//#include "tsystem.h"
#include "tmachine.h"
#include "tcurves.h"
#include "tcommon.h"
#include "tregion.h"
//#include "tregionutil.h"
#include "tstopwatch.h"
#include "tstroke.h"
#include "tstrokeutil.h"
#include "tvectorimageP.h"
#include "tdebugmessage.h"
#include "tthreadmessage.h"
#include "tl2lautocloser.h"
#include "tcomputeregions.h"
#include <vector>
#include "tcurveutil.h"
#include <algorithm>
#if !defined(TNZ_LITTLE_ENDIAN)
TNZ_LITTLE_ENDIAN undefined !!
#endif
//-----------------------------------------------------------------------------
#ifdef IS_DOTNET
#define NULL_ITER list<IntersectedStroke>::iterator()
#else
#define NULL_ITER 0
#endif
using namespace std;
typedef TVectorImage::IntersectionBranch IntersectionBranch;
//-----------------------------------------------------------------------------
inline double myRound(double x) {
return (1.0 / REGION_COMPUTING_PRECISION) *
((TINT32)(x * REGION_COMPUTING_PRECISION));
}
inline TThickPoint myRound(const TThickPoint &p) {
return TThickPoint(myRound(p.x), myRound(p.y), p.thick);
}
static void roundStroke(TStroke *s) {
int size = s->getControlPointCount();
for (int j = 0; j < (int)s->getControlPointCount(); j++) {
TThickPoint p = s->getControlPoint(j);
s->setControlPoint(j, myRound(p));
}
if (size > 3)
//! it can happen that a stroke has a first or last quadratic degenerated:(3
//! equal control points).
// in that case, if the stroke has an intersection in an endpoint, the
// resulting w could not be 0 or 1 as expected.
// since the w==0 and w==1 are used in the region computing to determine if
// the intersection is an endpoint,
//
{
if (s->getControlPoint(0) == s->getControlPoint(1) &&
s->getControlPoint(0) == s->getControlPoint(2)) {
s->setControlPoint(2, s->getControlPoint(3));
s->setControlPoint(1, s->getControlPoint(3));
}
if (s->getControlPoint(size - 1) == s->getControlPoint(size - 2) &&
s->getControlPoint(size - 1) == s->getControlPoint(size - 3)) {
s->setControlPoint(size - 2, s->getControlPoint(size - 4));
s->setControlPoint(size - 3, s->getControlPoint(size - 4));
}
}
}
//-----------------------------------------------------------------------------
class VIListElem {
public:
VIListElem *m_prev;
VIListElem *m_next;
VIListElem() : m_prev(0), m_next(0) {}
inline VIListElem *next() { return m_next; }
inline VIListElem *prev() { return m_prev; }
};
template <class T>
class VIList {
int m_size;
T *m_begin, *m_end;
public:
VIList() : m_begin(0), m_end(0), m_size(0) {}
inline T *first() const { return m_begin; };
inline T *last() const { return m_end; };
void clear();
void pushBack(T *elem);
void insert(T *before, T *elem);
T *erase(T *element);
T *getElemAt(int pos);
int getPosOf(T *elem);
inline int size() { return m_size; }
inline bool empty() { return size() == 0; }
};
class Intersection final : public VIListElem {
public:
// Intersection* m_prev, *m_next;
TPointD m_intersection;
int m_numInter;
// bool m_isNotErasable;
VIList<IntersectedStroke> m_strokeList;
Intersection() : m_numInter(0), m_strokeList() {}
inline Intersection *next() { return (Intersection *)VIListElem::next(); };
inline Intersection *prev() { return (Intersection *)VIListElem::prev(); };
// inline Intersection* operator++() {return next();}
};
class IntersectedStrokeEdges {
public:
int m_index;
list<TEdge *> m_edgeList;
IntersectedStrokeEdges(int index) : m_index(index), m_edgeList() {}
~IntersectedStrokeEdges() {
assert(m_index >= 0); /*clearPointerContainer(m_edgeList);*/
m_edgeList.clear();
m_index = -1;
}
};
class IntersectionData {
public:
UINT maxAutocloseId;
VIList<Intersection> m_intList;
map<int, VIStroke *> m_autocloseMap;
vector<IntersectedStrokeEdges> m_intersectedStrokeArray;
IntersectionData() : maxAutocloseId(1), m_intList() {}
~IntersectionData();
};
//-----------------------------------------------------------------------------
class IntersectedStroke final : public VIListElem {
/*double m_w;
TStroke *m_s;
UINT m_index;*/
// IntersectedStroke* m_prev, *m_next;
public:
TEdge m_edge;
Intersection *m_nextIntersection;
IntersectedStroke *m_nextStroke;
bool m_visited, m_gettingOut; //, m_dead;
IntersectedStroke()
: m_visited(false), m_nextIntersection(0), m_nextStroke(0){};
IntersectedStroke(Intersection *nextIntersection,
IntersectedStroke *nextStroke)
/*: m_w(-1.0)
, m_s(NULL)
, m_index(0)*/
: m_edge(),
m_nextIntersection(nextIntersection),
m_nextStroke(nextStroke),
m_visited(false)
//, m_dead(false)
{}
IntersectedStroke(const IntersectedStroke &s)
: m_edge(s.m_edge, false)
, m_nextIntersection(s.m_nextIntersection)
, m_nextStroke(s.m_nextStroke)
, m_visited(s.m_visited)
, m_gettingOut(s.m_gettingOut)
//, m_dead(s.m_dead)
{}
inline IntersectedStroke *next() {
return (IntersectedStroke *)VIListElem::next();
};
};
//=============================================================================
template <class T>
void VIList<T>::clear() {
while (m_begin) {
T *aux = m_begin;
m_begin = m_begin->next();
delete aux;
}
m_end = 0;
m_size = 0;
}
template <class T>
void VIList<T>::pushBack(T *elem) {
if (!m_begin) {
assert(!m_end);
elem->m_next = elem->m_prev = 0;
m_begin = m_end = elem;
} else {
assert(m_end);
assert(m_end->m_next == 0);
m_end->m_next = elem;
elem->m_prev = m_end;
elem->m_next = 0;
m_end = elem;
}
m_size++;
}
template <class T>
void VIList<T>::insert(T *before, T *elem) {
assert(before && elem);
elem->m_prev = before->m_prev;
elem->m_next = before;
if (!before->m_prev)
before->m_prev = m_begin = elem;
else {
before->m_prev->m_next = elem;
before->m_prev = elem;
}
m_size++;
}
template <class T>
T *VIList<T>::erase(T *element) {
T *ret;
assert(m_size > 0);
if (!element->m_prev) {
assert(m_begin == element);
if (!element->m_next)
ret = m_begin = m_end = 0;
else {
m_begin = (T *)m_begin->m_next;
m_begin->m_prev = 0;
ret = m_begin;
}
} else if (!element->m_next) {
assert(m_end == element);
m_end = (T *)m_end->m_prev;
m_end->m_next = 0;
ret = 0;
} else {
element->m_prev->m_next = element->m_next;
element->m_next->m_prev = element->m_prev;
ret = (T *)element->m_next;
}
m_size--;
delete element;
return ret;
}
template <class T>
T *VIList<T>::getElemAt(int pos) {
assert(pos < m_size);
T *p = m_begin;
while (pos--) p = p->next();
return p;
}
template <class T>
int VIList<T>::getPosOf(T *elem) {
int count = 0;
T *p = m_begin;
while (p && p != elem) {
count++;
p = p->next();
}
assert(p == elem);
return count;
}
//-------------------------------------------------------------
//-----------------------------------------------------------------------------
#ifdef LEVO
void print(list<Intersection> &intersectionList, char *str) {
ofstream of(str);
of << "***************************" << endl;
list<Intersection>::const_iterator it;
list<IntersectedStroke>::const_iterator it1;
int i, j;
for (i = 0, it = intersectionList.begin(); it != intersectionList.end();
it++, i++) {
of << "***************************" << endl;
of << "Intersection#" << i << ": " << it->m_intersection
<< "numBranches: " << it->m_numInter << endl;
of << endl;
for (j = 0, it1 = it->m_strokeList.begin(); it1 != it->m_strokeList.end();
it1++, j++) {
of << "----Branch #" << j;
if (it1->m_edge.m_index < 0) of << "(AUTOCLOSE)";
of << "Intersection at " << it1->m_edge.m_w0 << ": "
<< ": " << endl;
of << "ColorId: " << it1->m_edge.m_styleId << endl;
/*
TColorStyle* fs = it1->m_edge.m_fillStyle;
if (fs==0)
of<<"NO color: "<< endl;
else
{
TFillStyleP fp = fs->getFillStyle();
if (fp)
{
fp->
assert(false) ;
else
of<<"Color: ("<< colorStyle->getColor().r<<", "<< colorStyle->getColor().g<<",
"<< colorStyle->getColor().b<<")"<<endl;
*/
of << "----Stroke " << (it1->m_gettingOut ? "OUT" : "IN") << " #"
<< it1->m_edge.m_index << ": " << endl;
// if (it1->m_dead)
// of<<"---- DEAD Intersection.";
// else
{
of << "---- NEXT Intersection:";
if (it1->m_nextIntersection != intersectionList.end()) {
int dist =
std::distance(intersectionList.begin(), it1->m_nextIntersection);
of << dist;
list<Intersection>::iterator iit = intersectionList.begin();
std::advance(iit, dist);
of << " "
<< std::distance(iit->m_strokeList.begin(), it1->m_nextStroke);
}
else
of << "NULL!!";
of << "---- NEXT Stroke:";
if (it1->m_nextIntersection != intersectionList.end())
of << it1->m_nextStroke->m_edge.m_index;
else
of << "NULL!!";
}
of << endl << endl;
}
}
}
#endif
void findNearestIntersection(list<Intersection> &interList,
const list<Intersection>::iterator &i1,
const list<IntersectedStroke>::iterator &i2);
//-----------------------------------------------------------------------------
#ifdef _TOLGO
void checkInterList(list<Intersection> &intersectionList) {
list<Intersection>::iterator it;
list<IntersectedStroke>::iterator it1;
for (it = intersectionList.begin(); it != intersectionList.end(); it++) {
int count = 0;
for (it1 = it->m_strokeList.begin(); it1 != it->m_strokeList.end(); it1++) {
int val;
if (it1->m_nextIntersection != intersectionList.end()) {
count++;
// assert (it1->m_nextIntersection!=intersectionList.end());
assert(it1->m_nextStroke->m_nextIntersection == it);
assert(it1->m_nextStroke->m_nextStroke == it1);
// int k = it1->m_edge.m_index;
val = std::distance(intersectionList.begin(), it1->m_nextIntersection);
}
// else
// assert(it1->m_nextIntersection==intersectionList.end());
}
assert(count == it->m_numInter);
}
}
#else
#define checkInterList
#endif
//-----------------------------------------------------------------------------
// void addFakeIntersection(list<Intersection>& intersectionList,TStroke* s,
// UINT ii, double w);
void addIntersections(IntersectionData &intersectionData,
const vector<VIStroke *> &s, int ii, int jj,
const vector<DoublePair> &intersections, int numStrokes,
bool isVectorized);
void addIntersection(IntersectionData &intData, const vector<VIStroke *> &s,
int ii, int jj, DoublePair intersections, int strokeSize,
bool isVectorized);
//-----------------------------------------------------------------------------
static bool sortBBox(const TStroke *s1, const TStroke *s2) {
return s1->getBBox().x0 < s2->getBBox().x0;
}
//-----------------------------------------------------------------------------
static void cleanIntersectionMarks(const VIList<Intersection> &interList) {
Intersection *p;
IntersectedStroke *q;
for (p = interList.first(); p; p = p->next())
for (q = p->m_strokeList.first(); q; q = q->next()) {
q->m_visited =
false; // Ogni ramo della lista viene messo nella condizione
// di poter essere visitato
if (q->m_nextIntersection) {
q->m_nextIntersection = 0;
p->m_numInter--;
}
}
}
//-----------------------------------------------------------------------------
static void cleanNextIntersection(const VIList<Intersection> &interList,
TStroke *s) {
Intersection *p;
IntersectedStroke *q;
for (p = interList.first(); p; p = p->next())
for (q = p->m_strokeList.first(); q; q = q->next())
if (q->m_edge.m_s == s) {
// if (it2->m_nextIntersection==NULL)
// return; //gia' ripulita prima
if (q->m_nextIntersection) {
q->m_nextIntersection = 0;
p->m_numInter--;
}
q->m_nextStroke = 0;
}
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::eraseEdgeFromStroke(IntersectedStroke *is) {
if (is->m_edge.m_index >=
0) // elimino il puntatore all'edge nella lista della VIStroke
{
VIStroke *s;
s = m_strokes[is->m_edge.m_index];
assert(s->m_s == is->m_edge.m_s);
list<TEdge *>::iterator iit = s->m_edgeList.begin(),
it_e = s->m_edgeList.end();
for (; iit != it_e; ++iit)
if ((*iit)->m_w0 == is->m_edge.m_w0 && (*iit)->m_w1 == is->m_edge.m_w1) {
assert((*iit)->m_toBeDeleted == false);
s->m_edgeList.erase(iit);
return;
}
}
}
//-----------------------------------------------------------------------------
IntersectedStroke *TVectorImage::Imp::eraseBranch(Intersection *in,
IntersectedStroke *is) {
if (is->m_nextIntersection) {
Intersection *nextInt = is->m_nextIntersection;
IntersectedStroke *nextStroke = is->m_nextStroke;
assert(nextStroke->m_nextIntersection == in);
assert(nextStroke->m_nextStroke == is);
assert(nextStroke != is);
// nextStroke->m_nextIntersection = intList.end();
// nextStroke->m_nextStroke = nextInt->m_strokeList.end();
if (nextStroke->m_nextIntersection) {
nextStroke->m_nextIntersection = 0;
nextInt->m_numInter--;
}
// nextInt->m_strokeList.erase(nextStroke);//non posso cancellarla, puo'
// servire in futuro!
}
if (is->m_nextIntersection) in->m_numInter--;
eraseEdgeFromStroke(is);
is->m_edge.m_w0 = is->m_edge.m_w1 = -3;
is->m_edge.m_index = -3;
is->m_edge.m_s = 0;
is->m_edge.m_styleId = -3;
return in->m_strokeList.erase(is);
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::eraseDeadIntersections() {
Intersection *p = m_intersectionData->m_intList.first();
while (p) // la faccio qui, e non nella eraseIntersection. vedi commento li'.
{
// Intersection* &intList = m_intersectionData->m_intList;
if (p->m_strokeList.size() == 1) {
eraseBranch(p, p->m_strokeList.first());
assert(p->m_strokeList.size() == 0);
p = m_intersectionData->m_intList.erase(p);
} else if (p->m_strokeList.size() == 2 &&
(p->m_strokeList.first()->m_edge.m_s ==
p->m_strokeList.last()->m_edge.m_s &&
p->m_strokeList.first()->m_edge.m_w0 ==
p->m_strokeList.last()->m_edge.m_w0)) // intersezione finta
{
IntersectedStroke *it1 = p->m_strokeList.first(), *iit1, *iit2;
IntersectedStroke *it2 = it1->next();
eraseEdgeFromStroke(p->m_strokeList.first());
eraseEdgeFromStroke(p->m_strokeList.first()->next());
iit1 = (it1->m_nextIntersection) ? it1->m_nextStroke : 0;
iit2 = (it2->m_nextIntersection) ? it2->m_nextStroke : 0;
if (iit1 && iit2) {
iit1->m_edge.m_w1 = iit2->m_edge.m_w0;
iit2->m_edge.m_w1 = iit1->m_edge.m_w0;
}
if (iit1) {
iit1->m_nextStroke = iit2;
iit1->m_nextIntersection = it2->m_nextIntersection;
if (!iit1->m_nextIntersection) it1->m_nextIntersection->m_numInter--;
}
if (iit2) {
iit2->m_nextStroke = iit1;
iit2->m_nextIntersection = it1->m_nextIntersection;
if (!iit2->m_nextIntersection) it2->m_nextIntersection->m_numInter--;
}
p->m_strokeList.clear();
p->m_numInter = 0;
p = m_intersectionData->m_intList.erase(p);
} else
p = p->next();
}
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::doEraseIntersection(int index,
vector<int> *toBeDeleted) {
Intersection *p1 = m_intersectionData->m_intList.first();
TStroke *deleteIt = 0;
while (p1) {
bool removeAutocloses = false;
IntersectedStroke *p2 = p1->m_strokeList.first();
while (p2) {
IntersectedStroke &is = *p2;
if (is.m_edge.m_index == index) {
if (is.m_edge.m_index >= 0)
// if (!is.m_autoclose && (is.m_edge.m_w0==1 || is.m_edge.m_w0==0))
removeAutocloses = true;
else
deleteIt = is.m_edge.m_s;
p2 = eraseBranch(p1, p2);
} else
p2 = p2->next();
// checkInterList(interList);
}
if (removeAutocloses) // se ho tolto una stroke dall'inter corrente, tolgo
// tutti le stroke di autclose che partono da qui
{
assert(toBeDeleted);
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next())
if (p2->m_edge.m_index < 0 &&
(p2->m_edge.m_w0 == 1 || p2->m_edge.m_w0 == 0))
toBeDeleted->push_back(p2->m_edge.m_index);
}
if (p1->m_strokeList.empty())
p1 = m_intersectionData->m_intList.erase(p1);
else
p1 = p1->next();
}
if (deleteIt) delete deleteIt;
}
//-----------------------------------------------------------------------------
UINT TVectorImage::Imp::getFillData(std::unique_ptr<IntersectionBranch[]> &v) {
// print(m_intersectionData->m_intList,
// "C:\\temp\\intersectionPrimaSave.txt");
// Intersection* intList = m_intersectionData->m_intList;
if (m_intersectionData->m_intList.empty()) return 0;
Intersection *p1;
IntersectedStroke *p2;
UINT currInt = 0;
vector<UINT> branchesBefore(m_intersectionData->m_intList.size() + 1);
branchesBefore[0] = 0;
UINT count = 0, size = 0;
p1 = m_intersectionData->m_intList.first();
for (; p1; p1 = p1->next(), currInt++) {
UINT strokeListSize = p1->m_strokeList.size();
size += strokeListSize;
branchesBefore[currInt + 1] = branchesBefore[currInt] + strokeListSize;
}
v.reset(new IntersectionBranch[size]);
currInt = 0;
p1 = m_intersectionData->m_intList.first();
for (; p1; p1 = p1->next(), currInt++) {
UINT currBranch = 0;
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next(), currBranch++) {
IntersectionBranch &b = v[count];
b.m_currInter = currInt;
b.m_strokeIndex = p2->m_edge.m_index;
b.m_w = p2->m_edge.m_w0;
b.m_style = p2->m_edge.m_styleId;
// assert(b.m_style<100);
b.m_gettingOut = p2->m_gettingOut;
if (!p2->m_nextIntersection)
b.m_nextBranch = count;
else {
UINT distInt =
m_intersectionData->m_intList.getPosOf(p2->m_nextIntersection);
UINT distBranch =
p2->m_nextIntersection->m_strokeList.getPosOf(p2->m_nextStroke);
if ((distInt < currInt) ||
(distInt == currInt && distBranch < currBranch)) {
UINT posNext = branchesBefore[distInt] + distBranch;
assert(posNext < count);
b.m_nextBranch = posNext;
assert(v[posNext].m_nextBranch == (std::numeric_limits<UINT>::max)());
v[posNext].m_nextBranch = count;
} else
b.m_nextBranch = (std::numeric_limits<UINT>::max)();
}
count++;
}
}
// for (UINT i=0; i<count; i++)
// assert(v[i].m_nextBranch != std::numeric_limits<UINT>::max());
#ifdef _DEBUG
/*ofstream of("C:\\temp\\fillDataOut.txt");
for (UINT ii=0; ii<size; ii++)
{
of<<ii<<"----------------------"<<endl;
of<<"index:"<<v[ii].m_strokeIndex<<endl;
of<<"w:"<<v[ii].m_w<<endl;
of<<"curr inter:"<<v[ii].m_currInter<<endl;
of<<"next inter:"<<v[ii].m_nextBranch<<endl;
of<<"gettingOut:"<<((v[ii].m_gettingOut)?"TRUE":"FALSE")<<endl;
of<<"colorId:"<<v[ii].m_style<<endl;
}*/
#endif
return size;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
namespace {
TStroke *reconstructAutocloseStroke(Intersection *p1, IntersectedStroke *p2)
{
bool found = false;
Intersection *pp1 = p1->next();
IntersectedStroke *pp2;
// vector<TEdge*> vapp;
for (; !found && pp1; pp1 = pp1->next()) {
for (pp2 = pp1->m_strokeList.first(); !found && pp2; pp2 = pp2->next()) {
if (p2->m_edge.m_index == pp2->m_edge.m_index) {
if ((pp2->m_edge.m_w0 == 1 && p2->m_edge.m_w0 == 0) ||
(pp2->m_edge.m_w0 == 0 && p2->m_edge.m_w0 == 1)) {
found = true;
vector<TPointD> v;
if (p2->m_edge.m_w0 == 0) {
v.push_back(p1->m_intersection);
v.push_back(pp1->m_intersection);
} else {
v.push_back(pp1->m_intersection);
v.push_back(p1->m_intersection);
}
p2->m_edge.m_s = pp2->m_edge.m_s = new TStroke(v);
// for (UINT ii=0; ii<vapp.size(); ii++)
// vapp[ii]->m_s = it2->m_edge.m_s;
}
// else if (iit2->m_edge.m_w0!=0 && iit2->m_edge.m_w0!=1)
// vapp.push_back(&(iit2->m_edge));
}
}
}
assert(found);
if (!found) p2->m_edge.m_s = 0;
return p2->m_edge.m_s;
}
} // namespace
//-----------------------------------------------------------------------------
void TVectorImage::Imp::setFillData(
std::unique_ptr<IntersectionBranch[]> const &v, UINT branchCount,
bool doComputeRegions) {
#ifdef _DEBUG
/*ofstream of("C:\\temp\\fillDataIn.txt");
for (UINT ii=0; ii<branchCount; ii++)
{
of<<ii<<"----------------------"<<endl;
of<<"index:"<<v[ii].m_strokeIndex<<endl;
of<<"w:"<<v[ii].m_w<<endl;
of<<"curr inter:"<<v[ii].m_currInter<<endl;
of<<"next inter:"<<v[ii].m_nextBranch<<endl;
of<<"gettingOut:"<<((v[ii].m_gettingOut)?"TRUE":"FALSE")<<endl;
of<<"colorId:"<<v[ii].m_style<<endl;
}*/
#endif
if (branchCount == 0) return;
//{
// QMutexLocker sl(m_mutex);
VIList<Intersection> &intList = m_intersectionData->m_intList;
clearPointerContainer(m_regions);
m_regions.clear();
intList.clear();
Intersection *currInt;
IntersectedStroke *currBranch;
UINT size = v[branchCount - 1].m_currInter + 1;
vector<UINT> branchesBefore(size);
UINT i = 0;
for (; i < branchCount; i++) {
const IntersectionBranch &b = v[i];
if (i == 0 || v[i].m_currInter != v[i - 1].m_currInter) {
if (v[i].m_currInter >=
size) // pezza per immagine corrotte...evito crash
{
intList.clear();
return;
}
branchesBefore[v[i].m_currInter] = i;
currInt = new Intersection();
intList.pushBack(currInt);
}
currBranch = new IntersectedStroke();
currInt->m_strokeList.pushBack(currBranch);
currBranch->m_edge.m_styleId = b.m_style;
// assert(b.m_style<100);
currBranch->m_edge.m_index = b.m_strokeIndex;
if (b.m_strokeIndex >= 0)
currBranch->m_edge.m_s = m_strokes[b.m_strokeIndex]->m_s;
else
currBranch->m_edge.m_s = 0;
currBranch->m_gettingOut = b.m_gettingOut;
currBranch->m_edge.m_w0 = b.m_w;
if (b.m_nextBranch < branchCount)
currBranch->m_edge.m_w1 = v[b.m_nextBranch].m_w;
else
currBranch->m_edge.m_w1 = 1.0;
assert(currBranch->m_edge.m_w0 >= -1e-8 &&
currBranch->m_edge.m_w0 <= 1 + 1e-8);
assert(currBranch->m_edge.m_w1 >= -1e-8 &&
currBranch->m_edge.m_w1 <= 1 + 1e-8);
if (b.m_nextBranch < i) {
Intersection *p1;
IntersectedStroke *p2;
p1 = intList.getElemAt(v[b.m_nextBranch].m_currInter);
assert(b.m_nextBranch - branchesBefore[v[b.m_nextBranch].m_currInter] >=
0);
p2 = p1->m_strokeList.getElemAt(
b.m_nextBranch - branchesBefore[v[b.m_nextBranch].m_currInter]);
currBranch->m_nextIntersection = p1;
currBranch->m_nextStroke = p2;
p2->m_nextIntersection = currInt;
p2->m_nextStroke = currBranch;
// if (currBranch == currInt->m_strokeList.begin())
// currInt->m_intersection =
// currBranch->m_edge.m_s->getPoint(currBranch->m_edge.m_w0);
currInt->m_numInter++;
p1->m_numInter++;
} else if (b.m_nextBranch == i)
currBranch->m_nextIntersection = 0;
else if (b.m_nextBranch == (std::numeric_limits<UINT>::max)()) {
currBranch->m_nextIntersection = 0;
currBranch->m_nextStroke = 0;
}
/* {
assert(b.m_nextBranch<branchCount);
assert(v[b.m_nextBranch].m_nextBranch==i);
}*/
if (i == branchCount - 1 || v[i].m_currInter != v[i + 1].m_currInter) {
int j = i;
while (v[j].m_strokeIndex < 0 &&
((j > 0 && v[j].m_currInter == v[j - 1].m_currInter) || j == 0))
j--;
if (v[j].m_strokeIndex >= 0)
currInt->m_intersection =
m_strokes[v[j].m_strokeIndex]->m_s->getPoint(v[j].m_w);
}
}
for (i = 0; i < m_strokes.size(); i++) m_strokes[i]->m_isNewForFill = false;
// computeRegions();
Intersection *p1;
IntersectedStroke *p2;
vector<UINT> toBeDeleted;
for (p1 = intList.first(); p1; p1 = p1->next())
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next()) {
if (p2->m_edge.m_index < 0 && !p2->m_edge.m_s &&
(p2->m_edge.m_w0 == 0 || p2->m_edge.m_w0 == 1)) {
p2->m_edge.m_s = reconstructAutocloseStroke(p1, p2);
if (p2->m_edge.m_s)
m_intersectionData->m_autocloseMap[p2->m_edge.m_index] =
new VIStroke(p2->m_edge.m_s, TGroupId());
else
toBeDeleted.push_back(p2->m_edge.m_index);
}
}
for (p1 = intList.first(); p1; p1 = p1->next())
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next()) {
if (!p2->m_edge.m_s && p2->m_edge.m_index < 0) {
VIStroke *vs = m_intersectionData->m_autocloseMap[p2->m_edge.m_index];
if (vs) {
p2->m_edge.m_s =
m_intersectionData->m_autocloseMap[p2->m_edge.m_index]->m_s;
// TEdge& e = it2->m_edge;
if (!p2->m_edge.m_s) toBeDeleted.push_back(p2->m_edge.m_index);
}
}
}
for (i = 0; i < toBeDeleted.size(); i++) eraseIntersection(toBeDeleted[i]);
m_areValidRegions = false;
//}
if (doComputeRegions) computeRegions();
// print(m_intersectionData->m_intList, "C:\\temp\\intersectionDopoLoad.txt");
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::eraseIntersection(int index) {
vector<int> autocloseStrokes;
doEraseIntersection(index, &autocloseStrokes);
for (UINT i = 0; i < autocloseStrokes.size(); i++) {
doEraseIntersection(autocloseStrokes[i]);
assert(autocloseStrokes[i] < 0);
m_intersectionData->m_autocloseMap.erase(autocloseStrokes[i]);
}
}
//-----------------------------------------------------------------------------
static void findNearestIntersection(VIList<Intersection> &interList) {
Intersection *p1;
IntersectedStroke *p2;
for (p1 = interList.first(); p1; p1 = p1->next()) {
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next()) {
if (p2->m_nextIntersection) // already set
continue;
int versus = (p2->m_gettingOut) ? 1 : -1;
double minDelta = (std::numeric_limits<double>::max)();
Intersection *pp1, *p1Res;
IntersectedStroke *pp2, *p2Res;
for (pp1 = p1; pp1; pp1 = pp1->next()) {
if (pp1 == p1)
pp2 = p2, pp2 = pp2->next();
else
pp2 = pp1->m_strokeList.first();
for (; pp2; pp2 = pp2->next()) {
if (pp2->m_edge.m_index == p2->m_edge.m_index &&
pp2->m_gettingOut == !p2->m_gettingOut) {
double delta = versus * (pp2->m_edge.m_w0 - p2->m_edge.m_w0);
if (delta > 0 && delta < minDelta) {
p1Res = pp1;
p2Res = pp2;
minDelta = delta;
}
}
}
}
if (minDelta != (std::numeric_limits<double>::max)()) {
p2Res->m_nextIntersection = p1;
p2Res->m_nextStroke = p2;
p2Res->m_edge.m_w1 = p2->m_edge.m_w0;
p2->m_nextIntersection = p1Res;
p2->m_nextStroke = p2Res;
p2->m_edge.m_w1 = p2Res->m_edge.m_w0;
p1->m_numInter++;
p1Res->m_numInter++;
}
}
}
}
//-----------------------------------------------------------------------------
void markDeadIntersections(VIList<Intersection> &intList, Intersection *p);
// questa funzione "cuscinetto" serve perche crashava il compilatore in
// release!!!
void inline markDeadIntersectionsRic(VIList<Intersection> &intList,
Intersection *p) {
markDeadIntersections(intList, p);
}
//-----------------------------------------------------------------------------
void markDeadIntersections(VIList<Intersection> &intList, Intersection *p) {
IntersectedStroke *p1 = p->m_strokeList.first();
if (!p1) return;
if (p->m_numInter == 1) {
while (p1 && !!p1->m_nextIntersection) p1 = p1->next();
assert(p1);
if (!p1) return;
Intersection *nextInt = p1->m_nextIntersection;
IntersectedStroke *nextStroke = p1->m_nextStroke;
p->m_numInter = 0;
p1->m_nextIntersection = 0;
if (nextInt /*&& !nextStroke->m_dead*/) {
nextInt->m_numInter--;
nextStroke->m_nextIntersection = 0;
markDeadIntersectionsRic(intList, nextInt);
}
} else if (p->m_numInter == 2) // intersezione finta (forse)
{
while (p1 && !p1->m_nextIntersection) p1 = p1->next();
assert(p1);
if (!p1) return;
IntersectedStroke *p2 = p1->next();
while (p2 && !p2->m_nextIntersection) p2 = p2->next();
assert(p2);
if (!p2) return;
if (p1->m_edge.m_s == p2->m_edge.m_s &&
p1->m_edge.m_w0 == p2->m_edge.m_w0) // intersezione finta
{
IntersectedStroke *pp1, *pp2;
assert(p1->m_nextIntersection && p2->m_nextIntersection);
pp1 = p1->m_nextStroke;
pp2 = p2->m_nextStroke;
pp2->m_edge.m_w1 = pp1->m_edge.m_w0;
pp1->m_edge.m_w1 = pp2->m_edge.m_w0;
// if (iit1!=0)
pp1->m_nextStroke = pp2;
// if (iit2!=0)
pp2->m_nextStroke = pp1;
// if (iit1!=0)
pp1->m_nextIntersection = p2->m_nextIntersection;
// if (iit2!=0)
pp2->m_nextIntersection = p1->m_nextIntersection;
p->m_numInter = 0;
p1->m_nextIntersection = p2->m_nextIntersection = 0;
}
}
}
//-----------------------------------------------------------------------------
// se cross val era 0, cerco di spostarmi un po' su w per vedere come sono
// orientate le tangenti agli stroke...
static double nearCrossVal(TStroke *s0, double w0, TStroke *s1, double w1) {
double ltot0 = s0->getLength();
double ltot1 = s1->getLength();
double dl = std::min(ltot1, ltot0) / 1000;
double crossVal, dl0 = dl, dl1 = dl;
TPointD p0, p1;
int count = 0;
if (w0 == 1.0) dl0 = -dl0;
if (w1 == 1.0) dl1 = -dl1;
double l0 = s0->getLength(w0) + dl0;
double l1 = s1->getLength(w1) + dl1;
do {
p0 = s0->getSpeed(s0->getParameterAtLength(l0));
p1 = s1->getSpeed(s1->getParameterAtLength(l1));
crossVal = cross(p0, p1);
l0 += dl0, l1 += dl1;
count++;
} while (areAlmostEqual(crossVal, 0.0) &&
((dl0 > 0 && l0 < ltot0) || (dl0 < 0 && l0 > 0)) &&
((dl1 > 0 && l1 < ltot1) || (dl1 < 0 && l1 > 0)));
return crossVal;
}
//-----------------------------------------------------------------------------
inline void insertBranch(Intersection &in, IntersectedStroke &item,
bool gettingOut) {
if (item.m_edge.m_w0 != (gettingOut ? 1.0 : 0.0)) {
item.m_gettingOut = gettingOut;
in.m_strokeList.pushBack(new IntersectedStroke(item));
}
}
//-----------------------------------------------------------------------------
static double getAngle(const TPointD &p0, const TPointD &p1) {
double angle1 = atan2(p0.x, p0.y) * M_180_PI;
double angle2 = atan2(p1.x, p1.y) * M_180_PI;
if (angle1 < 0) angle1 = 360 + angle1;
if (angle2 < 0) angle2 = 360 + angle2;
return (angle2 - angle1) < 0 ? 360 + angle2 - angle1 : angle2 - angle1;
}
//-----------------------------------------------------------------------------
// nel caso l'angolo tra due stroke in un certo w sia nullo,
// si va un po' avanti per vedere come sono orientate....
static double getNearAngle(const TStroke *s1, double w1, bool out1,
const TStroke *s2, double w2, bool out2) {
bool verse1 = (out1 && w1 < 1) || (!out1 && w1 == 0);
bool verse2 = (out2 && w2 < 1) || (!out2 && w2 == 0);
double ltot1 = s1->getLength();
double ltot2 = s2->getLength();
double l1 = s1->getLength(w1);
double l2 = s2->getLength(w2);
double dl = min(ltot1, ltot2) / 1000;
double dl1 = verse1 ? dl : -dl;
double dl2 = verse2 ? dl : -dl;
while (((verse1 && l1 < ltot1) || (!verse1 && l1 > 0)) &&
((verse2 && l2 < ltot2) || (!verse2 && l2 > 0))) {
l1 += dl1;
l2 += dl2;
TPointD p1 = (out1 ? 1 : -1) * s1->getSpeed(s1->getParameterAtLength(l1));
TPointD p2 = (out2 ? 1 : -1) * s2->getSpeed(s2->getParameterAtLength(l2));
double angle = getAngle(p1, p2);
if (!areAlmostEqual(angle, 0, 1e-9)) return angle;
}
return 0;
}
//-----------------------------------------------------------------------------
static bool makeEdgeIntersection(Intersection &interList,
IntersectedStroke &item1,
IntersectedStroke &item2, const TPointD &p1a,
const TPointD &p1b, const TPointD &p2a,
const TPointD &p2b) {
double angle1 = getAngle(p1a, p1b);
double angle2 = getAngle(p1a, p2a);
double angle3 = getAngle(p1a, p2b);
double angle;
bool eraseP1b = false, eraseP2a = false, eraseP2b = false;
if (areAlmostEqual(angle1, 0, 1e-9)) {
angle1 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true,
item1.m_edge.m_s, item1.m_edge.m_w0, false);
if (areAlmostEqual(angle1, 1e-9)) eraseP1b = true;
}
if (areAlmostEqual(angle2, 0, 1e-9)) {
angle2 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true,
item2.m_edge.m_s, item2.m_edge.m_w0, true);
if (areAlmostEqual(angle2, 1e-9)) eraseP2a = true;
}
if (areAlmostEqual(angle3, 0, 1e-9)) {
angle3 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true,
item2.m_edge.m_s, item2.m_edge.m_w0, false);
if (areAlmostEqual(angle3, 1e-9)) eraseP2b = true;
}
if (areAlmostEqual(angle1, angle2, 1e-9)) {
angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false,
item2.m_edge.m_s, item2.m_edge.m_w0, true);
if (angle != 0) {
angle2 += angle;
if (angle2 > 360) angle2 -= 360;
} else
eraseP2a = true;
}
if (areAlmostEqual(angle1, angle3, 1e-9)) {
angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false,
item2.m_edge.m_s, item2.m_edge.m_w0, false);
if (angle != 0) {
angle3 += angle;
if (angle3 > 360) angle3 -= 360;
} else
eraseP2b = true;
}
if (areAlmostEqual(angle2, angle3, 1e-9)) {
angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false,
item2.m_edge.m_s, item2.m_edge.m_w0, true);
if (angle != 0) {
angle3 += angle;
if (angle3 > 360) angle3 -= 360;
} else
eraseP2b = true;
}
int fac =
(angle1 < angle2) | ((angle1 < angle3) << 1) | ((angle2 < angle3) << 2);
switch (fac) {
case 0: // p1a p2b p2a p1b
insertBranch(interList, item1, true);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP1b) insertBranch(interList, item1, false);
break;
case 1: // p1a p2b p1b p2a
insertBranch(interList, item1, true);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2a) insertBranch(interList, item2, true);
break;
case 2:
assert(false);
break;
case 3: // p1a p1b p2b p2a
insertBranch(interList, item1, true);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP2a) insertBranch(interList, item2, true);
break;
case 4: // p1a p2a p2b p1b
insertBranch(interList, item1, true);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP1b) insertBranch(interList, item1, false);
break;
case 5:
assert(false);
break;
case 6: // p1a p2a p1b p2b
insertBranch(interList, item1, true);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2b) insertBranch(interList, item2, false);
break;
case 7: // p1a p1b p2a p2b
insertBranch(interList, item1, true);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP2b) insertBranch(interList, item2, false);
break;
default:
assert(false);
}
return true;
}
//-----------------------------------------------------------------------------
static bool makeIntersection(IntersectionData &intData,
const vector<VIStroke *> &s, int ii, int jj,
DoublePair inter, int strokeSize,
Intersection &interList) {
IntersectedStroke item1, item2;
interList.m_intersection = s[ii]->m_s->getPoint(inter.first);
item1.m_edge.m_w0 = inter.first;
item2.m_edge.m_w0 = inter.second;
if (ii >= 0 && ii < strokeSize) {
item1.m_edge.m_s = s[ii]->m_s;
item1.m_edge.m_index = ii;
} else {
if (ii < 0) {
item1.m_edge.m_s = intData.m_autocloseMap[ii]->m_s;
item1.m_edge.m_index = ii;
} else {
item1.m_edge.m_s = s[ii]->m_s;
item1.m_edge.m_index = -(ii + intData.maxAutocloseId * 100000);
intData.m_autocloseMap[item1.m_edge.m_index] = s[ii];
}
}
if (jj >= 0 && jj < strokeSize) {
item2.m_edge.m_s = s[jj]->m_s;
item2.m_edge.m_index = jj;
} else {
if (jj < 0) {
item2.m_edge.m_s = intData.m_autocloseMap[jj]->m_s;
item2.m_edge.m_index = jj;
} else {
item2.m_edge.m_s = s[jj]->m_s;
item2.m_edge.m_index = -(jj + intData.maxAutocloseId * 100000);
intData.m_autocloseMap[item2.m_edge.m_index] = s[jj];
}
}
bool reversed = false;
TPointD p0, p0b, p1, p1b;
bool ret1 = item1.m_edge.m_s->getSpeedTwoValues(item1.m_edge.m_w0, p0, p0b);
bool ret2 = item2.m_edge.m_s->getSpeedTwoValues(item2.m_edge.m_w0, p1, p1b);
if (ret1 || ret2) // punto angoloso!!!!
return makeEdgeIntersection(interList, item1, item2, p0, p0b, p1, p1b);
double crossVal = cross(p0, p1);
// crossVal = cross(p0, p1);
if (areAlmostEqual(crossVal, 0.0)) {
bool endpoint1 = (item1.m_edge.m_w0 == 0.0 || item1.m_edge.m_w0 == 1.0);
bool endpoint2 = (item2.m_edge.m_w0 == 0.0 || item2.m_edge.m_w0 == 1.0);
if (endpoint1 && endpoint2 && ((p0.x * p1.x >= 0 && p0.y * p1.y >= 0 &&
item1.m_edge.m_w0 != item2.m_edge.m_w0) ||
(p0.x * p1.x <= 0 && p0.y * p1.y <= 0 &&
item1.m_edge.m_w0 == item2.m_edge.m_w0)))
// due endpoint a 180 gradi;metto
{
item1.m_gettingOut = (item1.m_edge.m_w0 == 0.0);
interList.m_strokeList.pushBack(new IntersectedStroke(item1));
item2.m_gettingOut = (item2.m_edge.m_w0 == 0.0);
interList.m_strokeList.pushBack(new IntersectedStroke(item2));
return true;
}
// crossVal = nearCrossVal(item1.m_edge.m_s, item1.m_edge.m_w0,
// item2.m_edge.m_s, item2.m_edge.m_w0);
// if (areAlmostEqual(crossVal, 0.0))
// return false;
return makeEdgeIntersection(interList, item1, item2, p0, p0b, p1, p1b);
}
if (crossVal > 0)
reversed = true; // std::reverse(interList.m_strokeList.begin(),
// interList.m_strokeList.end());
if (item1.m_edge.m_w0 != 1.0) {
item1.m_gettingOut = true;
interList.m_strokeList.pushBack(new IntersectedStroke(item1));
}
if (item2.m_edge.m_w0 != (reversed ? 0.0 : 1.0)) {
item2.m_gettingOut = !reversed;
interList.m_strokeList.pushBack(new IntersectedStroke(item2));
}
if (item1.m_edge.m_w0 != 0.0) {
item1.m_gettingOut = false;
interList.m_strokeList.pushBack(new IntersectedStroke(item1));
}
if (item2.m_edge.m_w0 != (reversed ? 1.0 : 0.0)) {
item2.m_gettingOut = reversed;
interList.m_strokeList.pushBack(new IntersectedStroke(item2));
}
return true;
}
//-----------------------------------------------------------------------------
/*
void checkAuto(const vector<VIStroke*>& s)
{
for (int i=0; i<(int)s.size(); i++)
for (int j=i+1; j<(int)s.size(); j++)
if (s[i]->m_s->getChunkCount()==1 && s[j]->m_s->getChunkCount()==1) //se ha
una sola quadratica, probabilmente e' un autoclose.
{
const TThickQuadratic*q = s[i]->m_s->getChunk(0);
const TThickQuadratic*p = s[j]->m_s->getChunk(0);
if (areAlmostEqual(q->getP0(), p->getP0(), 1e-2) &&
areAlmostEqual(q->getP2(), p->getP2(), 1e-2))
assert(!"eccolo!");
if (areAlmostEqual(q->getP0(), p->getP2(), 1e-2) &&
areAlmostEqual(q->getP2(), p->getP0(), 1e-2))
assert(!"eccolo!");
}
}
*/
//-----------------------------------------------------------------------------
static bool addAutocloseIntersection(IntersectionData &intData,
vector<VIStroke *> &s, int ii, int jj,
double w0, double w1, int strokeSize,
bool isVectorized) {
assert(s[ii]->m_groupId == s[jj]->m_groupId);
Intersection *rp = intData.m_intList.last();
assert(w0 >= 0.0 && w0 <= 1.0);
assert(w1 >= 0.0 && w1 <= 1.0);
for (; rp; rp = rp->prev()) // evito di fare la connessione, se gia' ce
// ne e' una simile tra le stesse due stroke
{
if (rp->m_strokeList.size() < 2) continue;
IntersectedStroke *ps = rp->m_strokeList.first();
int s0 = ps->m_edge.m_index;
if (s0 < 0) continue;
double ww0 = ps->m_edge.m_w0;
ps = ps->next();
if (ps->m_edge.m_index == s0 && ps->m_edge.m_w0 == ww0) {
ps = ps->next();
if (!ps) continue;
}
int s1 = ps->m_edge.m_index;
if (s1 < 0) continue;
double ww1 = ps->m_edge.m_w0;
if (!((s0 == ii && s1 == jj) || (s0 == jj && s1 == ii))) continue;
if (s0 == ii && areAlmostEqual(w0, ww0, 0.1) &&
areAlmostEqual(w1, ww1, 0.1))
return false;
else if (s1 == ii && areAlmostEqual(w0, ww1, 0.1) &&
areAlmostEqual(w1, ww0, 0.1))
return false;
}
vector<TPointD> v;
v.push_back(s[ii]->m_s->getPoint(w0));
v.push_back(s[jj]->m_s->getPoint(w1));
if (v[0] == v[1]) // le stroke si intersecano , ma la fottuta funzione
// intersect non ha trovato l'intersezione(tipicamente,
// questo accade agli estremi)!!!
{
addIntersection(intData, s, ii, jj, DoublePair(w0, w1), strokeSize,
isVectorized);
return true;
}
// se gia e' stato messo questo autoclose, evito
for (int i = 0; i < (int)s.size(); i++)
if (s[i]->m_s->getChunkCount() ==
1) // se ha una sola quadratica, probabilmente e' un autoclose.
{
const TThickQuadratic *q = s[i]->m_s->getChunk(0);
if (areAlmostEqual(q->getP0(), v[0], 1e-2) &&
areAlmostEqual(q->getP2(), v[1], 1e-2) ||
areAlmostEqual(q->getP0(), v[1], 1e-2) &&
areAlmostEqual(q->getP2(), v[0], 1e-2)) {
return true;
addIntersection(intData, s, i, ii, DoublePair(0.0, w0), strokeSize,
isVectorized);
addIntersection(intData, s, i, jj, DoublePair(1.0, w1), strokeSize,
isVectorized);
return true;
}
}
assert(s[ii]->m_groupId == s[jj]->m_groupId);
s.push_back(new VIStroke(new TStroke(v), s[ii]->m_groupId));
addIntersection(intData, s, s.size() - 1, ii, DoublePair(0.0, w0), strokeSize,
isVectorized);
addIntersection(intData, s, s.size() - 1, jj, DoublePair(1.0, w1), strokeSize,
isVectorized);
return true;
}
//-----------------------------------------------------------------------------
// double g_autocloseTolerance = c_newAutocloseTolerance;
static bool isCloseEnoughP2P(double facMin, double facMax, TStroke *s1,
double w0, TStroke *s2, double w1) {
double autoDistMin, autoDistMax;
TThickPoint p0 = s1->getThickPoint(w0);
TThickPoint p1 = s2->getThickPoint(w1);
double dist2;
dist2 = tdistance2(p0, p1);
/*!when closing beetween a normal stroke and a 0-thickness stroke (very
* typical) the thin one is assumed to have same thickness of the other*/
if (p0.thick == 0)
p0.thick = p1.thick;
else if (p1.thick == 0)
p1.thick = p0.thick;
if (facMin == 0) {
autoDistMin = 0;
autoDistMax =
std::max(-2.0, facMax * (p0.thick + p1.thick) * (p0.thick + p1.thick));
if (autoDistMax < 0.0000001) //! for strokes without thickness, I connect
//! for distances less than min between 2.5
//! and half of the length of the stroke)
{
double len1 = s1->getLength();
double len2 = s2->getLength();
autoDistMax =
facMax * std::min({2.5, len1 * len1 / (2 * 2), len2 * len2 / (2 * 2),
100.0 /*dummyVal*/});
}
} else {
autoDistMin =
std::max(-2.0, facMin * (p0.thick + p1.thick) * (p0.thick + p1.thick));
if (autoDistMin < 0.0000001) //! for strokes without thickness, I connect
//! for distances less than min between 2.5
//! and half of the length of the stroke)
{
double len1 = s1->getLength();
double len2 = s2->getLength();
autoDistMin =
facMax * std::min({2.5, len1 * len1 / (2 * 2), len2 * len2 / (2 * 2),
100.0 /*dummyVal*/});
}
autoDistMax = autoDistMin + (facMax - facMin) * (facMax - facMin);
}
if (dist2 < autoDistMin || dist2 > autoDistMax) return false;
// if (dist2<=std::max(2.0,
// g_autocloseTolerance*(p0.thick+p1.thick)*(p0.thick+p1.thick))) //0.01 tiene
// conto di quando thick==0
if (s1 == s2) {
TRectD r = s1->getBBox(); // se e' un autoclose su una stroke piccolissima,
// creerebbe uan area trascurabile, ignoro
if (fabs(r.x1 - r.x0) < 2 && fabs(r.y1 - r.y0) < 2) return false;
}
return true;
}
//---------------------------------------------------------------------------------------------------------------------
/*
bool makePoint2PointConnections(double factor, vector<VIStroke*>& s,
int ii, bool isIStartPoint,
int jj, bool isJStartPoint, IntersectionData&
intData,
int strokeSize)
{
double w0 = (isIStartPoint?0.0:1.0);
double w1 = (isJStartPoint?0.0:1.0);
if (isCloseEnoughP2P(factor, s[ii]->m_s, w0, s[jj]->m_s, w1))
return addAutocloseIntersection(intData, s, ii, jj, w0, w1, strokeSize);
return false;
}
*/
//-----------------------------------------------------------------------------
static double getCurlW(TStroke *s,
bool isBegin) // trova il punto di split su una
// stroke, in prossimita di un
// ricciolo;
// un ricciolo c'e' se la curva ha un min o max relativo su x seguito da uno su
// y, o viceversa.
{
int numChunks = s->getChunkCount();
double dx2, dx1 = 0, dy2, dy1 = 0;
int i = 0;
for (i = 0; i < numChunks; i++) {
const TQuadratic *q = s->getChunk(isBegin ? i : numChunks - 1 - i);
dy2 = q->getP1().y - q->getP0().y;
if (dy1 * dy2 < 0) break;
dy1 = dy2;
dy2 = q->getP2().y - q->getP1().y;
if (dy1 * dy2 < 0) break;
dy1 = dy2;
}
if (i == numChunks) return -1;
int maxMin0 = isBegin ? i : numChunks - 1 - i;
int j = 0;
for (j = 0; j < numChunks; j++) {
const TQuadratic *q = s->getChunk(isBegin ? j : numChunks - 1 - j);
dx2 = q->getP1().x - q->getP0().x;
if (dx1 * dx2 < 0) break;
dx1 = dx2;
dx2 = q->getP2().x - q->getP1().x;
if (dx1 * dx2 < 0) break;
dx1 = dx2;
}
if (j == numChunks) return -1;
int maxMin1 = isBegin ? j : numChunks - 1 - j;
return getWfromChunkAndT(
s, isBegin ? std::max(maxMin0, maxMin1) : std::min(maxMin0, maxMin1),
isBegin ? 1.0 : 0.0);
}
#ifdef Levo
bool lastIsX = false, lastIsY = false;
for (int i = 0; i < numChunks; i++) {
const TThickQuadratic *q = s->getChunk(isBegin ? i : numChunks - 1 - i);
if ((q->getP0().y < q->getP1().y &&
q->getP2().y <
q->getP1().y) || // la quadratica ha un minimo o massimo relativo
(q->getP0().y > q->getP1().y && q->getP2().y > q->getP1().y)) {
double w = getWfromChunkAndT(s, isBegin ? i : numChunks - 1 - i,
isBegin ? 1.0 : 0.0);
if (lastIsX) // e' il secondo min o max relativo
return w;
lastIsX = false;
lastIsY = true;
} else if ((q->getP0().x < q->getP1().x &&
q->getP2().x <
q->getP1()
.x) || // la quadratica ha un minimo o massimo relativo
(q->getP0().x > q->getP1().x && q->getP2().x > q->getP1().x)) {
double w = getWfromChunkAndT(s, isBegin ? i : numChunks - 1 - i,
isBegin ? 1.0 : 0.0);
if (lastIsY) // e' il secondo min o max relativo
return w;
lastIsX = true;
lastIsY = false;
}
}
return -1;
}
#endif
//-----------------------------------------------------------------------------
static bool isCloseEnoughP2L(double facMin, double facMax, TStroke *s1,
double w1, TStroke *s2, double &w) {
if (s1->isSelfLoop()) return false;
TThickPoint p0 = s1->getThickPoint(w1);
double t, dist2;
int index;
TStroke sAux, *sComp;
if (s1 == s2) // per trovare le intersezioni con una stroke e se stessa, si
// toglie il
// pezzo di stroke di cui si cercano vicinanze fino alla prima curva
{
double w = getCurlW(s1, w1 == 0.0);
if (w == -1) return false;
split<TStroke>(*s1, std::min(1 - w1, w), std::max(1 - w1, w), sAux);
sComp = &sAux;
} else
sComp = s2;
if (sComp->getNearestChunk(p0, t, index, dist2) && dist2 > 0) {
if (s1 == s2) {
double dummy;
s2->getNearestChunk(sComp->getChunk(index)->getPoint(t), t, index, dummy);
}
// if (areAlmostEqual(w, 0.0, 0.05) || areAlmostEqual(w, 1.0, 0.05))
// return; //se w e' vicino ad un estremo, rientra nell'autoclose point to
// point
// if (s[jj]->m_s->getLength(w)<=s[jj]->m_s->getThickPoint(0).thick ||
// s[jj]->m_s->getLength(w, 1)<=s[jj]->m_s->getThickPoint(1).thick)
// return;
TThickPoint p1 = s2->getChunk(index)->getThickPoint(t);
/*!when closing beetween a normal stroke and a 0-thickness stroke (very
* typical) the thin one is assumed to have same thickness of the other*/
if (p0.thick == 0)
p0.thick = p1.thick;
else if (p1.thick == 0)
p1.thick = p0.thick;
double autoDistMin, autoDistMax;
if (facMin == 0) {
autoDistMin = 0;
autoDistMax = std::max(
-2.0, (facMax + 0.7) * (p0.thick + p1.thick) * (p0.thick + p1.thick));
if (autoDistMax < 0.0000001) //! for strokes without thickness, I connect
//! for distances less than min between 2.5
//! and half of the length of the pointing
//! stroke)
{
double len1 = s1->getLength();
autoDistMax = facMax * std::min(2.5, len1 * len1 / (2 * 2));
}
} else {
autoDistMin = std::max(
-2.0, (facMin + 0.7) * (p0.thick + p1.thick) * (p0.thick + p1.thick));
if (autoDistMin < 0.0000001) //! for strokes without thickness, I connect
//! for distances less than min between 2.5
//! and half of the length of the pointing
//! stroke)
{
double len1 = s1->getLength();
autoDistMin = facMax * std::min(2.5, len1 * len1 / (2 * 2));
}
autoDistMax =
autoDistMin + (facMax - facMin + 0.7) * (facMax - facMin + 0.7);
}
// double autoDistMin = std::max(-2.0,
// facMin==0?0:(facMin+0.7)*(p0.thick+p1.thick)*(p0.thick+p1.thick));
// double autoDistMax = std::max(-2.0,
// (facMax+0.7)*(p0.thick+p1.thick)*(p0.thick+p1.thick));
if (dist2 < autoDistMin || dist2 > autoDistMax) return false;
// if (dist2<=(std::max(2.0,
// (g_autocloseTolerance+0.7)*(p0.thick+p1.thick)*(p0.thick+p1.thick))))
// //0.01 tiene conto di quando thick==0
w = getWfromChunkAndT(s2, index, t);
return true;
}
return false;
}
//-------------------------------------------------------------
/*
void makePoint2LineConnection(double factor, vector<VIStroke*>& s, int ii, int
jj, bool isBegin, IntersectionData& intData,
int strokeSize)
{
double w1 = isBegin?0.0: 1.0;
TStroke* s1 = s[ii]->m_s;
TStroke* s2 = s[jj]->m_s;
double w;
if (isCloseEnoughP2L(factor, s1, w1, s2, w))
addAutocloseIntersection(intData, s, ii, jj, w1, w, strokeSize);
}
*/
//-----------------------------------------------------------------------------
namespace {
inline bool isSegment(const TStroke &s) {
vector<TThickPoint> v;
s.getControlPoints(v);
UINT n = v.size();
if (areAlmostEqual(v[n - 1].x, v[0].x, 1e-4)) {
for (UINT i = 1; i < n - 1; i++)
if (!areAlmostEqual(v[i].x, v[0].x, 1e-4)) return false;
} else if (areAlmostEqual(v[n - 1].y, v[0].y, 1e-4)) {
for (UINT i = 1; i < n - 1; i++)
if (!areAlmostEqual(v[i].y, v[0].y, 1e-4)) return false;
} else {
double fac = (v[n - 1].y - v[0].y) / (v[n - 1].x - v[0].x);
for (UINT i = 1; i < n - 1; i++)
if (!areAlmostEqual((v[i].y - v[0].y) / (v[i].x - v[0].x), fac, 1e-4))
return false;
}
return true;
}
//---------------------------------------------------------------------------------
/*
bool segmentAlreadyExist(const TVectorImageP& vi, const TPointD& p1, const
TPointD& p2)
{
for (UINT i=0; i<vi->getStrokeCount(); i++)
{
TStroke*s = vi->getStroke(i);
if (!s->getBBox().contains(p1) || !s->getBBox().contains(p2))
continue;
if (((areAlmostEqual(s->getPoint(0.0), p1, 1e-4) &&
areAlmostEqual(s->getPoint(1.0), p2, 1e-4)) ||
(areAlmostEqual(s->getPoint(0.0), p2, 1e-4) &&
areAlmostEqual(s->getPoint(1.0), p1, 1e-4))) &&
isSegment(*s))
return true;
}
return false;
}
*/
//----------------------------------------------------------------------------------
bool segmentAlreadyPresent(const TVectorImageP &vi, const TPointD &p1,
const TPointD &p2) {
for (UINT i = 0; i < vi->getStrokeCount(); i++) {
TStroke *s = vi->getStroke(i);
if (((areAlmostEqual(s->getPoint(0.0), p1, 1e-4) &&
areAlmostEqual(s->getPoint(1.0), p2, 1e-4)) ||
(areAlmostEqual(s->getPoint(0.0), p2, 1e-4) &&
areAlmostEqual(s->getPoint(1.0), p1, 1e-4))) &&
isSegment(*s))
return true;
}
return false;
/*
for (UINT i=0; i<vi->getStrokeCount(); i++)
{
TStroke* s = vi->getStroke(i);
if (s->getChunkCount()!=1)
continue;
if (areAlmostEqual((TPointD)s->getControlPoint(0), p1,
1e-2) &&
areAlmostEqual((TPointD)s->getControlPoint(s->getControlPointCount()-1), p2,
1e-2))
return true;
}
return false;
*/
}
void getClosingSegments(TL2LAutocloser &l2lautocloser, double facMin,
double facMax, TStroke *s1, TStroke *s2,
vector<DoublePair> *intersections,
vector<std::pair<double, double>> &segments) {
bool ret1 = false, ret2 = false, ret3 = false, ret4 = false;
#define L2LAUTOCLOSE
#ifdef L2LAUTOCLOSE
double thickmax2 = s1->getMaxThickness() + s2->getMaxThickness();
thickmax2 *= thickmax2;
if (facMin == 0)
l2lautocloser.setMaxDistance2((facMax + 0.7) * thickmax2);
else
l2lautocloser.setMaxDistance2((facMax + 0.7) * thickmax2 +
(facMax - facMin + 0.7) *
(facMax - facMin + 0.7));
std::vector<TL2LAutocloser::Segment> l2lSegments;
if (intersections)
l2lautocloser.search(l2lSegments, s1, s2, *intersections);
else
l2lautocloser.search(l2lSegments, s1, s2);
for (UINT i = 0; i < l2lSegments.size(); i++) {
TL2LAutocloser::Segment &seg = l2lSegments[i];
double autoDistMin, autoDistMax;
if (facMin == 0) {
autoDistMin = 0;
autoDistMax = (facMax + 0.7) * (seg.p0.thick + seg.p1.thick) *
(seg.p0.thick + seg.p1.thick);
} else {
autoDistMin = (facMin + 0.7) * (seg.p0.thick + seg.p1.thick) *
(seg.p0.thick + seg.p1.thick);
autoDistMax =
autoDistMin + (facMax - facMin + 0.7) * (facMax - facMin + 0.7);
}
if (seg.dist2 > autoDistMin && seg.dist2 < autoDistMax)
segments.push_back(std::pair<double, double>(seg.w0, seg.w1));
}
#endif
if (s1->isSelfLoop() && s2->isSelfLoop()) return;
if (!s1->isSelfLoop() && !s2->isSelfLoop()) {
if ((ret1 = isCloseEnoughP2P(facMin, facMax, s1, 0.0, s2, 1.0)))
segments.push_back(std::pair<double, double>(0.0, 1.0));
if (s1 != s2) {
if ((ret2 = isCloseEnoughP2P(facMin, facMax, s1, 0.0, s2, 0.0)))
segments.push_back(std::pair<double, double>(0.0, 0.0));
if ((ret3 = isCloseEnoughP2P(facMin, facMax, s1, 1.0, s2, 0.0)))
segments.push_back(std::pair<double, double>(1.0, 0.0));
if ((ret4 = isCloseEnoughP2P(facMin, facMax, s1, 1.0, s2, 1.0)))
segments.push_back(std::pair<double, double>(1.0, 1.0));
}
}
double w;
if (!ret1 && !ret2 && isCloseEnoughP2L(facMin, facMax, s1, 0.0, s2, w))
segments.push_back(std::pair<double, double>(0.0, w));
if (!ret1 && !ret4 && isCloseEnoughP2L(facMin, facMax, s2, 1.0, s1, w))
segments.push_back(std::pair<double, double>(w, 1.0));
if (s1 != s2) {
if (!ret2 && !ret3 && isCloseEnoughP2L(facMin, facMax, s2, 0.0, s1, w))
segments.push_back(std::pair<double, double>(w, 0.0));
if (!ret3 && !ret4 && isCloseEnoughP2L(facMin, facMax, s1, 1.0, s2, w))
segments.push_back(std::pair<double, double>(1.0, w));
}
}
} // namaspace
//---------------------------------------------------------------------------------
void getClosingPoints(const TRectD &rect, double fac, const TVectorImageP &vi,
vector<pair<int, double>> &startPoints,
vector<pair<int, double>> &endPoints) {
UINT strokeCount = vi->getStrokeCount();
TL2LAutocloser l2lautocloser;
for (UINT i = 0; i < strokeCount; i++) {
TStroke *s1 = vi->getStroke(i);
if (!rect.overlaps(s1->getBBox())) continue;
if (s1->getChunkCount() == 1) continue;
for (UINT j = i; j < strokeCount; j++) {
TStroke *s2 = vi->getStroke(j);
if (!rect.overlaps(s1->getBBox())) continue;
if (s2->getChunkCount() == 1) continue;
#ifdef NEW_REGION_FILL
double autoTol = 0;
#else
double autoTol = vi->getAutocloseTolerance();
#endif
double enlarge1 =
(autoTol + 0.7) *
(s1->getMaxThickness() > 0 ? s1->getMaxThickness() : 2.5) +
fac;
double enlarge2 =
(autoTol + 0.7) *
(s2->getMaxThickness() > 0 ? s2->getMaxThickness() : 2.5) +
fac;
if (i != j &&
!s1->getBBox().enlarge(enlarge1).overlaps(
s2->getBBox().enlarge(enlarge2)))
continue;
vector<std::pair<double, double>> segments;
getClosingSegments(l2lautocloser, autoTol, autoTol + fac, s1, s2, 0,
segments);
for (UINT k = 0; k < segments.size(); k++) {
TPointD p1 = s1->getPoint(segments[k].first);
TPointD p2 = s2->getPoint(segments[k].second);
if (rect.contains(p1) && rect.contains(p2)) {
if (segmentAlreadyPresent(vi, p1, p2)) continue;
startPoints.push_back(pair<int, double>(i, segments[k].first));
endPoints.push_back(pair<int, double>(j, segments[k].second));
}
}
}
}
}
//-------------------------------------------------------------------------------------------------------
static void autoclose(double factor, vector<VIStroke *> &s, int ii, int jj,
IntersectionData &IntData, int strokeSize,
TL2LAutocloser &l2lautocloser,
vector<DoublePair> *intersections, bool isVectorized) {
vector<std::pair<double, double>> segments;
getClosingSegments(l2lautocloser, 0, factor, s[ii]->m_s, s[jj]->m_s,
intersections, segments);
for (UINT i = 0; i < segments.size(); i++)
addAutocloseIntersection(IntData, s, ii, jj, segments[i].first,
segments[i].second, strokeSize, isVectorized);
}
//------------------------------------------------------------------------------------------------------
#ifdef LEVO
void autoclose(double factor, vector<VIStroke *> &s, int ii, int jj,
IntersectionData &IntData, int strokeSize) {
bool ret1 = false, ret2 = false, ret3 = false, ret4 = false;
if (s[ii]->m_s->isSelfLoop() && s[jj]->m_s->isSelfLoop()) return;
if (!s[ii]->m_s->isSelfLoop() && !s[jj]->m_s->isSelfLoop()) {
ret1 = makePoint2PointConnections(factor, s, ii, true, jj, false, IntData,
strokeSize);
if (ii != jj) {
ret2 = makePoint2PointConnections(factor, s, ii, true, jj, true, IntData,
strokeSize);
ret3 = makePoint2PointConnections(factor, s, ii, false, jj, true, IntData,
strokeSize);
ret4 = makePoint2PointConnections(factor, s, ii, false, jj, false,
IntData, strokeSize);
}
}
if (!ret1 && !ret2)
makePoint2LineConnection(factor, s, ii, jj, true, IntData, strokeSize);
if (!ret1 && !ret4)
makePoint2LineConnection(factor, s, jj, ii, false, IntData, strokeSize);
if (ii != jj) {
if (!ret2 && !ret3)
makePoint2LineConnection(factor, s, jj, ii, true, IntData, strokeSize);
if (!ret3 && !ret4)
makePoint2LineConnection(factor, s, ii, jj, false, IntData, strokeSize);
}
}
#endif
//-----------------------------------------------------------------------------
TPointD inline getTangent(const IntersectedStroke &item) {
return (item.m_gettingOut ? 1 : -1) *
item.m_edge.m_s->getSpeed(item.m_edge.m_w0, item.m_gettingOut);
}
//-----------------------------------------------------------------------------
static void addBranch(IntersectionData &intData,
VIList<IntersectedStroke> &strokeList,
const vector<VIStroke *> &s, int ii, double w,
int strokeSize, bool gettingOut) {
IntersectedStroke *p1, *p2;
TPointD tanRef, lastTan;
IntersectedStroke *item = new IntersectedStroke();
if (ii < 0) {
item->m_edge.m_s = intData.m_autocloseMap[ii]->m_s;
item->m_edge.m_index = ii;
} else {
item->m_edge.m_s = s[ii]->m_s;
if (ii < strokeSize)
item->m_edge.m_index = ii;
else {
item->m_edge.m_index = -(ii + intData.maxAutocloseId * 100000);
intData.m_autocloseMap[item->m_edge.m_index] = s[ii];
}
}
item->m_edge.m_w0 = w;
item->m_gettingOut = gettingOut;
/*
if (strokeList.size()==2) //potrebbero essere orientati male; due branch possono
stare come vogliono, ma col terzo no.
{
TPointD tan2 = getTangent(strokeList.back());
TPointD aux= getTangent(*(strokeList.begin()));
double crossVal = cross(aux, tan2);
if (areAlmostEqual(aux, tan2, 1e-3))
return;
if (crossVal>0)
{
std::reverse(strokeList.begin(), strokeList.end());
//tan2 = getTangent(strokeList.back());
}
}
*/
/*
if (areAlmostEqual(lastCross, 0.0) && tan1.x*tan2.x>=0 && tan1.y*tan2.y>=0)
//significa angolo tra tangenti nullo
{
crossVal = nearCrossVal(item.m_edge.m_s, item.m_edge.m_w0,
strokeList.back().m_edge.m_s, strokeList.back().m_edge.m_w0);
if (areAlmostEqual(crossVal, 0.0))
return;
if (!strokeList.back().m_gettingOut)
crossVal = -crossVal;
}
*/
tanRef = getTangent(*item);
lastTan = getTangent(*strokeList.last());
/*
for (it=strokeList.begin(); it!=strokeList.end(); ++it)
{
TPointD curTan = getTangent(*it);
double angle0 = getAngle(lastTan, curTan);
double angle1 = getAngle(lastTan, tanRef);
if (areAlmostEqual(angle0, angle1, 1e-8))
{
double angle = getNearAngle( it->m_edge.m_s, it->m_edge.m_w0,
it->m_gettingOut,
item.m_edge.m_s, item.m_edge.m_w0,
item.m_gettingOut);
angle1 += angle; if (angle1>360) angle1-=360;
}
if (angle1<angle0)
{
strokeList.insert(it, item);
return;
}
lastTan=curTan;
}*/
p2 = strokeList.last();
for (p1 = strokeList.first(); p1; p1 = p1->next()) {
TPointD curTan = getTangent(*p1);
double angle0 = getAngle(lastTan, curTan);
double angle1 = getAngle(lastTan, tanRef);
if (areAlmostEqual(angle1, 0, 1e-8)) {
double angle =
getNearAngle(p2->m_edge.m_s, p2->m_edge.m_w0, p2->m_gettingOut,
item->m_edge.m_s, item->m_edge.m_w0, item->m_gettingOut);
angle1 += angle;
if (angle1 > 360) angle1 -= 360;
}
if (areAlmostEqual(angle0, angle1, 1e-8)) {
double angle =
getNearAngle(p1->m_edge.m_s, p1->m_edge.m_w0, p1->m_gettingOut,
item->m_edge.m_s, item->m_edge.m_w0, item->m_gettingOut);
angle1 += angle;
if (angle1 > 360) angle1 -= 360;
}
if (angle1 < angle0) {
strokeList.insert(p1, item);
return;
}
lastTan = curTan;
p2 = p1;
}
// assert(!"add branch: can't find where to insert!");
strokeList.pushBack(item);
}
//-----------------------------------------------------------------------------
static void addBranches(IntersectionData &intData, Intersection &intersection,
const vector<VIStroke *> &s, int ii, int jj,
DoublePair intersectionPair, int strokeSize) {
bool foundS1 = false, foundS2 = false;
IntersectedStroke *p;
assert(!intersection.m_strokeList.empty());
for (p = intersection.m_strokeList.first(); p; p = p->next()) {
if ((ii >= 0 && p->m_edge.m_s == s[ii]->m_s &&
p->m_edge.m_w0 == intersectionPair.first) ||
(ii < 0 && p->m_edge.m_index == ii &&
p->m_edge.m_w0 == intersectionPair.first))
foundS1 = true;
if ((jj >= 0 && p->m_edge.m_s == s[jj]->m_s &&
p->m_edge.m_w0 == intersectionPair.second) ||
(jj < 0 && p->m_edge.m_index == jj &&
p->m_edge.m_w0 == intersectionPair.second))
foundS2 = true;
}
if (foundS1 && foundS2) {
/*
//errore!(vedi commento sotto) possono essere un sacco di intersezioni
coincidenti se passano per l'estremo di una quad
//significa che ci sono due intersezioni coincidenti. cioe' due stroke tangenti.
quindi devo invertire l'ordine di due branch enlla rosa dei branch.
list<IntersectedStroke>::iterator it1, it2;
it1=intersection.m_strokeList.begin();
it2 = it1; it2++;
for (; it2!=intersection.m_strokeList.end(); ++it1, ++it2)
{
if ((*it1).m_gettingOut!=(*it2).m_gettingOut &&((*it1).m_edge.m_index==jj &&
(*it2).m_edge.m_index==ii) ||
((*it1).m_edge.m_index==ii && (*it2).m_edge.m_index==jj))
{
IntersectedStroke& el1 = (*it1);
IntersectedStroke& el2 = (*it2);
IntersectedStroke app;
app = el1;
el1=el2;
el2=app;
break;
}
}
*/
return;
}
if (!foundS1) {
if (intersectionPair.first != 1)
addBranch(intData, intersection.m_strokeList, s, ii,
intersectionPair.first, strokeSize, true);
if (intersectionPair.first != 0)
addBranch(intData, intersection.m_strokeList, s, ii,
intersectionPair.first, strokeSize, false);
// assert(intersection.m_strokeList.size()-size>0);
}
if (!foundS2) {
if (intersectionPair.second != 1)
addBranch(intData, intersection.m_strokeList, s, jj,
intersectionPair.second, strokeSize, true);
if (intersectionPair.second != 0)
addBranch(intData, intersection.m_strokeList, s, jj,
intersectionPair.second, strokeSize, false);
// intersection.m_numInter+=intersection.m_strokeList.size()-size;
// assert(intersection.m_strokeList.size()-size>0);
}
}
//-----------------------------------------------------------------------------
static void addIntersections(IntersectionData &intData,
const vector<VIStroke *> &s, int ii, int jj,
vector<DoublePair> &intersections, int strokeSize,
bool isVectorized) {
for (int k = 0; k < (int)intersections.size(); k++) {
if (ii >= strokeSize && (areAlmostEqual(intersections[k].first, 0.0) ||
areAlmostEqual(intersections[k].first, 1.0)))
continue;
if (jj >= strokeSize && (areAlmostEqual(intersections[k].second, 0.0) ||
areAlmostEqual(intersections[k].second, 1.0)))
continue;
addIntersection(intData, s, ii, jj, intersections[k], strokeSize,
isVectorized);
}
}
//-----------------------------------------------------------------------------
inline double truncate(double x) {
x += 1.0;
TUINT32 *l = (TUINT32 *)&x;
#if TNZ_LITTLE_ENDIAN
l[0] &= 0xFFE00000;
#else
l[1] &= 0xFFE00000;
#endif
return x - 1.0;
}
//-----------------------------------------------------------------------------
void addIntersection(IntersectionData &intData, const vector<VIStroke *> &s,
int ii, int jj, DoublePair intersection, int strokeSize,
bool isVectorized) {
Intersection *p;
TPointD point;
assert(ii < 0 || jj < 0 || s[ii]->m_groupId == s[jj]->m_groupId);
// UINT iw;
// iw = ((UINT)(intersection.first*0x3fffffff));
// intersection.first = truncate(intersection.first);
// iw = (UINT)(intersection.second*0x3fffffff);
// intersection.second = truncate(intersection.second);
if (areAlmostEqual(intersection.first, 0.0, 1e-5))
intersection.first = 0.0;
else if (areAlmostEqual(intersection.first, 1.0, 1e-5))
intersection.first = 1.0;
if (areAlmostEqual(intersection.second, 0.0, 1e-5))
intersection.second = 0.0;
else if (areAlmostEqual(intersection.second, 1.0, 1e-5))
intersection.second = 1.0;
point = s[ii]->m_s->getPoint(intersection.first);
for (p = intData.m_intList.first(); p; p = p->next())
if (p->m_intersection == point ||
(isVectorized &&
areAlmostEqual(
p->m_intersection, point,
1e-2))) // devono essere rigorosamente uguali, altrimenti
// il calcolo dell'ordine dei rami con le tangenti sballa
{
addBranches(intData, *p, s, ii, jj, intersection, strokeSize);
return;
}
intData.m_intList.pushBack(new Intersection);
if (!makeIntersection(intData, s, ii, jj, intersection, strokeSize,
*intData.m_intList.last()))
intData.m_intList.erase(intData.m_intList.last());
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::findIntersections() {
vector<VIStroke *> &strokeArray = m_strokes;
IntersectionData &intData = *m_intersectionData;
int strokeSize = (int)strokeArray.size();
int i, j;
bool isVectorized = (m_autocloseTolerance < 0);
assert(intData.m_intersectedStrokeArray.empty());
#define AUTOCLOSE_ATTIVO
#ifdef AUTOCLOSE_ATTIVO
intData.maxAutocloseId++;
map<int, VIStroke *>::iterator it, it_b = intData.m_autocloseMap.begin();
map<int, VIStroke *>::iterator it_e = intData.m_autocloseMap.end();
// prima cerco le intersezioni tra nuove strokes e vecchi autoclose
for (i = 0; i < strokeSize; i++) {
TStroke *s1 = strokeArray[i]->m_s;
if (!strokeArray[i]->m_isNewForFill || strokeArray[i]->m_isPoint) continue;
TRectD bBox = s1->getBBox();
double thick2 = s1->getThickPoint(0).thick *
2.1; // 2.1 instead of 2.0, for usual problems of approx...
if (bBox.getLx() <= thick2 && bBox.getLy() <= thick2) {
strokeArray[i]->m_isPoint = true;
continue;
}
roundStroke(s1);
for (it = it_b; it != it_e; ++it) {
if (!it->second || it->second->m_groupId != strokeArray[i]->m_groupId)
continue;
TStroke *s2 = it->second->m_s;
vector<DoublePair> parIntersections;
if (intersect(s1, s2, parIntersections, true))
addIntersections(intData, strokeArray, i, it->first, parIntersections,
strokeSize, isVectorized);
}
}
#endif
// poi, intersezioni tra stroke, in cui almeno uno dei due deve essere nuovo
map<pair<int, int>, vector<DoublePair>> intersectionMap;
for (i = 0; i < strokeSize; i++) {
TStroke *s1 = strokeArray[i]->m_s;
if (strokeArray[i]->m_isPoint) continue;
for (j = i; j < strokeSize /*&& (strokeArray[i]->getBBox().x1>=
strokeArray[j]->getBBox().x0)*/
;
j++) {
TStroke *s2 = strokeArray[j]->m_s;
if (strokeArray[j]->m_isPoint ||
!(strokeArray[i]->m_isNewForFill || strokeArray[j]->m_isNewForFill))
continue;
if (strokeArray[i]->m_groupId != strokeArray[j]->m_groupId) continue;
vector<DoublePair> parIntersections;
if (s1->getBBox().overlaps(s2->getBBox())) {
UINT size = intData.m_intList.size();
if (intersect(s1, s2, parIntersections, false)) {
// if (i==0 && j==1) parIntersections.erase(parIntersections.begin());
intersectionMap[pair<int, int>(i, j)] = parIntersections;
addIntersections(intData, strokeArray, i, j, parIntersections,
strokeSize, isVectorized);
} else
intersectionMap[pair<int, int>(i, j)] = vector<DoublePair>();
if (!strokeArray[i]->m_isNewForFill &&
size != intData.m_intList.size() &&
!strokeArray[i]->m_edgeList.empty()) // aggiunte nuove intersezioni
{
intData.m_intersectedStrokeArray.push_back(IntersectedStrokeEdges(i));
list<TEdge *> &_list =
intData.m_intersectedStrokeArray.back().m_edgeList;
list<TEdge *>::const_iterator it;
for (it = strokeArray[i]->m_edgeList.begin();
it != strokeArray[i]->m_edgeList.end(); ++it)
_list.push_back(new TEdge(**it, false));
}
}
}
}
#ifdef AUTOCLOSE_ATTIVO
TL2LAutocloser l2lautocloser;
for (i = 0; i < strokeSize; i++) {
TStroke *s1 = strokeArray[i]->m_s;
if (strokeArray[i]->m_isPoint) continue;
for (j = i; j < strokeSize; j++) {
if (strokeArray[i]->m_groupId != strokeArray[j]->m_groupId) continue;
TStroke *s2 = strokeArray[j]->m_s;
if (strokeArray[j]->m_isPoint) continue;
if (!(strokeArray[i]->m_isNewForFill || strokeArray[j]->m_isNewForFill))
continue;
double enlarge1 =
(m_autocloseTolerance + 0.7) *
(s1->getMaxThickness() > 0 ? s1->getMaxThickness() : 2.5);
double enlarge2 =
(m_autocloseTolerance + 0.7) *
(s2->getMaxThickness() > 0 ? s2->getMaxThickness() : 2.5);
if (s1->getBBox().enlarge(enlarge1).overlaps(
s2->getBBox().enlarge(enlarge2))) {
map<pair<int, int>, vector<DoublePair>>::iterator it =
intersectionMap.find(pair<int, int>(i, j));
if (it == intersectionMap.end())
autoclose(m_autocloseTolerance, strokeArray, i, j, intData,
strokeSize, l2lautocloser, 0, isVectorized);
else
autoclose(m_autocloseTolerance, strokeArray, i, j, intData,
strokeSize, l2lautocloser, &(it->second), isVectorized);
}
}
strokeArray[i]->m_isNewForFill = false;
}
#endif
for (i = 0; i < strokeSize; i++) {
list<TEdge *>::iterator it, it_b = strokeArray[i]->m_edgeList.begin(),
it_e = strokeArray[i]->m_edgeList.end();
for (it = it_b; it != it_e; ++it)
if ((*it)->m_toBeDeleted == 1) delete *it;
strokeArray[i]->m_edgeList.clear();
}
// si devono cercare le intersezioni con i segmenti aggiunti per l'autoclose
for (i = strokeSize; i < (int)strokeArray.size(); ++i) {
TStroke *s1 = strokeArray[i]->m_s;
for (j = i + 1; j < (int)strokeArray.size();
++j) // intersezione segmento-segmento
{
if (strokeArray[i]->m_groupId != strokeArray[j]->m_groupId) continue;
TStroke *s2 = strokeArray[j]->m_s;
vector<DoublePair> parIntersections;
if (intersect(s1, s2, parIntersections, true))
addIntersections(intData, strokeArray, i, j, parIntersections,
strokeSize, isVectorized);
}
for (j = 0; j < strokeSize; ++j) // intersezione segmento-curva
{
if (strokeArray[j]->m_isPoint) continue;
if (strokeArray[i]->m_groupId != strokeArray[j]->m_groupId) continue;
TStroke *s2 = strokeArray[j]->m_s;
vector<DoublePair> parIntersections;
if (intersect(s1, s2, parIntersections, true))
addIntersections(intData, strokeArray, i, j, parIntersections,
strokeSize, isVectorized);
}
}
}
// la struttura delle intersezioni viene poi visitata per trovare
// i link tra un'intersezione e la successiva
//-----------------------------------------------------------------------------
void TVectorImage::Imp::deleteRegionsData() {
clearPointerContainer(m_strokes);
clearPointerContainer(m_regions);
Intersection *p1;
for (p1 = m_intersectionData->m_intList.first(); p1; p1 = p1->next())
p1->m_strokeList.clear();
m_intersectionData->m_intList.clear();
delete m_intersectionData;
m_intersectionData = 0;
}
void TVectorImage::Imp::initRegionsData() {
m_intersectionData = new IntersectionData();
}
//-----------------------------------------------------------------------------
int TVectorImage::Imp::computeIntersections() {
Intersection *p1;
IntersectionData &intData = *m_intersectionData;
int strokeSize = (int)m_strokes.size();
findIntersections();
findNearestIntersection(intData.m_intList);
// for (it1=intData.m_intList.begin(); it1!=intData.m_intList.end();) //la
// faccio qui, e non nella eraseIntersection. vedi commento li'.
eraseDeadIntersections();
for (p1 = intData.m_intList.first(); p1; p1 = p1->next())
markDeadIntersections(intData.m_intList, p1);
// checkInterList(intData.m_intList);
return strokeSize;
}
//-----------------------------------------------------------------------------
/*
void endPointIntersect(const TStroke* s0, const TStroke* s1, vector<DoublePair>&
parIntersections)
{
TPointD p00 = s0->getPoint(0);
TPointD p11 = s1->getPoint(1);
if (tdistance2(p00, p11)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(0, 1));
if (s0==s1)
return;
TPointD p01 = s0->getPoint(1);
TPointD p10 = s1->getPoint(0);
if (tdistance2(p00, p10)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(0, 0));
if (tdistance2(p01, p10)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(1, 0));
if (tdistance2(p01, p11)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(1, 1));
}
*/
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Trova una possibile regione data una lista di punti di intersezione
static TRegion *findRegion(VIList<Intersection> &intList, Intersection *p1,
IntersectedStroke *p2, bool minimizeEdges) {
TRegion *r = new TRegion();
int currStyle = 0;
IntersectedStroke *pStart = p2;
Intersection *nextp1;
IntersectedStroke *nextp2;
// Cicla finche' t2 non punta ad uno stroke gia' visitato
while (!p2->m_visited) {
p2->m_visited = true;
// Ciclo finche' lo stroke puntato da it2 non ha un successivo punto di
// intersezione
do {
p2 = p2->next();
if (!p2) // uso la lista come se fosse circolare
p2 = p1->m_strokeList.first();
if (!p2) {
delete r;
return 0;
}
} while (!p2->m_nextIntersection);
nextp1 = p2->m_nextIntersection;
nextp2 = p2->m_nextStroke;
// Viene controllato e sistemato lo stile degli stroke
if (p2->m_edge.m_styleId != 0) {
if (currStyle == 0)
currStyle = p2->m_edge.m_styleId;
else if (p2->m_edge.m_styleId != currStyle) {
currStyle = p2->m_edge.m_styleId;
for (UINT i = 0; i < r->getEdgeCount(); i++)
r->getEdge(i)->m_styleId = currStyle;
}
} else
p2->m_edge.m_styleId = currStyle;
// Aggiunge lo stroke puntato da p2 alla regione
r->addEdge(&p2->m_edge, minimizeEdges);
if (nextp2 == pStart) return r;
p1 = nextp1;
p2 = nextp2;
}
delete r;
return 0;
}
//-----------------------------------------------------------------------------
/*
bool areEqualRegions(const TRegion& r1, const TRegion& r2)
{
if (r1.getBBox()!=r2.getBBox())
return false;
if (r1.getEdgeCount()!=r2.getEdgeCount())
return false;
for (UINT i=0; i<r1.getEdgeCount(); i++)
{
TEdge *e1 = r1.getEdge(i);
for (j=0; j<r2.getEdgeCount(); j++)
{
TEdge *e2 = r2.getEdge(j);
if (e1->m_s==e2->m_s &&
std::min(e1->m_w0, e1->m_w1)==std::min(e2->m_w0, e2->m_w1) &&
std::max(e1->m_w0, e1->m_w1)==std::max(e2->m_w0, e2->m_w1))
{
if (e1->m_styleId && !e2->m_styleId)
e2->m_styleId=e1->m_styleId;
else if (e2->m_styleId && !e1->m_styleId)
e1->m_styleId=e2->m_styleId;
break;
}
}
if (j==r2.getEdgeCount()) //e1 non e' uguale a nessun edge di r2
return false;
}
return true;
}
*/
//-----------------------------------------------------------------------------
/*
bool isMetaRegion(const TRegion& r1, const TRegion& r2)
{
if (areEqualRegions(r1, r2))
return true;
for (UINT i=0; i<r1.getRegionCount(); i++)
{
if (isMetaRegion(*r1.getRegion(i), r2))
return true;
}
return false;
}
//-----------------------------------------------------------------------------
bool isMetaRegion(const vector<TRegion*>& m_regions, const TRegion& r)
{
for (UINT i=0; i<m_regions.size(); i++)
if (isMetaRegion(*(m_regions[i]), r))
return true;
return false;
}
//-----------------------------------------------------------------------------
*/
class TRegionClockWiseFormula final : public TRegionFeatureFormula {
private:
double m_quasiArea;
public:
TRegionClockWiseFormula() : m_quasiArea(0) {}
void update(const TPointD &p1, const TPointD &p2) override {
m_quasiArea += (p2.y + p1.y) * (p1.x - p2.x);
}
bool isClockwise() { return m_quasiArea > 0.1; }
};
//----------------------------------------------------------------------------------------------
void computeRegionFeature(const TRegion &r, TRegionFeatureFormula &formula) {
TPointD p, pOld /*, pAux*/;
int pointAdded = 0;
int size = r.getEdgeCount();
if (size == 0) return;
// if (size<2)
// return !isMetaRegion(regions, r);
int firstControlPoint;
int lastControlPoint;
TEdge *e = r.getEdge(size - 1);
pOld = e->m_s->getPoint(e->m_w1);
for (int i = 0; i < size; i++) {
TEdge *e = r.getEdge(i);
TStroke *s = e->m_s;
firstControlPoint = s->getControlPointIndexAfterParameter(e->m_w0);
lastControlPoint = s->getControlPointIndexAfterParameter(e->m_w1);
p = s->getPoint(e->m_w0);
formula.update(pOld, p);
pOld = p;
pointAdded++;
if (firstControlPoint <= lastControlPoint) {
if (firstControlPoint & 0x1) firstControlPoint++;
if (lastControlPoint - firstControlPoint <=
2) /// per evitare di avere troppi pochi punti....
{
p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1);
formula.update(pOld, p);
pOld = p;
pointAdded++;
p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1);
formula.update(pOld, p);
pOld = p;
pointAdded++;
} else
for (int j = firstControlPoint; j < lastControlPoint; j += 2) {
p = s->getControlPoint(j);
formula.update(pOld, p);
pOld = p;
pointAdded++;
}
} else {
firstControlPoint--; // this case, getControlPointIndexBEFOREParameter
lastControlPoint--;
if (firstControlPoint & 0x1) firstControlPoint--;
if (firstControlPoint - lastControlPoint <=
2) /// per evitare di avere troppi pochi punti....
{
p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1);
formula.update(pOld, p);
pOld = p;
pointAdded++;
p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1);
formula.update(pOld, p);
pOld = p;
pointAdded++;
} else
for (int j = firstControlPoint; j > lastControlPoint; j -= 2) {
p = s->getControlPoint(j);
formula.update(pOld, p);
pOld = p;
pointAdded++;
}
}
p = s->getPoint(e->m_w1);
formula.update(pOld, p);
pOld = p;
pointAdded++;
}
assert(pointAdded >= 4);
}
//----------------------------------------------------------------------------------
static bool isValidArea(const TRegion &r) {
TRegionClockWiseFormula formula;
computeRegionFeature(r, formula);
return formula.isClockwise();
}
#ifdef LEVO
bool isValidArea(const vector<TRegion *> ®ions, const TRegion &r) {
double area = 0.0;
TPointD p, pOld /*, pAux*/;
int pointAdded = 0;
int size = r.getEdgeCount();
if (size == 0) return false;
// if (size<2)
// return !isMetaRegion(regions, r);
int firstControlPoint;
int lastControlPoint;
TEdge *e = r.getEdge(size - 1);
pOld = e->m_s->getPoint(e->m_w1);
for (int i = 0; i < size; i++) {
TEdge *e = r.getEdge(i);
TStroke *s = e->m_s;
firstControlPoint = s->getControlPointIndexAfterParameter(e->m_w0);
lastControlPoint = s->getControlPointIndexAfterParameter(e->m_w1);
p = s->getPoint(e->m_w0);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
if (firstControlPoint <= lastControlPoint) {
if (firstControlPoint & 0x1) firstControlPoint++;
if (lastControlPoint - firstControlPoint <=
2) /// per evitare di avere troppi pochi punti....
{
p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
} else
for (int j = firstControlPoint; j < lastControlPoint; j += 2) {
p = s->getControlPoint(j);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
}
} else {
firstControlPoint--; // this case, getControlPointIndexBEFOREParameter
lastControlPoint--;
if (firstControlPoint & 0x1) firstControlPoint--;
if (firstControlPoint - lastControlPoint <=
2) /// per evitare di avere troppi pochi punti....
{
p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
} else
for (int j = firstControlPoint; j > lastControlPoint; j -= 2) {
p = s->getControlPoint(j);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
}
}
p = s->getPoint(e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
}
assert(pointAdded >= 4);
return area > 0.5;
}
#endif
//-----------------------------------------------------------------------------
void transferColors(const list<TEdge *> &oldList, const list<TEdge *> &newList,
bool isStrokeChanged, bool isFlipped, bool overwriteColor);
//-----------------------------------------------------------------------------
static void printStrokes1(vector<VIStroke *> &v, int size) {
UINT i = 0;
ofstream of("C:\\temp\\strokes.txt");
for (i = 0; i < (UINT)size; i++) {
TStroke *s = v[i]->m_s;
of << "***stroke " << i << endl;
for (UINT j = 0; j < (UINT)s->getChunkCount(); j++) {
const TThickQuadratic *q = s->getChunk(j);
of << " s0 " << q->getP0() << endl;
of << " s1 " << q->getP1() << endl;
of << " s2 " << q->getP2() << endl;
of << "****** " << endl;
}
of << endl;
}
for (i = size; i < v.size(); i++) {
TStroke *s = v[i]->m_s;
of << "***Autostroke " << i << endl;
of << "s0 " << s->getPoint(0.0) << endl;
of << "s1 " << s->getPoint(1.0) << endl;
of << endl;
}
}
//-----------------------------------------------------------------------------
void printStrokes1(vector<VIStroke *> &v, int size);
// void testHistory();
// Trova le regioni in una TVectorImage
int TVectorImage::Imp::computeRegions() {
#ifdef NEW_REGION_FILL
return 0;
#endif
#if defined(_DEBUG) && !defined(MACOSX)
TStopWatch stopWatch;
stopWatch.start(true);
#endif
// testHistory();
if (!m_computeRegions) return 0;
QMutexLocker sl(m_mutex);
/*if (m_intersectionData->m_computedAlmostOnce)
{
UINT i,n=m_strokes.size();
vector<int> vv(n);
for( i=0; i<n;++i) vv[i] = i;
m_intersectionData->m_computedAlmostOnce = true;
notifyChangedStrokes(vv,vector<TStroke*>(), false);
return true;
}*/
// g_autocloseTolerance = m_autocloseTolerance;
// Cancella le regioni gia' esistenti per ricalcolarle
clearPointerContainer(m_regions);
m_regions.clear();
// Controlla che ci siano degli stroke
if (m_strokes.empty()) {
#if defined(_DEBUG) && !defined(MACOSX)
stopWatch.stop();
#endif
return 0;
}
// Inizializza la lista di intersezioni intList
m_computedAlmostOnce = true;
VIList<Intersection> &intList = m_intersectionData->m_intList;
cleanIntersectionMarks(intList);
// calcolo struttura delle intersezioni
int added = 0, notAdded = 0;
int strokeSize;
strokeSize = computeIntersections();
Intersection *p1;
IntersectedStroke *p2;
for (p1 = intList.first(); p1; p1 = p1->next())
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next()) p2->m_edge.m_r = 0;
for (p1 = intList.first(); p1; p1 = p1->next()) {
// Controlla che il punto in questione non sia isolato
if (p1->m_numInter == 0) continue;
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next()) {
TRegion *region;
// se lo stroke non unisce due punti di intersezione
// non lo considero e vado avanti con un altro stroke
if (!p2->m_nextIntersection) continue;
// Se lo stroke puntato da t2 non e' stato ancora visitato, trova una
// regione
if (!p2->m_visited &&
(region = ::findRegion(intList, p1, p2, m_minimizeEdges))) {
// Se la regione e' valida la aggiunge al vettore delle regioni
if (isValidArea(*region)) {
added++;
addRegion(region);
// Lega ogni ramo della regione alla regione di appartenenza
for (UINT i = 0; i < region->getEdgeCount(); i++) {
TEdge *e = region->getEdge(i);
e->m_r = region;
if (e->m_index >= 0) m_strokes[e->m_index]->addEdge(e);
}
} else // Se la regione non e' valida viene scartata
{
notAdded++;
delete region;
}
}
}
}
if (!m_notIntersectingStrokes) {
UINT i;
for (i = 0; i < m_intersectionData->m_intersectedStrokeArray.size(); i++) {
if (!m_strokes[m_intersectionData->m_intersectedStrokeArray[i].m_index]
->m_edgeList.empty())
transferColors(
m_intersectionData->m_intersectedStrokeArray[i].m_edgeList,
m_strokes[m_intersectionData->m_intersectedStrokeArray[i].m_index]
->m_edgeList,
false, false, true);
clearPointerContainer(
m_intersectionData->m_intersectedStrokeArray[i].m_edgeList);
m_intersectionData->m_intersectedStrokeArray[i].m_edgeList.clear();
}
m_intersectionData->m_intersectedStrokeArray.clear();
}
assert(m_intersectionData->m_intersectedStrokeArray.empty());
// tolgo i segmenti aggiunti con l'autoclose
vector<VIStroke *>::iterator it = m_strokes.begin();
advance(it, strokeSize);
m_strokes.erase(it, m_strokes.end());
m_areValidRegions = true;
#if defined(_DEBUG)
checkRegions(m_regions);
#endif
return 0;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
/*
class Branch
{
TEdge m_edge;
bool m_out, m_visited;
Branch *m_next;
Branch *m_nextBranch;
Intersection* m_intersection;
public:
Branch* next()
{
assert(m_intersection);
return m_next?m_next:m_intersection->m_branchList;
}
}
class Intersection
{
private:
TPointD m_intersectionPoint;
int m_intersectionCount;
Branch *m_branchList;
Intersection* m_next;
list<IntersectedStroke> m_strokeList;
public:
AddIntersection(int index0, int index1, DoublePair intersectionValues);
}
*/
#ifdef _DEBUG
void TVectorImage::Imp::checkRegions(const std::vector<TRegion *> ®ions) {
for (UINT i = 0; i < regions.size(); i++) {
TRegion *r = regions[i];
UINT j = 0;
for (j = 0; j < r->getEdgeCount(); j++) {
TEdge *e = r->getEdge(j);
// assert(areSameGroup(e->m_index, false,
// ==m_strokes[r->getEdge(0)->m_index]->m_groupId);
assert(e->m_r == r);
// if (e->m_s->isSelfLoop())
// {
// assert(r->getEdgeCount()==1);
// assert(r->getSubregionCount()==0);
// }
// if (j>0)
// assert(!e->m_s->isSelfLoop());
}
if (r->getSubregionCount() > 0) {
std::vector<TRegion *> aux(r->getSubregionCount());
for (j = 0; j < r->getSubregionCount(); j++) aux[j] = r->getSubregion(j);
checkRegions(aux);
}
}
}
#endif
namespace {
inline TGroupId getGroupId(TRegion *r, const std::vector<VIStroke *> &strokes) {
for (UINT i = 0; i < r->getEdgeCount(); i++)
if (r->getEdge(i)->m_index >= 0)
return strokes[r->getEdge(i)->m_index]->m_groupId;
return TGroupId();
}
}
//------------------------------------------------------------
TRegion *TVectorImage::findRegion(const TRegion ®ion) const {
TRegion *ret = 0;
for (std::vector<TRegion *>::iterator it = m_imp->m_regions.begin();
it != m_imp->m_regions.end(); ++it)
if ((ret = (*it)->findRegion(region)) != 0) return ret;
return 0;
}
//------------------------------------------------------------
void TVectorImage::Imp::addRegion(TRegion *region) {
for (std::vector<TRegion *>::iterator it = m_regions.begin();
it != m_regions.end(); ++it) {
if (getGroupId(region, m_strokes) != getGroupId(*it, m_strokes)) continue;
if (region->contains(**it)) {
// region->addSubregion(*it);
region->addSubregion(*it);
it = m_regions.erase(it);
while (it != m_regions.end()) {
if (region->contains(**it)) {
region->addSubregion(*it);
// region->addSubregion(*it);
it = m_regions.erase(it);
} else
it++;
}
m_regions.push_back(region);
return;
} else if ((*it)->contains(*region)) {
(*it)->addSubregion(region);
//(*it)->addSubregion(region);
return;
}
}
m_regions.push_back(region);
}
//-----------------------------------------------------------------------------
void TVectorImage::replaceStroke(int index, TStroke *newStroke) {
if ((int)m_imp->m_strokes.size() <= index) return;
delete m_imp->m_strokes[index]->m_s;
m_imp->m_strokes[index]->m_s = newStroke;
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_imp->m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next())
if (p2->m_edge.m_index == index) p2->m_edge.m_s = newStroke;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void TVectorImage::Imp::moveStroke(int fromIndex, int moveBefore) {
assert((int)m_strokes.size() > fromIndex);
assert((int)m_strokes.size() >= moveBefore);
#ifdef _DEBUG
checkIntersections();
#endif
VIStroke *vi = m_strokes[fromIndex];
m_strokes.erase(m_strokes.begin() + fromIndex);
std::vector<VIStroke *>::iterator it = m_strokes.begin();
if (fromIndex < moveBefore)
advance(it, moveBefore - 1);
else
advance(it, moveBefore);
m_strokes.insert(it, vi);
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next()) {
if (fromIndex < moveBefore) {
if (p2->m_edge.m_index == fromIndex)
p2->m_edge.m_index = moveBefore - 1;
else if (p2->m_edge.m_index > fromIndex &&
p2->m_edge.m_index < moveBefore)
p2->m_edge.m_index--;
} else //(fromIndex>moveBefore)
{
if (p2->m_edge.m_index == fromIndex)
p2->m_edge.m_index = moveBefore;
else if (p2->m_edge.m_index >= moveBefore &&
p2->m_edge.m_index < fromIndex)
p2->m_edge.m_index++;
}
}
#ifdef _DEBUG
checkIntersections();
#endif
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::reindexEdges(UINT strokeIndex) {
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next()) {
assert(p2->m_edge.m_index != (int)strokeIndex || p2->m_edge.m_index < 0);
if (p2->m_edge.m_index > (int)strokeIndex) p2->m_edge.m_index--;
}
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::reindexEdges(const vector<int> &indexes,
bool areAdded) {
int i;
int size = indexes.size();
if (size == 0) return;
#ifdef _DEBUG
for (i = 0; i < size; i++) assert(i == 0 || indexes[i - 1] < indexes[i]);
#endif
int min = (int)indexes[0];
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = p1->m_strokeList.first(); p2; p2 = p2->next()) {
if (areAdded) {
if (p2->m_edge.m_index < min)
continue;
else
for (i = size - 1; i >= 0; i--)
if (p2->m_edge.m_index >= (int)indexes[i] - i) {
p2->m_edge.m_index += i + 1;
break;
}
} else {
if (p2->m_edge.m_index < min)
continue;
else
for (i = size - 1; i >= 0; i--)
if (p2->m_edge.m_index > (int)indexes[i]) {
p2->m_edge.m_index -= i + 1;
break;
}
}
// assert(it2->m_edge.m_index!=1369);
}
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::insertStrokeAt(VIStroke *vs, int strokeIndex,
bool recomputeRegions) {
list<TEdge *> oldEdgeList, emptyList;
if (m_computedAlmostOnce && recomputeRegions) {
oldEdgeList = vs->m_edgeList;
vs->m_edgeList.clear();
}
assert(strokeIndex >= 0 && strokeIndex <= (int)m_strokes.size());
vector<VIStroke *>::iterator it = m_strokes.begin();
advance(it, strokeIndex);
vs->m_isNewForFill = true;
m_strokes.insert(it, vs);
if (!m_computedAlmostOnce) return;
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next())
if (p2->m_edge.m_index >= (int)strokeIndex) p2->m_edge.m_index++;
if (!recomputeRegions) return;
computeRegions();
transferColors(oldEdgeList, m_strokes[strokeIndex]->m_edgeList, true, false,
true);
/*
#ifdef _DEBUG
checkIntersections();
#endif
*/
}
//-----------------------------------------------------------------------------
void invalidateRegionPropAndBBox(TRegion *reg) {
for (UINT regId = 0; regId != reg->getSubregionCount(); regId++) {
invalidateRegionPropAndBBox(reg->getSubregion(regId));
}
reg->invalidateProp();
reg->invalidateBBox();
}
void TVectorImage::transform(const TAffine &aff, bool doChangeThickness) {
UINT i;
for (i = 0; i < m_imp->m_strokes.size(); ++i)
m_imp->m_strokes[i]->m_s->transform(aff, doChangeThickness);
map<int, VIStroke *>::iterator it =
m_imp->m_intersectionData->m_autocloseMap.begin();
for (; it != m_imp->m_intersectionData->m_autocloseMap.end(); ++it)
it->second->m_s->transform(aff, false);
for (i = 0; i < m_imp->m_regions.size(); ++i)
invalidateRegionPropAndBBox(m_imp->m_regions[i]);
}
//-----------------------------------------------------------------------------
#ifdef _DEBUG
#include "tvectorrenderdata.h"
#include "tgl.h"
void TVectorImage::drawAutocloses(const TVectorRenderData &rd) const {
float width;
glPushMatrix();
tglMultMatrix(rd.m_aff);
glGetFloatv(GL_LINE_WIDTH, &width);
tglColor(TPixel(0, 255, 0, 255));
glLineWidth(1.5);
glBegin(GL_LINES);
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_imp->m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next()) {
if (p2->m_edge.m_index < 0 && p2->m_edge.m_w0 == 0.0) {
TStroke *s = p2->m_edge.m_s;
TPointD p0 = s->getPoint(0.0);
TPointD p1 = s->getPoint(1.0);
glVertex2d(p0.x, p0.y);
glVertex2d(p1.x, p1.y);
}
}
glEnd();
glLineWidth(width);
glPopMatrix();
}
#endif
//-----------------------------------------------------------------------------
void TVectorImage::reassignStyles(map<int, int> &table) {
UINT i;
UINT strokeCount = getStrokeCount();
// UINT regionCount = getRegionCount();
for (i = 0; i < strokeCount; ++i) {
TStroke *stroke = getStroke(i);
int styleId = stroke->getStyle();
if (styleId != 0) {
map<int, int>::iterator it = table.find(styleId);
if (it != table.end()) stroke->setStyle(it->second);
}
}
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_imp->m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next())
if (p2->m_edge.m_styleId != 0) {
map<int, int>::iterator it = table.find(p2->m_edge.m_styleId);
if (it != table.end()) p2->m_edge.m_styleId = it->second;
// assert(it->second<100);
}
}
//-----------------------------------------------------------------------------
struct TDeleteMapFunctor {
void operator()(pair<int, VIStroke *> ptr) { delete ptr.second; }
};
IntersectionData::~IntersectionData() {
std::for_each(m_autocloseMap.begin(), m_autocloseMap.end(),
TDeleteMapFunctor());
}
//-----------------------------------------------------------------------------
#ifdef _DEBUG
void TVectorImage::Imp::checkIntersections() {
// return;
UINT i, j;
Intersection *p1;
IntersectedStroke *p2;
for (i = 0, p1 = m_intersectionData->m_intList.first(); p1;
p1 = p1->next(), i++)
for (j = 0, p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next(), j++) {
IntersectedStroke &is = *p2;
assert(is.m_edge.m_styleId >= 0 && is.m_edge.m_styleId <= 1000);
assert(is.m_edge.m_w0 >= 0 && is.m_edge.m_w0 <= 1);
assert(is.m_edge.m_index < (int)m_strokes.size());
if (is.m_edge.m_index >= 0) {
assert(is.m_edge.m_s->getChunkCount() >= 0 &&
is.m_edge.m_s->getChunkCount() <= 10000);
assert(m_strokes[is.m_edge.m_index]->m_s == is.m_edge.m_s);
} else
assert(m_intersectionData->m_autocloseMap[is.m_edge.m_index]);
if (p2->m_nextIntersection) {
IntersectedStroke *nextStroke = p2->m_nextStroke;
assert(nextStroke->m_nextIntersection == p1);
assert(nextStroke->m_nextStroke == p2);
}
}
for (i = 0; i < m_strokes.size(); i++) {
VIStroke *vs = m_strokes[i];
list<TEdge *>::const_iterator it = vs->m_edgeList.begin(),
it_e = vs->m_edgeList.end();
for (; it != it_e; ++it) {
TEdge *e = *it;
assert(e->getStyle() >= 0 && e->getStyle() <= 1000);
assert(e->m_w0 >= 0 && e->m_w1 <= 1);
assert(e->m_s == vs->m_s);
assert(e->m_s->getChunkCount() >= 0 && e->m_s->getChunkCount() <= 10000);
// assert(e->m_index<(int)m_strokes.size()); l'indice nella stroke
// potrebbe essere non valido, non importa.
// assert(m_strokes[e->m_index]->m_s==e->m_s); deve essere buono nella
// intersectionData
}
}
for (i = 0; i < m_regions.size(); i++) {
m_regions[i]->checkRegion();
}
}
#endif
//-----------------------------------------------------------------------------
TStroke *TVectorImage::Imp::removeEndpoints(int strokeIndex) {
#ifdef _DEBUG
checkIntersections();
#endif
VIStroke *vs = m_strokes[strokeIndex];
if (vs->m_s->isSelfLoop()) return 0;
if (vs->m_edgeList.empty()) return 0;
list<TEdge *>::iterator it = vs->m_edgeList.begin();
double minW = 1.0;
double maxW = 0.0;
for (; it != vs->m_edgeList.end(); ++it) {
minW = std::min({minW - 0.00002, (*it)->m_w0, (*it)->m_w1});
maxW = std::max({maxW + 0.00002, (*it)->m_w0, (*it)->m_w1});
}
if (areAlmostEqual(minW, 0.0, 0.001) && areAlmostEqual(maxW, 1.0, 0.001))
return 0;
TStroke *oldS = vs->m_s;
TStroke *s = new TStroke(*(vs->m_s));
double offs = s->getLength(minW);
TStroke s0, s1, final;
if (!areAlmostEqual(maxW, 1.0, 0.001)) {
s->split(maxW, s0, s1);
} else
s0 = *s;
if (!areAlmostEqual(minW, 0.0, 0.001)) {
double newW = (maxW == 1.0) ? minW : s0.getParameterAtLength(offs);
s0.split(newW, s1, final);
} else
final = s0;
vs->m_s = new TStroke(final);
vs->m_s->setStyle(oldS->getStyle());
for (it = vs->m_edgeList.begin(); it != vs->m_edgeList.end(); ++it) {
(*it)->m_w0 =
vs->m_s->getParameterAtLength(s->getLength((*it)->m_w0) - offs);
(*it)->m_w1 =
vs->m_s->getParameterAtLength(s->getLength((*it)->m_w1) - offs);
(*it)->m_s = vs->m_s;
}
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next()) {
if (p2->m_edge.m_s == oldS) {
p2->m_edge.m_w0 =
vs->m_s->getParameterAtLength(s->getLength(p2->m_edge.m_w0) - offs);
p2->m_edge.m_w1 =
vs->m_s->getParameterAtLength(s->getLength(p2->m_edge.m_w1) - offs);
p2->m_edge.m_s = vs->m_s;
}
}
#ifdef _DEBUG
checkIntersections();
#endif
return oldS;
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::restoreEndpoints(int index, TStroke *oldStroke) {
#ifdef _DEBUG
checkIntersections();
#endif
VIStroke *vs = m_strokes[index];
TStroke *s = vs->m_s;
TPointD p = s->getPoint(0.0);
double offs = oldStroke->getLength(oldStroke->getW(p));
vs->m_s = oldStroke;
list<TEdge *>::iterator it = vs->m_edgeList.begin();
for (; it != vs->m_edgeList.end(); ++it) {
(*it)->m_w0 =
vs->m_s->getParameterAtLength(s->getLength((*it)->m_w0) + offs);
(*it)->m_w1 =
vs->m_s->getParameterAtLength(s->getLength((*it)->m_w1) + offs);
(*it)->m_s = vs->m_s;
}
Intersection *p1;
IntersectedStroke *p2;
for (p1 = m_intersectionData->m_intList.first(); p1; p1 = p1->next())
for (p2 = (*p1).m_strokeList.first(); p2; p2 = p2->next()) {
if (p2->m_edge.m_s == s) {
p2->m_edge.m_w0 =
vs->m_s->getParameterAtLength(s->getLength(p2->m_edge.m_w0) + offs);
p2->m_edge.m_w1 =
vs->m_s->getParameterAtLength(s->getLength(p2->m_edge.m_w1) + offs);
p2->m_edge.m_s = vs->m_s;
}
}
delete s;
#ifdef _DEBUG
checkIntersections();
#endif
}