#ifndef TCG_SEQUENCE_OPS_H
#define TCG_SEQUENCE_OPS_H
/*!
\file sequence_ops.h
\brief This file contains algorithms returning sub-sequences of
some input iterator range.
*/
namespace tcg {
namespace sequence_ops {
//**************************************************************************************
// Sequence Operations
//**************************************************************************************
/*!
\brief Base interface for an evaluator object supported by function
\p tcg::minimalPath().
*/
template <typename It, typename Pen>
struct EdgeEvaluator {
typedef It iterator_type;
typedef Pen penalty_type;
public:
EdgeEvaluator() {}
virtual ~EdgeEvaluator() {}
/*!
\brief Computes the largest allowed position reachable in a single
step from given position \a a.
*/
virtual iterator_type furthestFrom(const iterator_type &a) = 0;
/*!
\brief Computes the penalty for the specified input step.
\remark Supplied input step is ensured to be allowed, as guaranteed
by function furthestFrom().
*/
virtual penalty_type penalty(const iterator_type &a,
const iterator_type &b) = 0;
};
//------------------------------------------------------------------------------
/*!
\brief Builds the sequence's minimal subpath from the specified evaluator.
\details This function traverses the input sequence (end excluded) searching
for the
minimal allowed path with respect to the number of vertices
(primarily)
and the penalty associated to each path edge; returns true whether
such a
path could be found, false if \b no path from begin to --end could
be
established.
The minimal path function applies a simplified Bellman optimality
algorithm
on a sequence, where graph edges are specified through an edge
evaluator
functor, rather than being built in a graph class.
It works this way:
\li The minimal number of edges required to traverse the sequence
can be
found by traversing the sequence with the maximum step
allowed.
\li Each node have the minimal number of edges required to reach
the
sequence end, the minimal penalty to it, and obviously the
next node
which allow this optimal configuration.
\li The optimal "edge number-penalty" value from one point sums
with the
one of the next point in the optimal configuration; thus, it
can be
found retroactively starting from the end.
\li The path retrieved with the maximum step allowed defines the
remaining steps to achieve the optimal number of edges,
starting from
the end.
\remark This function is currently working only for random access
iterators.
\sa The EdgeEvaluator class for the supported evaluator interface.
*/
template <typename ranit_type, typename edge_eval, typename containers_reader>
bool minimalPath(ranit_type begin, ranit_type end, edge_eval &evaluator,
containers_reader &output);
}
} // namespace tcg::sequence_ops
#endif // TCG_SEQUENCE_OPS_H
#ifdef INCLUDE_HPP
#include "hpp/sequence_ops.hpp"
#endif