//#include "tsystem.h"
#include "tmachine.h"
#include "tcurves.h"
#include "tcommon.h"
#include "tregion.h"
//#include "tregionutil.h"
#include "tstopwatch.h"
#include "tstroke.h"
#include "tstrokeutil.h"
#include "tvectorimageP.h"
#include "tdebugmessage.h"
#include <vector>
#include "tcurveutil.h"
#include <algorithm>
#if !defined(TNZ_LITTLE_ENDIAN)
TNZ_LITTLE_ENDIAN undefined !!
#endif
//-----------------------------------------------------------------------------
#ifdef IS_DOTNET
#define NULL_ITER list<IntersectedStroke>::iterator()
#else
#define NULL_ITER 0
#endif
using namespace std;
typedef TVectorImage::IntersectionBranch IntersectionBranch;
//-----------------------------------------------------------------------------
inline double myRound(double x) {
return (1.0 / REGION_COMPUTING_PRECISION) *
((long)(x * REGION_COMPUTING_PRECISION));
}
inline TThickPoint myRound(const TThickPoint &p) {
return TThickPoint(myRound(p.x), myRound(p.y), p.thick);
}
void print(list<Intersection> &intersectionList, char *str) {
ofstream of(str);
of << "***************************" << endl;
list<Intersection>::const_iterator it;
list<IntersectedStroke>::const_iterator it1;
int i, j;
for (i = 0, it = intersectionList.begin(); it != intersectionList.end();
it++, i++) {
of << "***************************" << endl;
of << "Intersection#" << i << ": " << it->m_intersection
<< "numBranches: " << it->m_numInter << endl;
of << endl;
for (j = 0, it1 = it->m_strokeList.begin(); it1 != it->m_strokeList.end();
it1++, j++) {
of << "----Branch #" << j;
if (it1->m_edge.m_index < 0) of << "(AUTOCLOSE)";
of << "Intersection at " << it1->m_edge.m_w0 << ": "
<< ": " << endl;
of << "ColorId: " << it1->m_edge.m_styleId << endl;
/*
TColorStyle* fs = it1->m_edge.m_fillStyle;
if (fs==0)
of<<"NO color: "<< endl;
else
{
TFillStyleP fp = fs->getFillStyle();
if (fp)
{
fp->
assert(false) ;
else
of<<"Color: ("<< colorStyle->getColor().r<<", "<< colorStyle->getColor().g<<",
"<< colorStyle->getColor().b<<")"<<endl;
*/
of << "----Stroke " << (it1->m_gettingOut ? "OUT" : "IN") << " #"
<< it1->m_edge.m_index << ": " << endl;
// if (it1->m_dead)
// of<<"---- DEAD Intersection.";
// else
{
of << "---- NEXT Intersection:";
if (it1->m_nextIntersection != intersectionList.end()) {
int dist =
std::distance(intersectionList.begin(), it1->m_nextIntersection);
of << dist;
list<Intersection>::iterator iit = intersectionList.begin();
std::advance(iit, dist);
of << " "
<< std::distance(iit->m_strokeList.begin(), it1->m_nextStroke);
}
else
of << "NULL!!";
of << "---- NEXT Stroke:";
if (it1->m_nextIntersection != intersectionList.end())
of << it1->m_nextStroke->m_edge.m_index;
else
of << "NULL!!";
}
of << endl << endl;
}
}
}
void findNearestIntersection(list<Intersection> &interList,
const list<Intersection>::iterator &i1,
const list<IntersectedStroke>::iterator &i2);
//-----------------------------------------------------------------------------
#ifdef _TOLGO
void checkInterList(list<Intersection> &intersectionList) {
list<Intersection>::iterator it;
list<IntersectedStroke>::iterator it1;
for (it = intersectionList.begin(); it != intersectionList.end(); it++) {
int count = 0;
for (it1 = it->m_strokeList.begin(); it1 != it->m_strokeList.end(); it1++) {
int val;
if (it1->m_nextIntersection != intersectionList.end()) {
count++;
// assert (it1->m_nextIntersection!=intersectionList.end());
assert(it1->m_nextStroke->m_nextIntersection == it);
assert(it1->m_nextStroke->m_nextStroke == it1);
// int k = it1->m_edge.m_index;
val = std::distance(intersectionList.begin(), it1->m_nextIntersection);
}
// else
// assert(it1->m_nextIntersection==intersectionList.end());
}
assert(count == it->m_numInter);
}
}
#else
#define checkInterList
#endif
//-----------------------------------------------------------------------------
// void addFakeIntersection(list<Intersection>& intersectionList,TStroke* s,
// UINT ii, double w);
void addIntersections(IntersectionData &intersectionData,
const vector<VIStroke *> &s, int ii, int jj,
const vector<DoublePair> &intersections, int numStrokes);
void addIntersection(IntersectionData &intData, const vector<VIStroke *> &s,
int ii, int jj, DoublePair intersections, int strokeSize);
//-----------------------------------------------------------------------------
bool sortBBox(const TStroke *s1, const TStroke *s2) {
return s1->getBBox().x0 < s2->getBBox().x0;
}
//-----------------------------------------------------------------------------
void cleanIntersectionMarks(list<Intersection> &interList) {
for (list<Intersection>::iterator it1 = interList.begin();
it1 != interList.end(); it1++)
for (list<IntersectedStroke>::iterator it2 = (*it1).m_strokeList.begin();
it2 != (*it1).m_strokeList.end(); it2++) {
it2->m_visited =
false; // Ogni ramo della lista viene messo nella condizione
// di poter essere visitato
if (it2->m_nextIntersection != interList.end()) {
it2->m_nextIntersection =
interList.end(); // pezza tremenda, da togliere!!!
it1->m_numInter--;
}
}
}
//-----------------------------------------------------------------------------
void cleanNextIntersection(list<Intersection> &interList, TStroke *s) {
for (list<Intersection>::iterator it1 = interList.begin();
it1 != interList.end(); it1++)
for (list<IntersectedStroke>::iterator it2 = (*it1).m_strokeList.begin();
it2 != (*it1).m_strokeList.end(); it2++)
if (it2->m_edge.m_s == s) {
// if (it2->m_nextIntersection==NULL)
// return; //gia' ripulita prima
if (it2->m_nextIntersection != interList.end()) {
it2->m_nextIntersection = interList.end();
it1->m_numInter--;
}
it2->m_nextStroke = (*it1).m_strokeList.end();
}
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::eraseEdgeFromStroke(
list<IntersectedStroke>::iterator it2) {
if (it2->m_edge.m_index >=
0) // elimino il puntatore all'edge nella lista della VIStroke
{
VIStroke *s;
s = m_strokes[it2->m_edge.m_index];
assert(s->m_s == it2->m_edge.m_s);
list<TEdge *>::iterator iit = s->m_edgeList.begin(),
it_e = s->m_edgeList.end();
for (; iit != it_e; ++iit)
if ((*iit)->m_w0 == it2->m_edge.m_w0 &&
(*iit)->m_w1 == it2->m_edge.m_w1) {
assert((*iit)->m_toBeDeleted == false);
s->m_edgeList.erase(iit);
return;
}
}
}
//-----------------------------------------------------------------------------
list<IntersectedStroke>::iterator TVectorImage::Imp::eraseBranch(
list<Intersection>::iterator it1, list<IntersectedStroke>::iterator it2) {
// list<Intersection>::iterator iit1;
// list<IntersectedStroke>::iterator iit2;
list<Intersection> &intList = m_intersectionData.m_intList;
if (it2->m_nextIntersection != intList.end()) {
list<Intersection>::iterator nextInt = it2->m_nextIntersection;
list<IntersectedStroke>::iterator nextStroke = it2->m_nextStroke;
assert(nextStroke->m_nextIntersection == it1);
assert(nextStroke->m_nextStroke == it2);
assert(nextStroke != it2);
// nextStroke->m_nextIntersection = intList.end();
// nextStroke->m_nextStroke = nextInt->m_strokeList.end();
if (nextStroke->m_nextIntersection != intList.end()) {
nextStroke->m_nextIntersection = intList.end();
nextInt->m_numInter--;
}
// nextInt->m_strokeList.erase(nextStroke);//non posso cancellarla, puo'
// servire in futuro!
}
if (it2->m_nextIntersection != intList.end()) it1->m_numInter--;
eraseEdgeFromStroke(it2);
it2->m_edge.m_w0 = it2->m_edge.m_w1 = -3;
it2->m_edge.m_index = -3;
it2->m_edge.m_s = 0;
it2->m_edge.m_styleId = -3;
list<IntersectedStroke>::iterator ret = (*it1).m_strokeList.erase(it2);
return ret;
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::eraseDeadIntersections() {
list<Intersection>::iterator it;
for (it = m_intersectionData.m_intList.begin();
it != m_intersectionData.m_intList.end();) // la faccio qui, e non nella
// eraseIntersection. vedi
// commento li'.
{
list<Intersection> &intList = m_intersectionData.m_intList;
if (it->m_strokeList.size() == 1) {
eraseBranch(it, (*it).m_strokeList.begin());
assert(it->m_strokeList.empty());
it = intList.erase(it);
} else if (it->m_strokeList.size() == 2 &&
((*it).m_strokeList.front().m_edge.m_s ==
(*it).m_strokeList.back().m_edge.m_s &&
(*it).m_strokeList.front().m_edge.m_w0 ==
(*it).m_strokeList.back().m_edge.m_w0)) // intersezione
// finta
{
list<IntersectedStroke>::iterator it1 = it->m_strokeList.begin(), iit1,
iit2;
list<IntersectedStroke>::iterator it2 = it1;
it2++;
eraseEdgeFromStroke(it1);
eraseEdgeFromStroke(it2);
iit1 = (it1->m_nextIntersection == intList.end()) ? NULL_ITER
: it1->m_nextStroke;
iit2 = (it2->m_nextIntersection == intList.end()) ? NULL_ITER
: it2->m_nextStroke;
if (iit1 != NULL_ITER && iit2 != NULL_ITER) {
iit1->m_edge.m_w1 = iit2->m_edge.m_w0;
iit2->m_edge.m_w1 = iit1->m_edge.m_w0;
}
if (iit1 != NULL_ITER) {
iit1->m_nextStroke = iit2;
iit1->m_nextIntersection = it2->m_nextIntersection;
if (iit1->m_nextIntersection == intList.end())
it1->m_nextIntersection->m_numInter--;
}
if (iit2 != NULL_ITER) {
iit2->m_nextStroke = iit1;
iit2->m_nextIntersection = it1->m_nextIntersection;
if (iit2->m_nextIntersection == intList.end())
it2->m_nextIntersection->m_numInter--;
}
it->m_strokeList.clear();
it->m_numInter = 0;
it = intList.erase(it);
} else
++it;
}
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::doEraseIntersection(int index,
vector<int> *toBeDeleted) {
list<Intersection> &interList = m_intersectionData.m_intList;
list<Intersection>::iterator it1 = interList.begin();
TStroke *deleteIt = 0;
while (it1 != interList.end()) {
bool removeAutocloses = false;
list<IntersectedStroke>::iterator it2 = (*it1).m_strokeList.begin();
while (it2 != (*it1).m_strokeList.end()) {
IntersectedStroke &is = *it2;
if (is.m_edge.m_index == index) {
if (is.m_edge.m_index >= 0)
// if (!is.m_autoclose && (is.m_edge.m_w0==1 || is.m_edge.m_w0==0))
removeAutocloses = true;
else
deleteIt = is.m_edge.m_s;
it2 = eraseBranch(it1, it2);
} else
++it2;
// checkInterList(interList);
}
if (removeAutocloses) // se ho tolto una stroke dall'inter corrente, tolgo
// tutti le stroke di autclose che partono da qui
{
assert(toBeDeleted);
for (it2 = (*it1).m_strokeList.begin(); it2 != (*it1).m_strokeList.end();
it2++)
if (it2->m_edge.m_index < 0 &&
(it2->m_edge.m_w0 == 1 || it2->m_edge.m_w0 == 0))
toBeDeleted->push_back(it2->m_edge.m_index);
}
if ((*it1).m_strokeList.empty())
it1 = interList.erase(it1);
else
it1++;
}
if (deleteIt) delete deleteIt;
}
//-----------------------------------------------------------------------------
UINT TVectorImage::Imp::getFillData(IntersectionBranch *&v) {
// print(m_intersectionData.m_intList, "C:\\temp\\intersectionPrimaSave.txt");
list<Intersection> &intList = m_intersectionData.m_intList;
if (intList.empty()) return 0;
list<Intersection>::iterator it1;
list<IntersectedStroke>::iterator it2;
UINT currInt = 0;
vector<UINT> branchesBefore(intList.size() + 1);
branchesBefore[0] = 0;
UINT count = 0, size = 0;
for (it1 = intList.begin(); it1 != intList.end(); ++it1, currInt++) {
UINT strokeListSize = it1->m_strokeList.size();
size += strokeListSize;
branchesBefore[currInt + 1] = branchesBefore[currInt] + strokeListSize;
}
v = new IntersectionBranch[size];
currInt = 0;
for (it1 = intList.begin(); it1 != intList.end(); ++it1, currInt++) {
UINT currBranch = 0;
for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end();
++it2, currBranch++) {
IntersectionBranch &b = v[count];
b.m_currInter = currInt;
b.m_strokeIndex = it2->m_edge.m_index;
b.m_w = it2->m_edge.m_w0;
b.m_style = it2->m_edge.m_styleId;
// assert(b.m_style<100);
b.m_gettingOut = it2->m_gettingOut;
if (it2->m_nextIntersection == intList.end())
b.m_nextBranch = count;
else {
UINT distInt = std::distance(intList.begin(), it2->m_nextIntersection);
UINT distBranch = std::distance(
it2->m_nextIntersection->m_strokeList.begin(), it2->m_nextStroke);
if ((distInt < currInt) ||
(distInt == currInt && distBranch < currBranch)) {
UINT posNext = branchesBefore[distInt] + distBranch;
assert(posNext < count);
b.m_nextBranch = posNext;
assert(v[posNext].m_nextBranch == (std::numeric_limits<UINT>::max)());
v[posNext].m_nextBranch = count;
} else
b.m_nextBranch = (std::numeric_limits<UINT>::max)();
}
count++;
}
}
// for (UINT i=0; i<count; i++)
// assert(v[i].m_nextBranch != std::numeric_limits<UINT>::max());
#ifdef _DEBUG
/*ofstream of("C:\\temp\\fillDataOut.txt");
for (UINT ii=0; ii<size; ii++)
{
of<<ii<<"----------------------"<<endl;
of<<"index:"<<v[ii].m_strokeIndex<<endl;
of<<"w:"<<v[ii].m_w<<endl;
of<<"curr inter:"<<v[ii].m_currInter<<endl;
of<<"next inter:"<<v[ii].m_nextBranch<<endl;
of<<"gettingOut:"<<((v[ii].m_gettingOut)?"TRUE":"FALSE")<<endl;
of<<"colorId:"<<v[ii].m_style<<endl;
}*/
#endif
return size;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
namespace {
TStroke *reconstructAutocloseStroke(list<Intersection> &intList,
list<Intersection>::iterator it1,
list<IntersectedStroke>::iterator it2)
{
bool found = false;
list<Intersection>::iterator iit1 = it1;
list<IntersectedStroke>::iterator iit2;
iit1++;
// vector<TEdge*> vapp;
for (; !found && iit1 != intList.end(); iit1++) {
for (iit2 = iit1->m_strokeList.begin();
!found && iit2 != iit1->m_strokeList.end(); iit2++) {
if (it2->m_edge.m_index == iit2->m_edge.m_index) {
if ((iit2->m_edge.m_w0 == 1 && it2->m_edge.m_w0 == 0) ||
(iit2->m_edge.m_w0 == 0 && it2->m_edge.m_w0 == 1)) {
found = true;
vector<TPointD> v;
if (it2->m_edge.m_w0 == 0) {
v.push_back(it1->m_intersection);
v.push_back(iit1->m_intersection);
} else {
v.push_back(iit1->m_intersection);
v.push_back(it1->m_intersection);
}
it2->m_edge.m_s = iit2->m_edge.m_s = new TStroke(v);
// for (UINT ii=0; ii<vapp.size(); ii++)
// vapp[ii]->m_s = it2->m_edge.m_s;
}
// else if (iit2->m_edge.m_w0!=0 && iit2->m_edge.m_w0!=1)
// vapp.push_back(&(iit2->m_edge));
}
}
}
assert(found);
if (!found) it2->m_edge.m_s = 0;
return it2->m_edge.m_s;
}
} // namespace
//-----------------------------------------------------------------------------
void TVectorImage::Imp::setFillData(IntersectionBranch *v, UINT branchCount) {
#ifdef _DEBUG
/*ofstream of("C:\\temp\\fillDataIn.txt");
for (UINT ii=0; ii<branchCount; ii++)
{
of<<ii<<"----------------------"<<endl;
of<<"index:"<<v[ii].m_strokeIndex<<endl;
of<<"w:"<<v[ii].m_w<<endl;
of<<"curr inter:"<<v[ii].m_currInter<<endl;
of<<"next inter:"<<v[ii].m_nextBranch<<endl;
of<<"gettingOut:"<<((v[ii].m_gettingOut)?"TRUE":"FALSE")<<endl;
of<<"colorId:"<<v[ii].m_style<<endl;
}*/
#endif
if (branchCount == 0) return;
list<Intersection> &intList = m_intersectionData.m_intList;
clearPointerContainer(m_regions);
m_regions.clear();
intList.clear();
list<Intersection>::iterator currInt;
list<IntersectedStroke>::iterator currBranch;
vector<UINT> branchesBefore(v[branchCount - 1].m_currInter + 1);
UINT i = 0;
for (; i < branchCount; i++) {
const IntersectionBranch &b = v[i];
if (i == 0 || v[i].m_currInter != v[i - 1].m_currInter) {
assert(i == 0 || v[i].m_currInter == v[i - 1].m_currInter + 1);
branchesBefore[v[i].m_currInter] = i;
intList.push_back(Intersection());
currInt = intList.begin();
advance(currInt, intList.size() - 1);
}
IntersectedStroke is;
currInt->m_strokeList.push_back(is);
currBranch = currInt->m_strokeList.begin();
advance(currBranch, currInt->m_strokeList.size() - 1);
currBranch->m_edge.m_styleId = b.m_style;
// assert(b.m_style<100);
currBranch->m_edge.m_index = b.m_strokeIndex;
if (b.m_strokeIndex >= 0)
currBranch->m_edge.m_s = m_strokes[b.m_strokeIndex]->m_s;
else
currBranch->m_edge.m_s = 0;
currBranch->m_gettingOut = b.m_gettingOut;
currBranch->m_edge.m_w0 = b.m_w;
currBranch->m_edge.m_w1 = v[b.m_nextBranch].m_w;
assert(currBranch->m_edge.m_w0 >= -1e-8 &&
currBranch->m_edge.m_w0 <= 1 + 1e-8);
assert(currBranch->m_edge.m_w1 >= -1e-8 &&
currBranch->m_edge.m_w1 <= 1 + 1e-8);
if (b.m_nextBranch < i) {
list<Intersection>::iterator it1;
list<IntersectedStroke>::iterator it2;
it1 = intList.begin();
std::advance(it1, v[b.m_nextBranch].m_currInter);
it2 = it1->m_strokeList.begin();
assert(b.m_nextBranch - branchesBefore[v[b.m_nextBranch].m_currInter] >=
0);
std::advance(
it2, b.m_nextBranch - branchesBefore[v[b.m_nextBranch].m_currInter]);
currBranch->m_nextIntersection = it1;
currBranch->m_nextStroke = it2;
it2->m_nextIntersection = currInt;
it2->m_nextStroke = currBranch;
// if (currBranch == currInt->m_strokeList.begin())
// currInt->m_intersection =
// currBranch->m_edge.m_s->getPoint(currBranch->m_edge.m_w0);
currInt->m_numInter++;
it1->m_numInter++;
} else if (b.m_nextBranch == i)
currBranch->m_nextIntersection = intList.end();
else if (b.m_nextBranch == (std::numeric_limits<UINT>::max)()) {
currBranch->m_nextIntersection = intList.end();
currBranch->m_nextStroke = currInt->m_strokeList.end();
}
/* {
assert(b.m_nextBranch<branchCount);
assert(v[b.m_nextBranch].m_nextBranch==i);
}*/
if (i == branchCount - 1 || v[i].m_currInter != v[i + 1].m_currInter) {
int j = i;
while (v[j].m_strokeIndex < 0 &&
((j > 0 && v[j].m_currInter == v[j - 1].m_currInter) || j == 0))
j--;
if (v[j].m_strokeIndex >= 0)
currInt->m_intersection =
m_strokes[v[j].m_strokeIndex]->m_s->getPoint(v[j].m_w);
}
}
for (i = 0; i < m_strokes.size(); i++) m_strokes[i]->m_isNewForFill = false;
// computeRegions();
list<Intersection>::iterator it1;
list<IntersectedStroke>::iterator it2;
vector<UINT> toBeDeleted;
for (it1 = intList.begin(); it1 != intList.end(); it1++)
for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end();
++it2) {
if (it2->m_edge.m_index < 0 && !it2->m_edge.m_s &&
(it2->m_edge.m_w0 == 0 || it2->m_edge.m_w0 == 1)) {
it2->m_edge.m_s = reconstructAutocloseStroke(intList, it1, it2);
if (it2->m_edge.m_s)
m_intersectionData.m_autocloseMap[it2->m_edge.m_index] =
it2->m_edge.m_s;
else
toBeDeleted.push_back(it2->m_edge.m_index);
}
}
for (it1 = intList.begin(); it1 != intList.end(); it1++)
for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end();
++it2) {
if (!it2->m_edge.m_s && it2->m_edge.m_index < 0) {
it2->m_edge.m_s =
m_intersectionData.m_autocloseMap[it2->m_edge.m_index];
// TEdge& e = it2->m_edge;
if (!it2->m_edge.m_s) toBeDeleted.push_back(it2->m_edge.m_index);
}
}
for (i = 0; i < toBeDeleted.size(); i++) eraseIntersection(toBeDeleted[i]);
m_areValidRegions = false;
computeRegions();
// print(m_intersectionData.m_intList, "C:\\temp\\intersectionDopoLoad.txt");
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::eraseIntersection(int index) {
vector<int> autocloseStrokes;
doEraseIntersection(index, &autocloseStrokes);
for (UINT i = 0; i < autocloseStrokes.size(); i++) {
doEraseIntersection(autocloseStrokes[i]);
assert(autocloseStrokes[i] < 0);
m_intersectionData.m_autocloseMap.erase(autocloseStrokes[i]);
}
}
//-----------------------------------------------------------------------------
void findNearestIntersection(list<Intersection> &interList) {
list<Intersection>::iterator i1;
list<IntersectedStroke>::iterator i2;
for (i1 = interList.begin(); i1 != interList.end(); i1++) {
for (i2 = (*i1).m_strokeList.begin(); i2 != (*i1).m_strokeList.end();
i2++) {
if ((*i2).m_nextIntersection != interList.end()) // already set
continue;
int versus = (i2->m_gettingOut) ? 1 : -1;
double minDelta = (std::numeric_limits<double>::max)();
list<Intersection>::iterator it1, it1Res;
list<IntersectedStroke>::iterator it2, it2Res;
for (it1 = i1; it1 != interList.end(); ++it1) {
if (it1 == i1)
it2 = i2, it2++;
else
it2 = (*it1).m_strokeList.begin();
for (; it2 != (*it1).m_strokeList.end(); ++it2) {
if ((*it2).m_edge.m_index == i2->m_edge.m_index &&
(*it2).m_gettingOut == !i2->m_gettingOut) {
double delta = versus * (it2->m_edge.m_w0 - i2->m_edge.m_w0);
if (delta > 0 && delta < minDelta) {
it1Res = it1;
it2Res = it2;
minDelta = delta;
}
}
}
}
if (minDelta != (std::numeric_limits<double>::max)()) {
(*it2Res).m_nextIntersection = i1;
(*it2Res).m_nextStroke = i2;
(*it2Res).m_edge.m_w1 = i2->m_edge.m_w0;
(*i2).m_nextIntersection = it1Res;
(*i2).m_nextStroke = it2Res;
(*i2).m_edge.m_w1 = it2Res->m_edge.m_w0;
i1->m_numInter++;
it1Res->m_numInter++;
}
}
}
}
//-----------------------------------------------------------------------------
void markDeadIntersections(list<Intersection> &intList,
list<Intersection>::iterator it);
// questa funzione "cuscinetto" serve perche crashava il compilatore in
// release!!!
void inline markDeadIntersectionsRic(list<Intersection> &intList,
list<Intersection>::iterator it) {
markDeadIntersections(intList, it);
}
//-----------------------------------------------------------------------------
void markDeadIntersections(list<Intersection> &intList,
list<Intersection>::iterator it) {
list<IntersectedStroke>::iterator it1 = it->m_strokeList.begin();
if (it->m_numInter == 1) {
while (it1->m_nextIntersection == intList.end()) it1++;
assert(it1 != it->m_strokeList.end());
list<Intersection>::iterator nextInt = it1->m_nextIntersection;
list<IntersectedStroke>::iterator nextStroke = it1->m_nextStroke;
it->m_numInter = 0;
it1->m_nextIntersection = intList.end();
if (nextInt != intList.end() /*&& !nextStroke->m_dead*/) {
nextInt->m_numInter--;
nextStroke->m_nextIntersection = intList.end();
markDeadIntersectionsRic(intList, nextInt);
}
} else if (it->m_numInter == 2) // intersezione finta (forse)
{
while (it1 != it->m_strokeList.end() &&
it1->m_nextIntersection == intList.end())
it1++;
assert(it1 != it->m_strokeList.end());
list<IntersectedStroke>::iterator it2 = it1;
it2++;
while (it2 != it->m_strokeList.end() &&
it2->m_nextIntersection == intList.end())
it2++;
assert(it2 != it->m_strokeList.end());
if (it1->m_edge.m_s == it2->m_edge.m_s &&
it1->m_edge.m_w0 == it2->m_edge.m_w0) // intersezione finta
{
list<IntersectedStroke>::iterator iit1, iit2;
assert(it1->m_nextIntersection != intList.end() &&
it2->m_nextIntersection != intList.end());
iit1 = it1->m_nextStroke;
iit2 = it2->m_nextStroke;
iit2->m_edge.m_w1 = iit1->m_edge.m_w0;
iit1->m_edge.m_w1 = iit2->m_edge.m_w0;
// if (iit1!=0)
(*iit1).m_nextStroke = iit2;
// if (iit2!=0)
(*iit2).m_nextStroke = iit1;
// if (iit1!=0)
(*iit1).m_nextIntersection = it2->m_nextIntersection;
// if (iit2!=0)
(*iit2).m_nextIntersection = it1->m_nextIntersection;
it->m_numInter = 0;
it1->m_nextIntersection = intList.end();
it2->m_nextIntersection = intList.end();
}
}
}
//-----------------------------------------------------------------------------
// se cross val era 0, cerco di spostarmi un po' su w per vedere come sono
// orientate le tangenti agli stroke...
double nearCrossVal(TStroke *s0, double w0, TStroke *s1, double w1) {
double ltot0 = s0->getLength();
double ltot1 = s1->getLength();
double dl = tmin(ltot1, ltot0) / 1000;
double crossVal, dl0 = dl, dl1 = dl;
TPointD p0, p1;
int count = 0;
if (w0 == 1.0) dl0 = -dl0;
if (w1 == 1.0) dl1 = -dl1;
double l0 = s0->getLength(w0) + dl0;
double l1 = s1->getLength(w1) + dl1;
do {
p0 = s0->getSpeed(s0->getParameterAtLength(l0));
p1 = s1->getSpeed(s1->getParameterAtLength(l1));
crossVal = cross(p0, p1);
l0 += dl0, l1 += dl1;
count++;
} while (areAlmostEqual(crossVal, 0.0) &&
((dl0 > 0 && l0 < ltot0) || (dl0 < 0 && l0 > 0)) &&
((dl1 > 0 && l1 < ltot1) || (dl1 < 0 && l1 > 0)));
return crossVal;
}
//-----------------------------------------------------------------------------
inline void insertBranch(Intersection &interList, IntersectedStroke &item,
bool gettingOut) {
if (item.m_edge.m_w0 != (gettingOut ? 1.0 : 0.0)) {
item.m_gettingOut = gettingOut;
interList.m_strokeList.push_back(item);
}
}
//-----------------------------------------------------------------------------
double getAngle(const TPointD &p0, const TPointD &p1) {
double angle1 = 180 * atan2(p0.x, p0.y) / TConsts::pi;
double angle2 = 180 * atan2(p1.x, p1.y) / TConsts::pi;
if (angle1 < 0) angle1 = 360 + angle1;
if (angle2 < 0) angle2 = 360 + angle2;
return (angle2 - angle1) < 0 ? 360 + angle2 - angle1 : angle2 - angle1;
}
//-----------------------------------------------------------------------------
// nel caso l'angolo tra due stroke in un certo w sia nullo,
// si va un po' avanti per vedere come sono orientate....
double getNearAngle(const TStroke *s1, double w1, bool out1, const TStroke *s2,
double w2, bool out2) {
bool verse1 = (out1 && w1 < 1) || (!out1 && w1 == 0);
bool verse2 = (out2 && w2 < 1) || (!out2 && w2 == 0);
double ltot1 = s1->getLength();
double ltot2 = s2->getLength();
double l1 = s1->getLength(w1);
double l2 = s2->getLength(w2);
double dl = min(ltot1, ltot2) / 1000;
double dl1 = verse1 ? dl : -dl;
double dl2 = verse2 ? dl : -dl;
while (((verse1 && l1 < ltot1) || (!verse1 && l1 > 0)) &&
((verse2 && l2 < ltot2) || (!verse2 && l2 > 0))) {
l1 += dl1;
l2 += dl2;
TPointD p1 = (out1 ? 1 : -1) * s1->getSpeed(s1->getParameterAtLength(l1));
TPointD p2 = (out2 ? 1 : -1) * s2->getSpeed(s2->getParameterAtLength(l2));
double angle = getAngle(p1, p2);
if (!areAlmostEqual(angle, 0, 1e-9)) return angle;
}
return 0;
}
//-----------------------------------------------------------------------------
bool makeEdgeIntersection(Intersection &interList, IntersectedStroke &item1,
IntersectedStroke &item2, const TPointD &p1a,
const TPointD &p1b, const TPointD &p2a,
const TPointD &p2b) {
double angle1 = getAngle(p1a, p1b);
double angle2 = getAngle(p1a, p2a);
double angle3 = getAngle(p1a, p2b);
double angle;
bool eraseP1b = false, eraseP2a = false, eraseP2b = false;
if (areAlmostEqual(angle1, 0, 1e-9)) {
angle1 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true,
item1.m_edge.m_s, item1.m_edge.m_w0, false);
if (areAlmostEqual(angle1, 1e-9)) eraseP1b = true;
}
if (areAlmostEqual(angle2, 0, 1e-9)) {
angle2 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true,
item2.m_edge.m_s, item2.m_edge.m_w0, true);
if (areAlmostEqual(angle2, 1e-9)) eraseP2a = true;
}
if (areAlmostEqual(angle3, 0, 1e-9)) {
angle3 = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, true,
item2.m_edge.m_s, item2.m_edge.m_w0, false);
if (areAlmostEqual(angle3, 1e-9)) eraseP2b = true;
}
if (areAlmostEqual(angle1, angle2, 1e-9)) {
angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false,
item2.m_edge.m_s, item2.m_edge.m_w0, true);
if (angle != 0) {
angle2 += angle;
if (angle2 > 360) angle2 -= 360;
} else
eraseP2a = true;
}
if (areAlmostEqual(angle1, angle3, 1e-9)) {
angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false,
item2.m_edge.m_s, item2.m_edge.m_w0, false);
if (angle != 0) {
angle3 += angle;
if (angle3 > 360) angle3 -= 360;
} else
eraseP2b = true;
}
if (areAlmostEqual(angle2, angle3, 1e-9)) {
angle = getNearAngle(item1.m_edge.m_s, item1.m_edge.m_w0, false,
item2.m_edge.m_s, item2.m_edge.m_w0, true);
if (angle != 0) {
angle3 += angle;
if (angle3 > 360) angle3 -= 360;
} else
eraseP2b = true;
}
int fac =
(angle1 < angle2) | ((angle1 < angle3) << 1) | ((angle2 < angle3) << 2);
switch (fac) {
CASE 0 : // p1a p2b p2a p1b
insertBranch(interList, item1, true);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP1b) insertBranch(interList, item1, false);
CASE 1 : // p1a p2b p1b p2a
insertBranch(interList, item1, true);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2a) insertBranch(interList, item2, true);
CASE 2 : assert(false);
CASE 3 : // p1a p1b p2b p2a
insertBranch(interList, item1, true);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP2a) insertBranch(interList, item2, true);
CASE 4 : // p1a p2a p2b p1b
insertBranch(interList, item1, true);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP2b) insertBranch(interList, item2, false);
if (!eraseP1b) insertBranch(interList, item1, false);
CASE 5 : assert(false);
CASE 6 : // p1a p2a p1b p2b
insertBranch(interList, item1, true);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2b) insertBranch(interList, item2, false);
CASE 7 : // p1a p1b p2a p2b
insertBranch(interList, item1, true);
if (!eraseP1b) insertBranch(interList, item1, false);
if (!eraseP2a) insertBranch(interList, item2, true);
if (!eraseP2b) insertBranch(interList, item2, false);
DEFAULT:
assert(false);
}
return true;
}
//-----------------------------------------------------------------------------
bool makeIntersection(IntersectionData &intData, const vector<VIStroke *> &s,
int ii, int jj, DoublePair inter, int strokeSize,
Intersection &interList) {
IntersectedStroke item1(intData.m_intList.end(), NULL_ITER),
item2(intData.m_intList.end(), NULL_ITER);
interList.m_intersection = s[ii]->m_s->getPoint(inter.first);
item1.m_edge.m_w0 = inter.first;
item2.m_edge.m_w0 = inter.second;
if (ii >= 0 && ii < strokeSize) {
item1.m_edge.m_s = s[ii]->m_s;
item1.m_edge.m_index = ii;
} else {
if (ii < 0) {
item1.m_edge.m_s = intData.m_autocloseMap[ii];
item1.m_edge.m_index = ii;
} else {
item1.m_edge.m_s = s[ii]->m_s;
item1.m_edge.m_index = -(ii + intData.maxAutocloseId * 100000);
intData.m_autocloseMap[item1.m_edge.m_index] = item1.m_edge.m_s;
}
}
if (jj >= 0 && jj < strokeSize) {
item2.m_edge.m_s = s[jj]->m_s;
item2.m_edge.m_index = jj;
} else {
if (jj < 0) {
item2.m_edge.m_s = intData.m_autocloseMap[jj];
item2.m_edge.m_index = jj;
} else {
item2.m_edge.m_s = s[jj]->m_s;
item2.m_edge.m_index = -(jj + intData.maxAutocloseId * 100000);
intData.m_autocloseMap[item2.m_edge.m_index] = item2.m_edge.m_s;
}
}
bool reversed = false;
TPointD p0, p0b, p1, p1b;
bool ret1 = item1.m_edge.m_s->getSpeedTwoValues(item1.m_edge.m_w0, p0, p0b);
bool ret2 = item2.m_edge.m_s->getSpeedTwoValues(item2.m_edge.m_w0, p1, p1b);
if (ret1 || ret2) // punto angoloso!!!!
return makeEdgeIntersection(interList, item1, item2, p0, p0b, p1, p1b);
double crossVal = cross(p0, p1);
// crossVal = cross(p0, p1);
if (areAlmostEqual(crossVal, 0.0)) {
bool endpoint1 = (item1.m_edge.m_w0 == 0.0 || item1.m_edge.m_w0 == 1.0);
bool endpoint2 = (item2.m_edge.m_w0 == 0.0 || item2.m_edge.m_w0 == 1.0);
if (endpoint1 && endpoint2 && ((p0.x * p1.x >= 0 && p0.y * p1.y >= 0 &&
item1.m_edge.m_w0 != item2.m_edge.m_w0) ||
(p0.x * p1.x <= 0 && p0.y * p1.y <= 0 &&
item1.m_edge.m_w0 == item2.m_edge.m_w0)))
// due endpoint a 180 gradi;metto
{
item1.m_gettingOut = (item1.m_edge.m_w0 == 0.0);
interList.m_strokeList.push_back(item1);
item2.m_gettingOut = (item2.m_edge.m_w0 == 0.0);
interList.m_strokeList.push_back(item2);
return true;
}
// crossVal = nearCrossVal(item1.m_edge.m_s, item1.m_edge.m_w0,
// item2.m_edge.m_s, item2.m_edge.m_w0);
// if (areAlmostEqual(crossVal, 0.0))
// return false;
return makeEdgeIntersection(interList, item1, item2, p0, p0b, p1, p1b);
}
if (crossVal > 0)
reversed = true; // std::reverse(interList.m_strokeList.begin(),
// interList.m_strokeList.end());
if (item1.m_edge.m_w0 != 1.0) {
item1.m_gettingOut = true;
interList.m_strokeList.push_back(item1);
}
if (item2.m_edge.m_w0 != (reversed ? 0.0 : 1.0)) {
item2.m_gettingOut = !reversed;
interList.m_strokeList.push_back(item2);
}
if (item1.m_edge.m_w0 != 0.0) {
item1.m_gettingOut = false;
interList.m_strokeList.push_back(item1);
}
if (item2.m_edge.m_w0 != (reversed ? 1.0 : 0.0)) {
item2.m_gettingOut = reversed;
interList.m_strokeList.push_back(item2);
}
return true;
}
//-----------------------------------------------------------------------------
/*
void checkAuto(const vector<VIStroke*>& s)
{
for (int i=0; i<(int)s.size(); i++)
for (int j=i+1; j<(int)s.size(); j++)
if (s[i]->m_s->getChunkCount()==1 && s[j]->m_s->getChunkCount()==1) //se ha
una sola quadratica, probabilmente e' un autoclose.
{
const TThickQuadratic*q = s[i]->m_s->getChunk(0);
const TThickQuadratic*p = s[j]->m_s->getChunk(0);
if (areAlmostEqual(q->getP0(), p->getP0(), 1e-2) &&
areAlmostEqual(q->getP2(), p->getP2(), 1e-2))
assert(!"eccolo!");
if (areAlmostEqual(q->getP0(), p->getP2(), 1e-2) &&
areAlmostEqual(q->getP2(), p->getP0(), 1e-2))
assert(!"eccolo!");
}
}
*/
//-----------------------------------------------------------------------------
bool addAutocloseIntersection(IntersectionData &intData, vector<VIStroke *> &s,
int ii, int jj, double w0, double w1,
int strokeSize) {
list<Intersection>::reverse_iterator rit = intData.m_intList.rbegin();
assert(w0 >= 0.0 && w0 <= 1.0);
assert(w1 >= 0.0 && w1 <= 1.0);
for (; rit != intData.m_intList.rend();
rit++) // evito di fare la connessione, se gia' ce
// ne e' una simile tra le stesse due stroke
{
if (rit->m_strokeList.size() < 2) continue;
list<IntersectedStroke>::iterator is = rit->m_strokeList.begin();
int s0 = is->m_edge.m_index;
if (s0 < 0) continue;
double ww0 = is->m_edge.m_w0;
is++;
if (is->m_edge.m_index == s0 && is->m_edge.m_w0 == ww0) {
is++;
if (is == rit->m_strokeList.end()) continue;
}
int s1 = is->m_edge.m_index;
if (s1 < 0) continue;
double ww1 = is->m_edge.m_w0;
if (!((s0 == ii && s1 == jj) || (s0 == jj && s1 == ii))) continue;
if (s0 == ii && areAlmostEqual(w0, ww0, 0.1) &&
areAlmostEqual(w1, ww1, 0.1))
return false;
else if (s1 == ii && areAlmostEqual(w0, ww1, 0.1) &&
areAlmostEqual(w1, ww0, 0.1))
return false;
}
vector<TPointD> v;
v.push_back(s[ii]->m_s->getPoint(w0));
v.push_back(s[jj]->m_s->getPoint(w1));
if (v[0] == v[1]) // le stroke si intersecano , ma la fottuta funzione
// intersect non ha trovato l'intersezione(tipicamente,
// questo accade agli estremi)!!!
{
addIntersection(intData, s, ii, jj, DoublePair(w0, w1), strokeSize);
return true;
}
// se gia e' stato messo questo autoclose, evito
for (int i = 0; i < (int)s.size(); i++)
if (s[i]->m_s->getChunkCount() ==
1) // se ha una sola quadratica, probabilmente e' un autoclose.
{
const TThickQuadratic *q = s[i]->m_s->getChunk(0);
if (areAlmostEqual(q->getP0(), v[0], 1e-2) &&
areAlmostEqual(q->getP2(), v[1], 1e-2) ||
areAlmostEqual(q->getP0(), v[1], 1e-2) &&
areAlmostEqual(q->getP2(), v[0], 1e-2)) {
return true;
addIntersection(intData, s, i, ii, DoublePair(0.0, w0), strokeSize);
addIntersection(intData, s, i, jj, DoublePair(1.0, w1), strokeSize);
return true;
}
}
s.push_back(new VIStroke(new TStroke(v)));
addIntersection(intData, s, s.size() - 1, ii, DoublePair(0.0, w0),
strokeSize);
addIntersection(intData, s, s.size() - 1, jj, DoublePair(1.0, w1),
strokeSize);
return true;
}
//-----------------------------------------------------------------------------
double g_autocloseTolerance = c_newAutocloseTolerance;
bool makeEndPointConnections(vector<VIStroke *> &s, int ii, bool isIStartPoint,
int jj, bool isJStartPoint,
IntersectionData &intData, int strokeSize) {
double x0 = (isIStartPoint ? 0.0 : 1.0);
double x1 = (isJStartPoint ? 0.0 : 1.0);
TThickPoint p0 = s[ii]->m_s->getThickPoint(x0);
TThickPoint p1 = s[jj]->m_s->getThickPoint(x1);
double dist2;
dist2 = tdistance2(p0, p1);
if (dist2 >= 0 &&
dist2 <=
tmax((g_autocloseTolerance == c_oldAutocloseTolerance) ? 9.09 : 2.0,
g_autocloseTolerance * (p0.thick + p1.thick) *
(p0.thick +
p1.thick))) // 0.01 tiene conto di quando thick==0
{
if (ii == jj) {
TRectD r = s[ii]->m_s->getBBox(); // se e' un autoclose su una stroke
// piccolissima, creerebbe uan area
// trascurabile, ignoro
if (fabs(r.x1 - r.x0) < 2 && fabs(r.y1 - r.y0) < 2) return false;
}
return addAutocloseIntersection(intData, s, ii, jj, x0, x1, strokeSize);
}
return false;
}
/*
if (s[ii]==s[jj])
return;
dist2 = c_autocloseTolerance*tdistance2(p01, p10);
if (dist2>0 && dist2<=(p01.thick+p10.thick)*(p01.thick+p10.thick))
addAutocloseIntersection(intData, s, ii, jj, 1.0, 0.0, strokeSize);
dist2 = c_autocloseTolerance*tdistance2(p00, p10);
if ((dist2>0 && dist2<=(p00.thick+p10.thick)*(p00.thick+p10.thick)))
addAutocloseIntersection(intData, s, ii, jj, 0.0, 0.0, strokeSize);
dist2 = c_autocloseTolerance*tdistance2(p01, p11);
if ((dist2>0 && dist2<=(p01.thick+p11.thick)*(p01.thick+p11.thick)))
addAutocloseIntersection(intData, s, ii, jj, 1.0, 1.0, strokeSize);
}
*/
//-----------------------------------------------------------------------------
double getCurlW(TStroke *s, bool isBegin) // trova il punto di split su una
// stroke, in prossimita di un
// ricciolo;
// un ricciolo c'e' se la curva ha un min o max relativo su x seguito da uno su
// y, o viceversa.
{
int numChunks = s->getChunkCount();
double dx2, dx1 = 0, dy2, dy1 = 0;
for (int i = 0; i < numChunks; i++) {
const TQuadratic *q = s->getChunk(isBegin ? i : numChunks - 1 - i);
dy2 = q->getP1().y - q->getP0().y;
if (dy1 * dy2 < 0) break;
dy1 = dy2;
dy2 = q->getP2().y - q->getP1().y;
if (dy1 * dy2 < 0) break;
dy1 = dy2;
}
if (i == numChunks) return -1;
int maxMin0 = isBegin ? i : numChunks - 1 - i;
for (int j = 0; j < numChunks; j++) {
const TQuadratic *q = s->getChunk(isBegin ? j : numChunks - 1 - j);
dx2 = q->getP1().x - q->getP0().x;
if (dx1 * dx2 < 0) break;
dx1 = dx2;
dx2 = q->getP2().x - q->getP1().x;
if (dx1 * dx2 < 0) break;
dx1 = dx2;
}
if (j == numChunks) return -1;
int maxMin1 = isBegin ? j : numChunks - 1 - j;
return getWfromChunkAndT(
s, isBegin ? tmax(maxMin0, maxMin1) : tmin(maxMin0, maxMin1),
isBegin ? 1.0 : 0.0);
}
#ifdef Levo
bool lastIsX = false, lastIsY = false;
for (int i = 0; i < numChunks; i++) {
const TThickQuadratic *q = s->getChunk(isBegin ? i : numChunks - 1 - i);
if ((q->getP0().y < q->getP1().y &&
q->getP2().y <
q->getP1().y) || // la quadratica ha un minimo o massimo relativo
(q->getP0().y > q->getP1().y && q->getP2().y > q->getP1().y)) {
double w = getWfromChunkAndT(s, isBegin ? i : numChunks - 1 - i,
isBegin ? 1.0 : 0.0);
if (lastIsX) // e' il secondo min o max relativo
return w;
lastIsX = false;
lastIsY = true;
} else if ((q->getP0().x < q->getP1().x &&
q->getP2().x <
q->getP1()
.x) || // la quadratica ha un minimo o massimo relativo
(q->getP0().x > q->getP1().x && q->getP2().x > q->getP1().x)) {
double w = getWfromChunkAndT(s, isBegin ? i : numChunks - 1 - i,
isBegin ? 1.0 : 0.0);
if (lastIsY) // e' il secondo min o max relativo
return w;
lastIsX = true;
lastIsY = false;
}
}
return -1;
}
#endif
//-----------------------------------------------------------------------------
void makeConnection(vector<VIStroke *> &s, int ii, int jj, bool isBegin,
IntersectionData &intData, int strokeSize) {
if (s[ii]->m_s->isSelfLoop()) return;
double w0 = isBegin ? 0.0 : 1.0;
TThickPoint p0 = s[ii]->m_s->getThickPoint(w0);
double t, dist2;
int index;
TStroke sAux, *sComp;
if (ii == jj) // per trovare le intersezioni con una stroke e se stessa, si
// toglie il
// pezzo di stroke di cui si cercano vicinanze fino alla prima curva
{
double w = getCurlW(s[ii]->m_s, isBegin);
if (w == -1) return;
split<TStroke>(*(s[ii]->m_s), tmin(isBegin ? 1.0 : 0.0, w),
tmax(isBegin ? 1.0 : 0.0, w), sAux);
sComp = &sAux;
} else
sComp = s[jj]->m_s;
if (sComp->getNearestChunk(p0, t, index, dist2) && dist2 > 0) {
if (ii == jj) {
double dummy;
s[jj]->m_s->getNearestChunk(sComp->getChunk(index)->getPoint(t), t, index,
dummy);
}
// if (areAlmostEqual(w, 0.0, 0.05) || areAlmostEqual(w, 1.0, 0.05))
// return; //se w e' vicino ad un estremo, rientra nell'autoclose point to
// point
// if (s[jj]->m_s->getLength(w)<=s[jj]->m_s->getThickPoint(0).thick ||
// s[jj]->m_s->getLength(w, 1)<=s[jj]->m_s->getThickPoint(1).thick)
// return;
TThickPoint p1 = s[jj]->m_s->getChunk(index)->getThickPoint(t);
if (dist2 <=
(tmax(
(g_autocloseTolerance == c_oldAutocloseTolerance) ? 9.09 : 2.0,
(g_autocloseTolerance + 0.7) * (p0.thick + p1.thick) *
(p0.thick + p1.thick)))) // 0.01 tiene conto di quando thick==0
{
// if (areAlmostEqual(dist2, 0.0))
// return;
double w = getWfromChunkAndT(s[jj]->m_s, index, t);
addAutocloseIntersection(intData, s, ii, jj, w0, w, strokeSize);
}
}
}
//-----------------------------------------------------------------------------
void autoclose(vector<VIStroke *> &s, int ii, int jj, IntersectionData &IntData,
int strokeSize) {
bool ret1 = false, ret2 = false, ret3 = false, ret4 = false;
if (!s[ii]->m_s->isSelfLoop() && !s[jj]->m_s->isSelfLoop()) {
ret1 = makeEndPointConnections(s, ii, true, jj, false, IntData, strokeSize);
if (ii != jj) {
ret2 =
makeEndPointConnections(s, ii, true, jj, true, IntData, strokeSize);
ret3 =
makeEndPointConnections(s, ii, false, jj, true, IntData, strokeSize);
ret4 =
makeEndPointConnections(s, ii, false, jj, false, IntData, strokeSize);
}
}
if (!ret1 && !ret2) makeConnection(s, ii, jj, true, IntData, strokeSize);
if (!ret1 && !ret4) makeConnection(s, jj, ii, false, IntData, strokeSize);
if (ii != jj) {
if (!ret2 && !ret3) makeConnection(s, jj, ii, true, IntData, strokeSize);
if (!ret3 && !ret4) makeConnection(s, ii, jj, false, IntData, strokeSize);
}
}
//-----------------------------------------------------------------------------
TPointD inline getTangent(const IntersectedStroke &item) {
return (item.m_gettingOut ? 1 : -1) *
item.m_edge.m_s->getSpeed(item.m_edge.m_w0, item.m_gettingOut);
}
//-----------------------------------------------------------------------------
void addBranch(IntersectionData &intData, list<IntersectedStroke> &strokeList,
const vector<VIStroke *> &s, int ii, double w, int strokeSize,
bool gettingOut) {
list<IntersectedStroke>::iterator it1, it2;
TPointD tanRef, lastTan;
IntersectedStroke item(intData.m_intList.end(), strokeList.end());
if (ii < 0) {
item.m_edge.m_s = intData.m_autocloseMap[ii];
item.m_edge.m_index = ii;
} else {
item.m_edge.m_s = s[ii]->m_s;
if (ii < strokeSize)
item.m_edge.m_index = ii;
else {
item.m_edge.m_index = -(ii + intData.maxAutocloseId * 100000);
intData.m_autocloseMap[item.m_edge.m_index] = item.m_edge.m_s;
}
}
item.m_edge.m_w0 = w;
item.m_gettingOut = gettingOut;
/*
if (strokeList.size()==2) //potrebbero essere orientati male; due branch possono
stare come vogliono, ma col terzo no.
{
TPointD tan2 = getTangent(strokeList.back());
TPointD aux= getTangent(*(strokeList.begin()));
double crossVal = cross(aux, tan2);
if (areAlmostEqual(aux, tan2, 1e-3))
return;
if (crossVal>0)
{
std::reverse(strokeList.begin(), strokeList.end());
//tan2 = getTangent(strokeList.back());
}
}
*/
/*
if (areAlmostEqual(lastCross, 0.0) && tan1.x*tan2.x>=0 && tan1.y*tan2.y>=0)
//significa angolo tra tangenti nullo
{
crossVal = nearCrossVal(item.m_edge.m_s, item.m_edge.m_w0,
strokeList.back().m_edge.m_s, strokeList.back().m_edge.m_w0);
if (areAlmostEqual(crossVal, 0.0))
return;
if (!strokeList.back().m_gettingOut)
crossVal = -crossVal;
}
*/
tanRef = getTangent(item);
lastTan = getTangent(strokeList.back());
/*
for (it=strokeList.begin(); it!=strokeList.end(); ++it)
{
TPointD curTan = getTangent(*it);
double angle0 = getAngle(lastTan, curTan);
double angle1 = getAngle(lastTan, tanRef);
if (areAlmostEqual(angle0, angle1, 1e-8))
{
double angle = getNearAngle( it->m_edge.m_s, it->m_edge.m_w0,
it->m_gettingOut,
item.m_edge.m_s, item.m_edge.m_w0,
item.m_gettingOut);
angle1 += angle; if (angle1>360) angle1-=360;
}
if (angle1<angle0)
{
strokeList.insert(it, item);
return;
}
lastTan=curTan;
}*/
it2 = strokeList.end();
it2--;
for (it1 = strokeList.begin(); it1 != strokeList.end(); ++it1) {
TPointD curTan = getTangent(*it1);
double angle0 = getAngle(lastTan, curTan);
double angle1 = getAngle(lastTan, tanRef);
if (areAlmostEqual(angle1, 0, 1e-8)) {
double angle =
getNearAngle(it2->m_edge.m_s, it2->m_edge.m_w0, it2->m_gettingOut,
item.m_edge.m_s, item.m_edge.m_w0, item.m_gettingOut);
angle1 += angle;
if (angle1 > 360) angle1 -= 360;
}
if (areAlmostEqual(angle0, angle1, 1e-8)) {
double angle =
getNearAngle(it1->m_edge.m_s, it1->m_edge.m_w0, it1->m_gettingOut,
item.m_edge.m_s, item.m_edge.m_w0, item.m_gettingOut);
angle1 += angle;
if (angle1 > 360) angle1 -= 360;
}
if (angle1 < angle0) {
strokeList.insert(it1, item);
return;
}
lastTan = curTan;
it2 = it1;
}
// assert(!"add branch: can't find where to insert!");
strokeList.push_back(item);
}
//-----------------------------------------------------------------------------
void addBranches(IntersectionData &intData, Intersection &intersection,
const vector<VIStroke *> &s, int ii, int jj,
DoublePair intersectionPair, int strokeSize) {
bool foundS1 = false, foundS2 = false;
list<IntersectedStroke>::iterator it;
assert(!intersection.m_strokeList.empty());
for (it = intersection.m_strokeList.begin();
it != intersection.m_strokeList.end(); it++) {
if ((ii >= 0 && (*it).m_edge.m_s == s[ii]->m_s &&
it->m_edge.m_w0 == intersectionPair.first) ||
(ii < 0 && (*it).m_edge.m_index == ii &&
it->m_edge.m_w0 == intersectionPair.first))
foundS1 = true;
if ((jj >= 0 && (*it).m_edge.m_s == s[jj]->m_s &&
it->m_edge.m_w0 == intersectionPair.second) ||
(jj < 0 && (*it).m_edge.m_index == jj &&
it->m_edge.m_w0 == intersectionPair.second))
foundS2 = true;
}
if (foundS1 && foundS2) {
/*
//errore!(vedi commento sotto) possono essere un sacco di intersezioni
coincidenti se passano per l'estremo di una quad
//significa che ci sono due intersezioni coincidenti. cioe' due stroke tangenti.
quindi devo invertire l'ordine di due branch enlla rosa dei branch.
list<IntersectedStroke>::iterator it1, it2;
it1=intersection.m_strokeList.begin();
it2 = it1; it2++;
for (; it2!=intersection.m_strokeList.end(); ++it1, ++it2)
{
if ((*it1).m_gettingOut!=(*it2).m_gettingOut &&((*it1).m_edge.m_index==jj &&
(*it2).m_edge.m_index==ii) ||
((*it1).m_edge.m_index==ii && (*it2).m_edge.m_index==jj))
{
IntersectedStroke& el1 = (*it1);
IntersectedStroke& el2 = (*it2);
IntersectedStroke app;
app = el1;
el1=el2;
el2=app;
break;
}
}
*/
return;
}
if (!foundS1) {
if (intersectionPair.first != 1)
addBranch(intData, intersection.m_strokeList, s, ii,
intersectionPair.first, strokeSize, true);
if (intersectionPair.first != 0)
addBranch(intData, intersection.m_strokeList, s, ii,
intersectionPair.first, strokeSize, false);
// assert(intersection.m_strokeList.size()-size>0);
}
if (!foundS2) {
if (intersectionPair.second != 1)
addBranch(intData, intersection.m_strokeList, s, jj,
intersectionPair.second, strokeSize, true);
if (intersectionPair.second != 0)
addBranch(intData, intersection.m_strokeList, s, jj,
intersectionPair.second, strokeSize, false);
// intersection.m_numInter+=intersection.m_strokeList.size()-size;
// assert(intersection.m_strokeList.size()-size>0);
}
}
//-----------------------------------------------------------------------------
void addIntersections(IntersectionData &intData, const vector<VIStroke *> &s,
int ii, int jj, vector<DoublePair> &intersections,
int strokeSize) {
for (int k = 0; k < (int)intersections.size(); k++) {
if (ii >= strokeSize && (areAlmostEqual(intersections[k].first, 0.0) ||
areAlmostEqual(intersections[k].first, 1.0)))
continue;
if (jj >= strokeSize && (areAlmostEqual(intersections[k].second, 0.0) ||
areAlmostEqual(intersections[k].second, 1.0)))
continue;
addIntersection(intData, s, ii, jj, intersections[k], strokeSize);
}
}
//-----------------------------------------------------------------------------
inline double truncate(double x) {
x += 1.0;
unsigned long *l = (unsigned long *)&x;
#if TNZ_LITTLE_ENDIAN
l[0] &= 0xFFE00000;
#else
l[1] &= 0xFFE00000;
#endif
return x - 1.0;
}
//-----------------------------------------------------------------------------
void addIntersection(IntersectionData &intData, const vector<VIStroke *> &s,
int ii, int jj, DoublePair intersection, int strokeSize) {
list<Intersection>::iterator it;
TPointD p;
// UINT iw;
// iw = ((UINT)(intersection.first*0x3fffffff));
// intersection.first = truncate(intersection.first);
// iw = (UINT)(intersection.second*0x3fffffff);
// intersection.second = truncate(intersection.second);
if (areAlmostEqual(intersection.first, 0.0, 1e-8))
intersection.first = 0.0;
else if (areAlmostEqual(intersection.first, 1.0, 1e-8))
intersection.first = 1.0;
if (areAlmostEqual(intersection.second, 0.0, 1e-8))
intersection.second = 0.0;
else if (areAlmostEqual(intersection.second, 1.0, 1e-8))
intersection.second = 1.0;
p = s[ii]->m_s->getPoint(intersection.first);
for (it = intData.m_intList.begin(); it != intData.m_intList.end(); it++)
if ((*it).m_intersection ==
p) // devono essere rigorosamente uguali, altrimenti
// il calcolo dell'ordine dei rami con le tangenti sballa
{
addBranches(intData, *it, s, ii, jj, intersection, strokeSize);
return;
}
intData.m_intList.push_back(Intersection());
if (!makeIntersection(intData, s, ii, jj, intersection, strokeSize,
intData.m_intList.back())) {
list<Intersection>::iterator it = intData.m_intList.begin();
advance(it, intData.m_intList.size() - 1);
intData.m_intList.erase(it);
}
}
//-----------------------------------------------------------------------------
void TVectorImage::Imp::findIntersections() {
vector<VIStroke *> &strokeArray = m_strokes;
IntersectionData &intData = m_intersectionData;
int strokeSize = (int)strokeArray.size();
int i, j;
assert(intData.m_intersectedStrokeArray.empty());
intData.maxAutocloseId++;
map<int, TStroke *>::iterator it, it_b = intData.m_autocloseMap.begin();
map<int, TStroke *>::iterator it_e = intData.m_autocloseMap.end();
// prima cerco le intersezioni tra nuove strokes e vecchi autoclose
for (i = 0; i < strokeSize; i++) {
TStroke *s1 = strokeArray[i]->m_s;
if (!strokeArray[i]->m_isNewForFill || strokeArray[i]->m_isPoint) continue;
TRectD bBox = s1->getBBox();
double thick2 = s1->getThickPoint(0).thick * 2;
if (bBox.getLx() <= thick2 && bBox.getLy() <= thick2) {
strokeArray[i]->m_isPoint = true;
continue;
}
for (int j = 0; j < (int)s1->getControlPointCount(); j++) {
TThickPoint p = s1->getControlPoint(j);
s1->setControlPoint(j, myRound(p));
}
for (it = it_b; it != it_e; ++it) {
TStroke *s2 = it->second;
vector<DoublePair> parIntersections;
if (intersect(s1, s2, parIntersections, true))
addIntersections(intData, strokeArray, i, it->first, parIntersections,
strokeSize);
}
}
// poi, intersezioni tra stroke, in cui almeno uno dei due deve essere nuovo
for (i = 0; i < strokeSize; i++) {
TStroke *s1 = strokeArray[i]->m_s;
if (strokeArray[i]->m_isPoint) continue;
for (j = i; j < strokeSize /*&& (strokeArray[i]->getBBox().x1>=
strokeArray[j]->getBBox().x0)*/
;
j++) {
TStroke *s2 = strokeArray[j]->m_s;
if (strokeArray[j]->m_isPoint) continue;
if (!(strokeArray[i]->m_isNewForFill || strokeArray[j]->m_isNewForFill))
continue;
vector<DoublePair> parIntersections;
if (s1->getBBox().overlaps(s2->getBBox())) {
UINT size = intData.m_intList.size();
if (intersect(s1, s2, parIntersections, false)) {
// if (i==0 && j==1) parIntersections.erase(parIntersections.begin());
addIntersections(intData, strokeArray, i, j, parIntersections,
strokeSize);
}
// autoclose(strokeArray, i, j, intData, strokeSize);
if (!strokeArray[i]->m_isNewForFill &&
size != intData.m_intList.size() &&
!strokeArray[i]->m_edgeList.empty()) // aggiunte nuove intersezioni
{
intData.m_intersectedStrokeArray.push_back(IntersectedStrokeEdges(i));
list<TEdge *> &_list =
intData.m_intersectedStrokeArray.back().m_edgeList;
list<TEdge *>::const_iterator it;
for (it = strokeArray[i]->m_edgeList.begin();
it != strokeArray[i]->m_edgeList.end(); ++it)
_list.push_back(new TEdge(**it, false));
}
}
}
// strokeArray[i]->m_isNewForFill = false;
}
for (i = 0; i < strokeSize; i++) {
TStroke *s1 = strokeArray[i]->m_s;
if (strokeArray[i]->m_isPoint) continue;
for (j = i; j < strokeSize; j++) {
TStroke *s2 = strokeArray[j]->m_s;
if (strokeArray[j]->m_isPoint) continue;
if (!(strokeArray[i]->m_isNewForFill || strokeArray[j]->m_isNewForFill))
continue;
if (s1->getBBox().overlaps(s2->getBBox()))
autoclose(strokeArray, i, j, intData, strokeSize);
}
strokeArray[i]->m_isNewForFill = false;
}
for (i = 0; i < strokeSize; i++) {
list<TEdge *>::iterator it, it_b = strokeArray[i]->m_edgeList.begin(),
it_e = strokeArray[i]->m_edgeList.end();
for (it = it_b; it != it_e; ++it)
if ((*it)->m_toBeDeleted == 1) delete *it;
strokeArray[i]->m_edgeList.clear();
}
// si devono cercare le intersezioni con i segmenti aggiunti per l'autoclose
for (i = strokeSize; i < (int)strokeArray.size(); ++i) {
TStroke *s1 = strokeArray[i]->m_s;
for (j = i + 1; j < (int)strokeArray.size();
++j) // intersezione segmento-segmento
{
TStroke *s2 = strokeArray[j]->m_s;
vector<DoublePair> parIntersections;
if (intersect(s1, s2, parIntersections, true))
addIntersections(intData, strokeArray, i, j, parIntersections,
strokeSize);
}
for (j = 0; j < strokeSize; ++j) // intersezione segmento-curva
{
if (strokeArray[j]->m_isPoint) continue;
TStroke *s2 = strokeArray[j]->m_s;
vector<DoublePair> parIntersections;
if (intersect(s1, s2, parIntersections, true))
addIntersections(intData, strokeArray, i, j, parIntersections,
strokeSize);
}
}
}
// la struttura delle intersezioni viene poi visitata per trovare
// i link tra un'intersezione e la successiva
//-----------------------------------------------------------------------------
int TVectorImage::Imp::computeIntersections() {
list<Intersection>::iterator it1;
list<IntersectedStroke>::iterator it2;
IntersectionData &intData = m_intersectionData;
int strokeSize = (int)m_strokes.size();
findIntersections();
findNearestIntersection(intData.m_intList);
// for (it1=intData.m_intList.begin(); it1!=intData.m_intList.end();) //la
// faccio qui, e non nella eraseIntersection. vedi commento li'.
eraseDeadIntersections();
for (it1 = intData.m_intList.begin(); it1 != intData.m_intList.end(); it1++)
markDeadIntersections(intData.m_intList, it1);
// checkInterList(intData.m_intList);
return strokeSize;
}
//-----------------------------------------------------------------------------
/*
void endPointIntersect(const TStroke* s0, const TStroke* s1, vector<DoublePair>&
parIntersections)
{
TPointD p00 = s0->getPoint(0);
TPointD p11 = s1->getPoint(1);
if (tdistance2(p00, p11)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(0, 1));
if (s0==s1)
return;
TPointD p01 = s0->getPoint(1);
TPointD p10 = s1->getPoint(0);
if (tdistance2(p00, p10)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(0, 0));
if (tdistance2(p01, p10)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(1, 0));
if (tdistance2(p01, p11)< 2*0.06*0.06)
parIntersections.push_back(DoublePair(1, 1));
}
*/
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Trova una possibile regione data una lista di punti di intersezione
TRegion *findRegion(list<Intersection> &intList,
list<Intersection>::iterator it1,
list<IntersectedStroke>::iterator it2) {
TRegion *r = new TRegion();
int currStyle = 0;
list<IntersectedStroke>::iterator itStart = it2;
list<Intersection>::iterator nextIt1;
list<IntersectedStroke>::iterator nextIt2;
// Cicla finche' t2 non punta ad uno stroke gia' visitato
while (!it2->m_visited) {
it2->m_visited = true;
// Ciclo finche' lo stroke puntato da it2 non ha un successivo punto di
// intersezione
do {
it2++;
if (it2 ==
it1->m_strokeList.end()) // uso la lista come se fosse circolare
it2 = it1->m_strokeList.begin();
} while (it2->m_nextIntersection == intList.end());
nextIt1 = it2->m_nextIntersection;
nextIt2 = it2->m_nextStroke;
// Viene controllato e sistemato lo stile degli stroke
if (it2->m_edge.m_styleId != 0) {
if (currStyle == 0)
currStyle = it2->m_edge.m_styleId;
else if (it2->m_edge.m_styleId != currStyle) {
currStyle = it2->m_edge.m_styleId;
for (UINT i = 0; i < r->getEdgeCount(); i++)
r->getEdge(i)->m_styleId = currStyle;
}
} else
it2->m_edge.m_styleId = currStyle;
// Aggiunge lo stroke puntato da p2 alla regione
r->addEdge(&it2->m_edge);
if (nextIt2 == itStart) return r;
it1 = nextIt1;
it2 = nextIt2;
}
delete r;
return 0;
}
//-----------------------------------------------------------------------------
/*
bool areEqualRegions(const TRegion& r1, const TRegion& r2)
{
if (r1.getBBox()!=r2.getBBox())
return false;
if (r1.getEdgeCount()!=r2.getEdgeCount())
return false;
for (UINT i=0; i<r1.getEdgeCount(); i++)
{
TEdge *e1 = r1.getEdge(i);
for (j=0; j<r2.getEdgeCount(); j++)
{
TEdge *e2 = r2.getEdge(j);
if (e1->m_s==e2->m_s &&
tmin(e1->m_w0, e1->m_w1)==tmin(e2->m_w0, e2->m_w1) &&
tmax(e1->m_w0, e1->m_w1)==tmax(e2->m_w0, e2->m_w1))
{
if (e1->m_styleId && !e2->m_styleId)
e2->m_styleId=e1->m_styleId;
else if (e2->m_styleId && !e1->m_styleId)
e1->m_styleId=e2->m_styleId;
break;
}
}
if (j==r2.getEdgeCount()) //e1 non e' uguale a nessun edge di r2
return false;
}
return true;
}
*/
//-----------------------------------------------------------------------------
/*
bool isMetaRegion(const TRegion& r1, const TRegion& r2)
{
if (areEqualRegions(r1, r2))
return true;
for (UINT i=0; i<r1.getRegionCount(); i++)
{
if (isMetaRegion(*r1.getRegion(i), r2))
return true;
}
return false;
}
//-----------------------------------------------------------------------------
bool isMetaRegion(const vector<TRegion*>& m_regions, const TRegion& r)
{
for (UINT i=0; i<m_regions.size(); i++)
if (isMetaRegion(*(m_regions[i]), r))
return true;
return false;
}
//-----------------------------------------------------------------------------
*/
bool isValidArea(const vector<TRegion *> ®ions, const TRegion &r) {
double area = 0.0;
TPointD p, pOld /*, pAux*/;
int pointAdded = 0;
int size = r.getEdgeCount();
if (size == 0) return false;
// if (size<2)
// return !isMetaRegion(regions, r);
int firstControlPoint;
int lastControlPoint;
TEdge *e = r.getEdge(size - 1);
pOld = e->m_s->getPoint(e->m_w1);
for (int i = 0; i < size; i++) {
TEdge *e = r.getEdge(i);
TStroke *s = e->m_s;
firstControlPoint = s->getControlPointIndexAfterParameter(e->m_w0);
lastControlPoint = s->getControlPointIndexAfterParameter(e->m_w1);
p = s->getPoint(e->m_w0);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
if (firstControlPoint <= lastControlPoint) {
if (firstControlPoint & 0x1) firstControlPoint++;
if (lastControlPoint - firstControlPoint <=
2) /// per evitare di avere troppi pochi punti....
{
p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
} else
for (int j = firstControlPoint; j < lastControlPoint; j += 2) {
p = s->getControlPoint(j);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
}
} else {
firstControlPoint--; // this case, getControlPointIndexBEFOREParameter
lastControlPoint--;
if (firstControlPoint & 0x1) firstControlPoint--;
if (firstControlPoint - lastControlPoint <=
2) /// per evitare di avere troppi pochi punti....
{
p = s->getPoint(0.333333 * e->m_w0 + 0.666666 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
p = s->getPoint(0.666666 * e->m_w0 + 0.333333 * e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
} else
for (int j = firstControlPoint; j > lastControlPoint; j -= 2) {
p = s->getControlPoint(j);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
}
}
p = s->getPoint(e->m_w1);
area += (p.y + pOld.y) * (pOld.x - p.x);
pOld = p;
pointAdded++;
}
assert(pointAdded >= 4);
return area > 0.5;
}
//-----------------------------------------------------------------------------
void transferColors(const list<TEdge *> &oldList, const list<TEdge *> &newList,
bool isStrokeChanged, bool isFlipped, bool overwriteColor);
//-----------------------------------------------------------------------------
void printStrokes1(vector<VIStroke *> &v, int size) {
UINT i = 0;
ofstream of("C:\\temp\\strokes.txt");
for (i = 0; i < (UINT)size; i++) {
TStroke *s = v[i]->m_s;
of << "***stroke " << i << endl;
for (UINT j = 0; j < (UINT)s->getChunkCount(); j++) {
const TThickQuadratic *q = s->getChunk(j);
of << " s0 " << q->getP0() << endl;
of << " s1 " << q->getP1() << endl;
of << " s2 " << q->getP2() << endl;
of << "****** " << endl;
}
of << endl;
}
for (i = size; i < v.size(); i++) {
TStroke *s = v[i]->m_s;
of << "***Autostroke " << i << endl;
of << "s0 " << s->getPoint(0.0) << endl;
of << "s1 " << s->getPoint(1.0) << endl;
of << endl;
}
}
//-----------------------------------------------------------------------------
#ifdef _DEBUG
static void printTime(TStopWatch &sw, string name) {
ostringstream ss;
ss << name << " : ";
sw.print(ss);
ss << '\n' << '\0';
string s(ss.str());
// TSystem::outputDebug(s);
}
#endif
//-----------------------------------------------------------------------------
void printStrokes1(vector<VIStroke *> &v, int size);
// Trova le regioni in una TVectorImage
int TVectorImage::Imp::computeRegions() {
#if defined(_DEBUG) && !defined(MACOSX)
TStopWatch stopWatch;
stopWatch.start(true);
#endif
if (!m_computeRegions) return 0;
/*if (m_intersectionData.m_computedAlmostOnce)
{
UINT i,n=m_strokes.size();
vector<int> vv(n);
for( i=0; i<n;++i) vv[i] = i;
m_intersectionData.m_computedAlmostOnce = true;
notifyChangedStrokes(vv,vector<TStroke*>(), false);
return true;
}*/
g_autocloseTolerance = m_autocloseTolerance;
// Cancella le regioni gia' esistenti per ricalcolarle
clearPointerContainer(m_regions);
m_regions.clear();
// Controlla che ci siano degli stroke
if (m_strokes.empty()) {
#if defined(_DEBUG) && !defined(MACOSX)
stopWatch.stop();
#endif
return 0;
}
// Inizializza la lista di intersezioni intList
m_intersectionData.m_computedAlmostOnce = true;
list<Intersection> &intList = m_intersectionData.m_intList;
cleanIntersectionMarks(intList);
// calcolo struttura delle intersezioni
int added = 0, notAdded = 0;
int strokeSize;
strokeSize = computeIntersections();
list<Intersection>::iterator it1;
list<IntersectedStroke>::iterator it2;
for (it1 = intList.begin(); it1 != intList.end(); it1++)
for (it2 = (*it1).m_strokeList.begin(); it2 != (*it1).m_strokeList.end();
it2++)
it2->m_edge.m_r = 0;
for (it1 = intList.begin(); it1 != intList.end(); it1++) {
// Controlla che il punto in questione non sia isolato
if (it1->m_numInter == 0) continue;
for (it2 = it1->m_strokeList.begin(); it2 != it1->m_strokeList.end();
it2++) {
TRegion *region;
// se lo stroke non unisce due punti di intersezione
// non lo considero e vado avanti con un altro stroke
if (it2->m_nextIntersection == intList.end()) continue;
// Se lo stroke puntato da t2 non e' stato ancora visitato, trova una
// regione
if (!it2->m_visited && (region = findRegion(intList, it1, it2))) {
// Se la regione e' valida la aggiunge al vettore delle regioni
if (isValidArea(m_regions, *region)) {
added++;
addRegion(m_regions, region);
// Lega ogni ramo della regione alla regione di appartenenza
for (UINT i = 0; i < region->getEdgeCount(); i++) {
TEdge *e = region->getEdge(i);
e->m_r = region;
if (e->m_index >= 0) m_strokes[e->m_index]->addEdge(e);
}
} else // Se la regione non e' valida viene scartata
{
notAdded++;
delete region;
}
}
}
}
if (!m_notIntersectingStrokes) {
UINT i;
for (i = 0; i < m_intersectionData.m_intersectedStrokeArray.size(); i++) {
if (!m_strokes[m_intersectionData.m_intersectedStrokeArray[i].m_index]
->m_edgeList.empty())
transferColors(
m_intersectionData.m_intersectedStrokeArray[i].m_edgeList,
m_strokes[m_intersectionData.m_intersectedStrokeArray[i].m_index]
->m_edgeList,
false, false, true);
clearPointerContainer(
m_intersectionData.m_intersectedStrokeArray[i].m_edgeList);
m_intersectionData.m_intersectedStrokeArray[i].m_edgeList.clear();
}
m_intersectionData.m_intersectedStrokeArray.clear();
}
assert(m_intersectionData.m_intersectedStrokeArray.empty());
// tolgo i segmenti aggiunti con l'autoclose
vector<VIStroke *>::iterator it = m_strokes.begin();
advance(it, strokeSize);
m_strokes.erase(it, m_strokes.end());
m_areValidRegions = true;
#if defined(_DEBUG) && !defined(MACOSX)
#endif
return 0;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
/*
class Branch
{
TEdge m_edge;
bool m_out, m_visited;
Branch *m_next;
Branch *m_nextBranch;
Intersection* m_intersection;
public:
Branch* next()
{
assert(m_intersection);
return m_next?m_next:m_intersection->m_branchList;
}
}
class Intersection
{
private:
TPointD m_intersectionPoint;
int m_intersectionCount;
Branch *m_branchList;
Intersection* m_next;
list<IntersectedStroke> m_strokeList;
public:
AddIntersection(int index0, int index1, DoublePair intersectionValues);
}
*/