Blob Blame Raw


#include "tmachine.h"
#include "tcurves.h"
#include "tcurveutil.h"
#include "tmathutil.h"
#include "tbezier.h"

using namespace std;

//=============================================================================

ostream &operator<<(ostream &out, const TSegment &segment)
{
	return out << "S{" << segment.getP0() << ", " << segment.getP1() << "}";
}

//=============================================================================

void TCubic::split(double t, TCubic &first, TCubic &second) const
{
	double s = 1.0 - t;

	TPointD H = s * m_p1 + t * m_p2;

	first.m_p0 = m_p0;
	first.m_p1 = s * m_p0 + t * m_p1;
	first.m_p2 = s * first.m_p1 + t * H;

	second.m_p3 = m_p3;
	second.m_p2 = s * m_p2 + t * m_p3;
	second.m_p1 = s * H + t * second.m_p2;

	first.m_p3 = s * first.m_p2 + t * second.m_p1;
	second.m_p0 = first.m_p3;
}

double TCubic::getLength(double t0, double t1) const
{
	return -1;
}

//=============================================================================

TPointD TQuadratic::getPoint(double t) const
{
	double s = 1 - t;
	return m_p0 * s * s + 2 * t * s * m_p1 + t * t * m_p2;
}

//-----------------------------------------------------------------------------

double TQuadratic::getX(double t) const
{
	double s = 1 - t;
	return m_p0.x * s * s + 2 * t * s * m_p1.x + t * t * m_p2.x;
}
//-----------------------------------------------------------------------------

double TQuadratic::getY(double t) const
{
	double s = 1 - t;
	return m_p0.y * s * s + 2 * t * s * m_p1.y + t * t * m_p2.y;
}
//-----------------------------------------------------------------------------

double TQuadratic::getT(const TPointD &p) const
{

	// risolvo l'equazione  min|| b(t) - p ||

	// esprimo b in forma di polinomio  ed ottengo
	//
	//    ||  2                ||
	//min || a t + b t + c - p ||
	//    ||                   ||
	//
	// il tutto si riconduce a cercare le radici
	//  di un'equazione del tipo
	//    2  3          2               2
	// 2·a ·t  + 3·a·b·t  + t·(2·a·v + b ) + b·v
	// dove v e' pari a c - p

	vector<TPointD>
		bez(3),
		poly(3);

	bez[0] = m_p0;
	bez[1] = m_p1;
	bez[2] = m_p2;

	bezier2poly(bez, poly);

	TPointD v = poly[0] - p;

	vector<double> toSolve(4);
	vector<double> sol;

	toSolve[3] = 2.0 * norm2(poly[2]);
	toSolve[2] = 3.0 * (poly[2].x * poly[1].x + poly[2].y * poly[1].y);
	toSolve[1] = 2.0 * (poly[2].x * v.x + poly[2].y * v.y) + norm2(poly[1]);
	toSolve[0] = (poly[1].x * v.x + poly[1].y * v.y);

	int nSol = rootFinding(toSolve, sol);

	if (-1 == nSol) // infinite soluzioni
		return 0;

	int minParameter = -1;
	double minDist = (std::numeric_limits<double>::max)();

	for (int i = 0; i < nSol; ++i) {
		if (sol[i] < 0.0)
			sol[i] = 0.0;
		else if (sol[i] > 1.0)
			sol[i] = 1.0;

		double tmpDist = tdistance2(p, getPoint(sol[i]));
		if (tmpDist < minDist) {
			minDist = tmpDist;
			minParameter = i;
		}
	}

	if (minParameter != -1)
		return sol[minParameter];

	return tdistance2(m_p0, p) < tdistance2(m_p2, p) ? 0 : 1;
}

//-----------------------------------------------------------------------------

void TQuadratic::split(double t, TQuadratic &left, TQuadratic &right) const
{
	double dt;
	TPointD p;
	dt = 1.0 - t;

	left.m_p0 = m_p0;
	right.m_p2 = m_p2;

	left.m_p1 = dt * m_p0 + t * m_p1;
	right.m_p1 = dt * m_p1 + t * m_p2;
	p = dt * left.m_p1 + t * right.m_p1;

	left.m_p2 = right.m_p0 = p;
}

//-----------------------------------------------------------------------------

TRectD TQuadratic::getBBox() const
{
	TRectD bBox;
	if (m_p0.x < m_p2.x)
		bBox.x0 = m_p0.x, bBox.x1 = m_p2.x;
	else
		bBox.x0 = m_p2.x, bBox.x1 = m_p0.x;

	if (m_p0.y < m_p2.y)
		bBox.y0 = m_p0.y, bBox.y1 = m_p2.y;
	else
		bBox.y0 = m_p2.y, bBox.y1 = m_p0.y;

	TPointD denom = 2 * m_p1 - m_p0 - m_p2;
	if (denom.x != 0) {
		double tx = (m_p1.x - m_p0.x) / denom.x;
		if (tx >= 0 && tx <= 1) {
			double x = getPoint(tx).x;
			if (x < bBox.x0)
				bBox.x0 = x;
			else if (x > bBox.x1)
				bBox.x1 = x;
		}
	}
	if (denom.y != 0) {
		double ty = (m_p1.y - m_p0.y) / denom.y;
		if (ty >= 0 && ty <= 1) {
			double y = getPoint(ty).y;
			if (y < bBox.y0)
				bBox.y0 = y;
			else if (y > bBox.y1)
				bBox.y1 = y;
		}
	}

	return bBox;
}

/*!
Calcolo della curvatura per una Quadratica.
Vedi Farin pag.176 per la spiegazione della formula
usata.
*/
double TQuadratic::getCurvature(double t) const
{
	assert(0 <= t && t <= 1.0);

	TQuadratic q1, q2;

	split(t, q1, q2);

	double signum = 1.0;
	if (areAlmostEqual(t, 1.0)) {
		signum *= -1.0;
		std::swap(q1, q2);
		std::swap(q2.m_p0, q2.m_p2);
	}

	TPointD v_1_0(q2.m_p1 - q2.m_p0);

	double
		a = norm2(v_1_0);

	if (isAlmostZero(a))
		return (std::numeric_limits<double>::max)();

	a = 1.0 / sqrt(a);

	double
		b = cross(v_1_0 * a, q2.m_p2 - q2.m_p0);

	return 0.5 * signum * b / a;
}

//-----------------------------------------------------------------------------

double TQuadratic::getLength(double t0, double t1) const
{
	TQuadraticLengthEvaluator lengthEval(*this);

	t0 = min(max(0.0, t0), 1.0); // backward compatibility
	t1 = min(max(0.0, t1), 1.0); // backward compatibility
	if (t0 > t1)
		std::swap(t0, t1);

	if (t0 > 0.0)
		return lengthEval.getLengthAt(t1) - lengthEval.getLengthAt(t0);

	return lengthEval.getLengthAt(t1);
}

double TQuadratic::getApproximateLength(double t0, double t1, double error) const
{
	if (t0 == t1)
		return 0;

	t0 = min(max(0.0, t0), 1.0);
	t1 = min(max(0.0, t1), 1.0);

	if (t0 > t1)
		std::swap(t0, t1);

	TQuadratic q;

	if (t0 == 0.0 && t1 == 1.0)
		q = *this;
	else {
		TQuadratic q1;
		split(t0, q, q1);

		assert(t0 != 1.0);

		double newPar = (t1 - t0) / (1.0 - t0);
		q1.split(newPar, q, q1);
	}

	double step = computeStep(q, error);

	double length = 0.0;

	TPointD p1 = q.getP0();
	TPointD p2;
	for (double t = step; t < 1.0; t += step) {
		p2 = q.getPoint(t);
		length += tdistance(p1, p2);
		p1 = p2;
	}
	length += tdistance(p1, q.getP2());

	return length;
}

//-----------------------------------------------------------------------------

int TQuadratic::getX(double y, double &x0, double &x1) const
{
	int ret = 0;
	double t;

	if (y > getBBox().y1 || y < getBBox().y0)
		return 0;

	double a = getP0().y - 2 * getP1().y + getP2().y;
	double half_b = getP1().y - getP0().y;
	double c = getP0().y - y;

	if (a == 0) //segment
	{
		if (half_b == 0) //horizontal segment, or point
		{
			if (c == 0) {
				x0 = getP0().x;
				x1 = getP2().x;
				return 2;
			} else
				return 0;
		} else {
			t = -c / (2 * half_b);
			if (t >= 0 && t <= 1) {
				x0 = getPoint(t).x;
				return 1;
			}
		}
	}

	double discr = half_b * half_b - a * c;

	if (discr < 0)
		return 0;

	double coeff = 1.0 / a;
	double coeff1 = -half_b * coeff;

	if (discr == 0) {
		t = coeff1;
		if (t >= 0 && t <= 1) {
			ret = 2;
			x0 = x1 = getPoint(t).x;
		}
	} else {
		discr = sqrt(discr) * coeff;
		t = coeff1 + discr;
		if (t >= 0 && t <= 1) {
			ret++;
			x0 = getPoint(t).x;
		}

		t = coeff1 - discr;
		if (t >= 0 && t <= 1) {
			ret++;
			if (ret == 2)
				x1 = getPoint(t).x;
			else
				x0 = getPoint(t).x;
		}
	}
	return ret;
}

int TQuadratic::getY(double y, double &y0, double &y1) const
{
	TQuadratic temp(*this);

	swap(temp.m_p0.x, temp.m_p0.y);
	swap(temp.m_p1.x, temp.m_p1.y);
	swap(temp.m_p2.x, temp.m_p2.y);

	return temp.getX(y, y0, y1);
}
//=============================================================================
TPointD TCubic::getPoint(double t) const
{
	double s = 1 - t;
	return m_p0 * s * s * s + 3 * t * s * (s * m_p1 + t * m_p2) + t * t * t * m_p3;
}
//-----------------------------------------------------------------------------
TPointD TCubic::getSpeed(double t) const
{
	double s = 1 - t;
	return 3.0 * ((m_p1 - m_p0) * s * s + 2 * (m_p2 - m_p0) * s * t + (m_p3 - m_p2) * t * t);
}
//=============================================================================

TThickQuadratic::TThickQuadratic()
	: TQuadratic(), m_thickP0(0), m_thickP1(0), m_thickP2(0)
{
}

//-----------------------------------------------------------------------------

TThickQuadratic::TThickQuadratic(const TQuadratic &q)
	: TQuadratic(q), m_thickP0(0.0), m_thickP1(0.0), m_thickP2(0.0)
{
}

//-----------------------------------------------------------------------------

TThickQuadratic::TThickQuadratic(const TPointD &p0, double thickP0,
								 const TPointD &p1, double thickP1,
								 const TPointD &p2, double thickP2)
	: TQuadratic(p0, p1, p2), m_thickP0(thickP0), m_thickP1(thickP1), m_thickP2(thickP2)
{
}

//-----------------------------------------------------------------------------

TThickQuadratic::TThickQuadratic(const TThickPoint &p0,
								 const TThickPoint &p1,
								 const TThickPoint &p2)
	: TQuadratic(TPointD(p0.x, p0.y), TPointD(p1.x, p1.y), TPointD(p2.x, p2.y)), m_thickP0(p0.thick), m_thickP1(p1.thick), m_thickP2(p2.thick)
{
}

//-----------------------------------------------------------------------------

TThickQuadratic::TThickQuadratic(const TThickQuadratic &thickQuadratic)
	: TQuadratic(thickQuadratic), m_thickP0(thickQuadratic.m_thickP0), m_thickP1(thickQuadratic.m_thickP1), m_thickP2(thickQuadratic.m_thickP2)
{
}

//-----------------------------------------------------------------------------
void TThickQuadratic::setThickP0(const TThickPoint &p)
{
	m_p0 = p;
	m_thickP0 = p.thick;
}

//-----------------------------------------------------------------------------
void TThickQuadratic::setThickP1(const TThickPoint &p)
{
	m_p1 = p;
	m_thickP1 = p.thick;
}

//-----------------------------------------------------------------------------
void TThickQuadratic::setThickP2(const TThickPoint &p)
{
	m_p2 = p;
	m_thickP2 = p.thick;
}

//-----------------------------------------------------------------------------
TThickPoint TThickQuadratic::getThickPoint(double t) const
{
	double s = 1 - t;
	return TThickPoint(m_p0 * s * s + 2 * t * s * m_p1 + t * t * m_p2, m_thickP0 * s * s + 2 * t * s * m_thickP1 + t * t * m_thickP2);
}

//-----------------------------------------------------------------------------
void TThickQuadratic::split(double t, TThickQuadratic &left, TThickQuadratic &right) const
{
	double dt;
	TPointD p;
	dt = 1.0 - t;

	// control points
	left.m_p0 = m_p0;
	right.m_p2 = m_p2;

	left.m_p1 = dt * m_p0 + t * m_p1;
	right.m_p1 = dt * m_p1 + t * m_p2;
	p = dt * left.m_p1 + t * right.m_p1;

	left.m_p2 = right.m_p0 = p;

	// thick points
	left.m_thickP0 = m_thickP0;
	right.m_thickP2 = m_thickP2;

	left.m_thickP1 = dt * m_thickP0 + t * m_thickP1;
	right.m_thickP1 = dt * m_thickP1 + t * m_thickP2;

	// store thickness of intermediary point
	p.x = dt * left.m_thickP1 + t * right.m_thickP1;

	left.m_thickP2 = right.m_thickP0 = p.x;
}

//-----------------------------------------------------------------------------

TRectD TThickQuadratic::getBBox() const
{

	TRectD bBox = TQuadratic::getBBox();

	double maxRadius = std::max({m_thickP0, m_thickP1, m_thickP2});
	if (maxRadius > 0) {
		//  bBox.enlarge(maxRadius) si comporta male nel caso bBox.isEmpty()
		bBox.x0 -= maxRadius;
		bBox.y0 -= maxRadius;

		bBox.x1 += maxRadius;
		bBox.y1 += maxRadius;
	}

	return bBox;
}

// ============================================================================
// Methods of the class TThickCubic
// ============================================================================

TThickCubic::TThickCubic()
	: TCubic(), m_thickP0(0), m_thickP1(0), m_thickP2(0), m_thickP3(0)
{
}

//-----------------------------------------------------------------------------

TThickCubic::TThickCubic(const TPointD &p0, double thickP0,
						 const TPointD &p1, double thickP1,
						 const TPointD &p2, double thickP2,
						 const TPointD &p3, double thickP3)
	: TCubic(p0, p1, p2, p3), m_thickP0(thickP0), m_thickP1(thickP1), m_thickP2(thickP2), m_thickP3(thickP3)
{
}

//-----------------------------------------------------------------------------

TThickCubic::TThickCubic(const TThickPoint &p0,
						 const TThickPoint &p1,
						 const TThickPoint &p2,
						 const TThickPoint &p3)
	: TCubic(TPointD(p0.x, p0.y), TPointD(p1.x, p1.y), TPointD(p2.x, p2.y), TPointD(p3.x, p3.y)), m_thickP0(p0.thick), m_thickP1(p1.thick), m_thickP2(p2.thick), m_thickP3(p3.thick)
{
}
//  tonino ***************************************************************

TThickCubic::TThickCubic(const T3DPointD &p0,
						 const T3DPointD &p1,
						 const T3DPointD &p2,
						 const T3DPointD &p3)
	: TCubic(TPointD(p0.x, p0.y), TPointD(p1.x, p1.y), TPointD(p2.x, p2.y), TPointD(p3.x, p3.y)), m_thickP0(p0.z), m_thickP1(p1.z), m_thickP2(p2.z), m_thickP3(p3.z)
{
}

//  tonino ***************************************************************

//-----------------------------------------------------------------------------

TThickCubic::TThickCubic(const TThickCubic &thickCubic)
	: TCubic(thickCubic), m_thickP0(thickCubic.m_thickP0), m_thickP1(thickCubic.m_thickP1), m_thickP2(thickCubic.m_thickP2), m_thickP3(thickCubic.m_thickP3)
{
}

//-----------------------------------------------------------------------------

void TThickCubic::setThickP0(const TThickPoint &p)
{
	m_p0.x = p.x;
	m_p0.y = p.y;
	m_thickP0 = p.thick;
}

//-----------------------------------------------------------------------------

void TThickCubic::setThickP1(const TThickPoint &p)
{
	m_p1.x = p.x;
	m_p1.y = p.y;
	m_thickP1 = p.thick;
}

//-----------------------------------------------------------------------------

void TThickCubic::setThickP2(const TThickPoint &p)
{
	m_p2.x = p.x;
	m_p2.y = p.y;
	m_thickP2 = p.thick;
}

//-----------------------------------------------------------------------------
void TThickCubic::setThickP3(const TThickPoint &p)
{
	m_p3.x = p.x;
	m_p3.y = p.y;
	m_thickP3 = p.thick;
}

//-----------------------------------------------------------------------------

TThickPoint TThickCubic::getThickPoint(double t) const
{
	double
		thick_l1,
		thick_h,
		thick_r3;

	double s = 1.0 - t;

	TPointD l1(m_p0 * s + m_p1 * t);
	thick_l1 = m_thickP0 * s + m_thickP1 * t;

	TPointD h(m_p1 * s + m_p2 * t);
	thick_h = m_thickP1 * s + m_thickP2 * t;

	TPointD r3(m_p2 * s + m_p3 * t);
	thick_r3 = m_thickP2 * s + m_thickP3 * t;

	// adesso riutilizzo le variabili gia' utilizzate

	// l2
	l1 = l1 * s + h * t;
	thick_l1 = thick_l1 * s + thick_h * t;

	// r1
	r3 = h * s + r3 * t;
	thick_r3 = thick_h * s + thick_r3 * t;

	// l3-r0
	h = l1 * s + r3 * t;
	thick_h = thick_l1 * s + thick_r3 * t;

	return TThickPoint(h, thick_h);
}

//-----------------------------------------------------------------------------

void TThickCubic::split(double t, TThickCubic &first, TThickCubic &second) const
{
	double s = 1.0 - t;

	TPointD H(m_p1 * s + m_p2 * t);
	double thick_h = m_thickP1 * s + m_thickP2 * t;

	first.m_p0 = m_p0;
	first.m_thickP0 = m_thickP0;

	first.m_p1 = m_p0 * s + m_p1 * t;
	first.m_thickP1 = m_thickP0 * s + m_thickP1 * t;

	first.m_p2 = first.m_p1 * s + H * t;
	first.m_thickP2 = first.m_thickP1 * s + thick_h * t;

	second.m_p3 = m_p3;
	second.m_thickP3 = m_thickP3;

	second.m_p2 = m_p2 * s + m_p3 * t;
	second.m_thickP2 = m_thickP2 * s + m_thickP3 * t;

	second.m_p1 = H * s + second.m_p2 * t;
	second.m_thickP1 = thick_h * s + second.m_thickP2 * t;

	first.m_p3 = first.m_p2 * s + second.m_p1 * t;
	first.m_thickP3 = first.m_thickP2 * s + second.m_thickP1 * t;

	second.m_p0 = first.m_p3;
	second.m_thickP0 = first.m_thickP3;
}

//-----------------------------------------------------------------------------

ostream &operator<<(ostream &out, const TQuadratic &curve)
{
	return out << "Q{" << curve.getP0() << ", " << curve.getP1() << ", "
			   << curve.getP2() << "}";
}

ostream &operator<<(ostream &out, const TCubic &curve)
{
	return out << "C{" << curve.getP0() << ", " << curve.getP1() << ", "
			   << curve.getP2() << ", " << curve.getP3() << "}";
}

ostream &operator<<(ostream &out, const TThickSegment &segment)
{
	return out << "TS{" << segment.getThickP0() << ", " << segment.getThickP1() << "}";
}

ostream &operator<<(ostream &out, const TThickQuadratic &tq)
{
	return out << "TQ{" << tq.getThickP0() << ", " << tq.getThickP1() << ", " << tq.getThickP2() << "}";
}

ostream &operator<<(ostream &out, const TThickCubic &tc)
{
	return out << "TC{" << tc.getThickP0() << ", "
			   << tc.getThickP1() << ", "
			   << tc.getThickP2() << ", "
			   << tc.getThickP3() << "}";
}

//-----------------------------------------------------------------------------
//  End Of File
//-----------------------------------------------------------------------------