmm5, PRE_MULTIPLY_SCALE_BITS
movdqa xmm3, xmm4
psubw xmm4, xmm0
paddw xmm3, xmm0 ; xmm3=tmp7
psllw xmm4, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm4, [GOTOFF(ebx,PW_F1414)] ; xmm4=tmp11
; To avoid overflow...
;
; (Original)
; tmp12 = -2.613125930 * z10 + z5;
;
; (This implementation)
; tmp12 = (-1.613125930 - 1) * z10 + z5;
; = -1.613125930 * z10 - z10 + z5;
movdqa xmm0, xmm5
paddw xmm5, xmm2
pmulhw xmm5, [GOTOFF(ebx,PW_F1847)] ; xmm5=z5
pmulhw xmm0, [GOTOFF(ebx,PW_MF1613)]
pmulhw xmm2, [GOTOFF(ebx,PW_F1082)]
psubw xmm0, xmm1
psubw xmm2, xmm5 ; xmm2=tmp10
paddw xmm0, xmm5 ; xmm0=tmp12
; -- Final output stage
psubw xmm0, xmm3 ; xmm0=tmp6
movdqa xmm1, xmm6
movdqa xmm5, xmm7
paddw xmm6, xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07)
paddw xmm7, xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17)
psubw xmm1, xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77)
psubw xmm5, xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67)
psubw xmm4, xmm0 ; xmm4=tmp5
movdqa xmm3, xmm6 ; transpose coefficients(phase 1)
punpcklwd xmm6, xmm7 ; xmm6=(00 10 01 11 02 12 03 13)
punpckhwd xmm3, xmm7 ; xmm3=(04 14 05 15 06 16 07 17)
movdqa xmm0, xmm5 ; transpose coefficients(phase 1)
punpcklwd xmm5, xmm1 ; xmm5=(60 70 61 71 62 72 63 73)
punpckhwd xmm0, xmm1 ; xmm0=(64 74 65 75 66 76 67 77)
movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2
movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3
movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73)
movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77)
paddw xmm2, xmm4 ; xmm2=tmp4
movdqa xmm5, xmm7
movdqa xmm0, xmm1
paddw xmm7, xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27)
paddw xmm1, xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47)
psubw xmm5, xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57)
psubw xmm0, xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37)
movdqa xmm4, xmm7 ; transpose coefficients(phase 1)
punpcklwd xmm7, xmm0 ; xmm7=(20 30 21 31 22 32 23 33)
punpckhwd xmm4, xmm0 ; xmm4=(24 34 25 35 26 36 27 37)
movdqa xmm2, xmm1 ; transpose coefficients(phase 1)
punpcklwd xmm1, xmm5 ; xmm1=(40 50 41 51 42 52 43 53)
punpckhwd xmm2, xmm5 ; xmm2=(44 54 45 55 46 56 47 57)
movdqa xmm0, xmm3 ; transpose coefficients(phase 2)
punpckldq xmm3, xmm4 ; xmm3=(04 14 24 34 05 15 25 35)
punpckhdq xmm0, xmm4 ; xmm0=(06 16 26 36 07 17 27 37)
movdqa xmm5, xmm6 ; transpose coefficients(phase 2)
punpckldq xmm6, xmm7 ; xmm6=(00 10 20 30 01 11 21 31)
punpckhdq xmm5, xmm7 ; xmm5=(02 12 22 32 03 13 23 33)
movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73)
movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77)
movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35)
movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37)
movdqa xmm3, xmm1 ; transpose coefficients(phase 2)
punpckldq xmm1, xmm4 ; xmm1=(40 50 60 70 41 51 61 71)
punpckhdq xmm3, xmm4 ; xmm3=(42 52 62 72 43 53 63 73)
movdqa xmm0, xmm2 ; transpose coefficients(phase 2)
punpckldq xmm2, xmm7 ; xmm2=(44 54 64 74 45 55 65 75)
punpckhdq xmm0, xmm7 ; xmm0=(46 56 66 76 47 57 67 77)
movdqa xmm4, xmm6 ; transpose coefficients(phase 3)
punpcklqdq xmm6, xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70)
punpckhqdq xmm4, xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71)
movdqa xmm7, xmm5 ; transpose coefficients(phase 3)
punpcklqdq xmm5, xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72)
punpckhqdq xmm7, xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73)
movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35)
movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37)
movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1
movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3
movdqa xmm4, xmm1 ; transpose coefficients(phase 3)
punpcklqdq xmm1, xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74)
punpckhqdq xmm4, xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75)
movdqa xmm7, xmm3 ; transpose coefficients(phase 3)
punpcklqdq xmm3, xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76)
punpckhqdq xmm7, xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77)
.column_end:
; -- Prefetch the next coefficient block
prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
; ---- Pass 2: process rows from work array, store into output array.
mov eax, [original_ebp]
mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *)
mov eax, JDIMENSION [output_col(eax)]
; -- Even part
; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6
movdqa xmm2, xmm6
movdqa xmm0, xmm5
psubw xmm6, xmm1 ; xmm6=tmp11
psubw xmm5, xmm3
paddw xmm2, xmm1 ; xmm2=tmp10
paddw xmm0, xmm3 ; xmm0=tmp13
psllw xmm5, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm5, [GOTOFF(ebx,PW_F1414)]
psubw xmm5, xmm0 ; xmm5=tmp12
movdqa xmm1, xmm2
movdqa xmm3, xmm6
psubw xmm2, xmm0 ; xmm2=tmp3
psubw xmm6, xmm5 ; xmm6=tmp2
paddw xmm1, xmm0 ; xmm1=tmp0
paddw xmm3, xmm5 ; xmm3=tmp1
movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1
movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3
movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3
movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2
; -- Odd part
; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7
movdqa xmm2, xmm0
movdqa xmm6, xmm4
psubw xmm0, xmm7 ; xmm0=z12
psubw xmm4, xmm5 ; xmm4=z10
paddw xmm2, xmm7 ; xmm2=z11
paddw xmm6, xmm5 ; xmm6=z13
movdqa xmm7, xmm4 ; xmm7=z10(unscaled)
psllw xmm0, PRE_MULTIPLY_SCALE_BITS
psllw xmm4, PRE_MULTIPLY_SCALE_BITS
movdqa xmm5, xmm2
psubw xmm2, xmm6
paddw xmm5, xmm6 ; xmm5=tmp7
psllw xmm2, PRE_MULTIPLY_SCALE_BITS
pmulhw xmm2, [GOTOFF(ebx,PW_F1414)] ; xmm2=tmp11
; To avoid overflow...
;
; (Original)
; tmp12 = -2.613125930 * z10 + z5;
;
; (This implementation)
; tmp12 = (-1.613125930 - 1) * z10 + z5;
; = -1.613125930 * z10 - z10 + z5;
movdqa xmm6, xmm4
paddw xmm4, xmm0
pmulhw xmm4, [GOTOFF(ebx,PW_F1847)] ; xmm4=z5
pmulhw xmm6, [GOTOFF(ebx,PW_MF1613)]
pmulhw xmm0, [GOTOFF(ebx,PW_F1082)]
psubw xmm6, xmm7
psubw xmm0, xmm4 ; xmm0=tmp10
paddw xmm6, xmm4 ; xmm6=tmp12
; -- Final output stage
psubw xmm6, xmm5 ; xmm6=tmp6
movdqa xmm7, xmm1
movdqa xmm4, xmm3
paddw xmm1, xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70)
paddw xmm3, xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71)
psraw xmm1, (PASS1_BITS+3) ; descale
psraw xmm3, (PASS1_BITS+3) ; descale
psubw xmm7, xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77)
psubw xmm4, xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76)
psraw xmm7, (PASS1_BITS+3) ; descale
psraw xmm4, (PASS1_BITS+3) ; descale
psubw xmm2, xmm6 ; xmm2=tmp5
packsswb xmm1, xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76)
packsswb xmm3, xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77)
movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2
movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3
paddw xmm0, xmm2 ; xmm0=tmp4
movdqa xmm4, xmm5
movdqa xmm7, xmm6
paddw xmm5, xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72)
paddw xmm6, xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74)
psraw xmm5, (PASS1_BITS+3) ; descale
psraw xmm6, (PASS1_BITS+3) ; descale
psubw xmm4, xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75)
psubw xmm7, xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73)
psraw xmm4, (PASS1_BITS+3) ; descale
psraw xmm7, (PASS1_BITS+3) ; descale
movdqa xmm2, [GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP]
packsswb xmm5, xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74)
packsswb xmm7, xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75)
paddb xmm1, xmm2
paddb xmm3, xmm2
paddb xmm5, xmm2
paddb xmm7, xmm2
movdqa xmm0, xmm1 ; transpose coefficients(phase 1)
punpcklbw xmm1, xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71)
punpckhbw xmm0, xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77)
movdqa xmm6, xmm5 ; transpose coefficients(phase 1)
punpcklbw xmm5, xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73)
punpckhbw xmm6, xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75)
movdqa xmm4, xmm1 ; transpose coefficients(phase 2)
punpcklwd xmm1, xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33)
punpckhwd xmm4, xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73)
movdqa xmm2, xmm6 ; transpose coefficients(phase 2)
punpcklwd xmm6, xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37)
punpckhwd xmm2, xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77)
movdqa xmm3, xmm1 ; transpose coefficients(phase 3)
punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
punpckhdq xmm3, xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
movdqa xmm7, xmm4 ; transpose coefficients(phase 3)
punpckldq xmm4, xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57)
punpckhdq xmm7, xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77)
pshufd xmm5, xmm1, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07)
pshufd xmm0, xmm3, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27)
pshufd xmm6, xmm4, 0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47)
pshufd xmm2, xmm7, 0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67)
mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1
movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3
mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW]
mov esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW]
movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4
movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7
mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5
movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0
mov edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW]
mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW]
movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6
movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2
pop edi
pop esi
; pop edx ; need not be preserved
; pop ecx ; unused
poppic ebx
mov esp, ebp ; esp <- aligned ebp
pop esp ; esp <- original ebp
pop ebp
ret
; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
align 32