Blob Blame Raw


#include "stdfx.h"
#include "tfxparam.h"
#include "tpixelutils.h"
#include "tparamset.h"

//************************************************************************
//    Local namespace
//************************************************************************

namespace
{

enum PixelOp { OVER = 0,
			   ADD,
			   SUBTRACT,
			   MULTIPLY,
			   LIGHTEN,
			   DARKEN };

//------------------------------------------------------------------------------

template <typename PIXEL>
int doBlurValue(PIXEL *SRC, int SRC_WRAP, int BLUR)
{
	unsigned int count = 0;
	int h, k;
	int blur_val;
	PIXEL *pix, *line;
	pix = line = (SRC) + (-(BLUR) + 1) * (SRC_WRAP);
	for (h = -(BLUR) + 1; h < (BLUR); h++) {
		for (k = -(BLUR) + 1; k < (BLUR); k++)
			count += pix[k].m;
		line += SRC_WRAP;
		pix = line;
	}
	blur_val = (int)(count / (4 * (float)(BLUR) * (float)((BLUR)-1) + 1));
	return blur_val;
}

//------------------------------------------------------------------------------

template <typename PIXEL, typename CHANNEL_TYPE>
void doBlur(CHANNEL_TYPE *greymap, const TRasterPT<PIXEL> &rin, int blur)
{
	//Perform a flat mean-convolution filter
	//NOTE: This is improved due to separability of convolution kernel, plus
	// - since its elements are all the same, only pixels entering and quitting
	//the convolution area are added/subtracted from the sums.
	//As a result, this yields an O(row*columns) complexity, independently
	//from the blur factor.

	int i, j;
	int blurDiameter = 2 * blur + 1;
	unsigned long sum;
	int wrapSrc = rin->getWrap();
	int wrapOut = rin->getLx();

	//First, blur each column independently

	//We'll need a temporary col for storing sums
	std::unique_ptr<unsigned long[]> tempCol(new unsigned long[rin->getLy()]);
	int edge = std::min(blur + 1, rin->getLy());

	for (i = 0; i < rin->getLx(); ++i) {
		PIXEL *lineSrcPix = rin->pixels(0) + i;
		CHANNEL_TYPE *lineOutPix = greymap + i;
		PIXEL *pixin = lineSrcPix;
		unsigned long *pixsum = tempCol.get();

		memset(tempCol.get(), 0, rin->getLy() * sizeof(unsigned long));

		//Build up to blur with retro-sums
		sum = 0;
		for (j = 0; j < edge; ++j, pixin += wrapSrc, ++pixsum) {
			sum += pixin->m;
			*pixsum = sum;
		}

		//Fill in after blur
		PIXEL *queuepix = lineSrcPix;
		for (j = edge; j < rin->getLy(); ++j, pixin += wrapSrc, queuepix += wrapSrc, ++pixsum) {
			sum += (pixin->m - queuepix->m);
			*pixsum = sum;
		}

		//Now, the same in reverse
		lineSrcPix = lineSrcPix + (rin->getLy() - 1) * wrapSrc;
		pixin = lineSrcPix;
		pixsum = tempCol.get() + rin->getLy() - 1;

		sum = 0;
		for (j = 0; j < edge; ++j, pixin -= wrapSrc, --pixsum) {
			*pixsum += sum;
			sum += pixin->m;
		}

		queuepix = lineSrcPix;
		for (j = edge; j < rin->getLy(); ++j, pixin -= wrapSrc, queuepix -= wrapSrc, --pixsum) {
			sum -= queuepix->m;
			*pixsum += sum;
			sum += pixin->m;
		}

		//Finally, transfer sums to the output greymap, divided by the blur.
		pixsum = tempCol.get();
		CHANNEL_TYPE *pixout = lineOutPix;
		for (j = 0; j < rin->getLy(); ++j, pixout += wrapOut, ++pixsum)
			*pixout = (*pixsum) / blurDiameter;
	}

	//Then, the same for all greymap rows

	//We'll need a temporary row for sums
	std::unique_ptr<unsigned long[]> tempRow(new unsigned long[rin->getLx()]);
	edge = std::min(blur + 1, rin->getLx());

	for (j = 0; j < rin->getLy(); ++j) {
		CHANNEL_TYPE *lineSrcPix = greymap + j * wrapOut;
		CHANNEL_TYPE *lineOutPix = lineSrcPix;
		unsigned long *pixsum = tempRow.get();
		CHANNEL_TYPE *pixin = lineSrcPix;

		memset(tempRow.get(), 0, rin->getLx() * sizeof(unsigned long));

		//Build up to blur with retro-sums
		sum = 0;
		for (i = 0; i < edge; ++i, ++pixin, ++pixsum) {
			sum += *pixin;
			*pixsum = sum;
		}

		//Fill in after blur
		CHANNEL_TYPE *queuepix = lineSrcPix;
		for (i = edge; i < rin->getLx(); ++i, ++pixin, ++pixsum, ++queuepix) {
			sum += *pixin;
			sum -= *queuepix;
			*pixsum = sum;
		}

		//Now, the same in reverse
		lineSrcPix = lineSrcPix + rin->getLx() - 1;
		pixin = lineSrcPix;
		pixsum = tempRow.get() + rin->getLx() - 1;

		sum = 0;
		for (i = 0; i < edge; ++i, --pixin, --pixsum) {
			*pixsum += sum;
			sum += *pixin;
		}

		queuepix = lineSrcPix;
		for (i = edge; i < rin->getLx(); ++i, --pixin, --pixsum, --queuepix) {
			sum -= *queuepix;
			*pixsum += sum;
			sum += *pixin;
		}

		//Finally, transfer sums to the output greymap, divided by the blur.
		CHANNEL_TYPE *pixout = lineOutPix;
		pixsum = tempRow.get();
		for (i = 0; i < rin->getLx(); ++i, ++pixout, ++pixsum)
			*pixout = (*pixsum) / blurDiameter;
	}
}

//------------------------------------------------------------------------------

template <typename PIXEL>
void myOver(PIXEL &pixout, const PIXEL &pixin, const PIXEL &color)
{
	pixout = color;
}

//------------------------------------------------------------------------------

template <typename PIXEL>
void myAdd(PIXEL &pixout, const PIXEL &pixin, const PIXEL &color)
{
	pixout.r = std::min(pixin.r + color.r, PIXEL::maxChannelValue);
	pixout.g = std::min(pixin.g + color.g, PIXEL::maxChannelValue);
	pixout.b = std::min(pixin.b + color.b, PIXEL::maxChannelValue);
}

//------------------------------------------------------------------------------

template <typename PIXEL>
void mySub(PIXEL &pixout, const PIXEL &pixin, const PIXEL &color)
{
	pixout.r = std::max(pixin.r - color.r, 0);
	pixout.g = std::max(pixin.g - color.g, 0);
	pixout.b = std::max(pixin.b - color.b, 0);
}

//------------------------------------------------------------------------------

template <typename PIXEL>
void myMult(PIXEL &pixout, const PIXEL &pixin, const PIXEL &color)
{
	static const double den = PIXEL::maxChannelValue;

	pixout.r = pixin.r * (color.r / den);
	pixout.g = pixin.g * (color.g / den);
	pixout.b = pixin.b * (color.b / den);
}

//------------------------------------------------------------------------------

template <typename PIXEL>
void myLighten(PIXEL &pixout, const PIXEL &pixin, const PIXEL &color)
{
	pixout.r = pixin.r > color.r ? pixin.r : color.r;
	pixout.g = pixin.g > color.g ? pixin.g : color.g;
	pixout.b = pixin.b > color.b ? pixin.b : color.b;
}

//------------------------------------------------------------------------------

template <typename PIXEL>
void myDarken(PIXEL &pixout, const PIXEL &pixin, const PIXEL &color)
{
	pixout.r = pixin.r < color.r ? pixin.r : color.r;
	pixout.g = pixin.g < color.g ? pixin.g : color.g;
	pixout.b = pixin.b < color.b ? pixin.b : color.b;
}

//------------------------------------------------------------------------------

template <typename PIXEL, typename CHANNEL>
void doLayerBlending(PIXEL *pixin, PIXEL *pixout, CHANNEL *pixmatte,
					 int inLx, int outLx, int outLy, int wrapIn, int wrapOut, int dx, int dy,
					 double transp, PIXEL color,
					 void (*pixelOp)(PIXEL &, const PIXEL &, const PIXEL &))
{
	double CROP_VAL = PIXEL::maxChannelValue;
	CHANNEL U_CROP_VAL = PIXEL::maxChannelValue;

	int const_transp = CROP_VAL * transp + 0.5;
	double val_r, val_g, val_b, val_m;
	int blur_val;

	PIXEL opColor;
	double k, matte;

	CHANNEL shadow_matte;

	int x, y;
	for (y = 0; y < outLy; ++y, pixin += wrapIn - outLx, pixout += wrapOut - outLx, pixmatte += inLx - outLx)
		for (x = 0; x < outLx; ++x, ++pixin, ++pixout, ++pixmatte) {
			if (pixin->m != 0) // where the image is transparent, no shadow
			{
				blur_val = *(pixmatte + dy * inLx + dx);
				shadow_matte = (blur_val) ? (int)((CROP_VAL - blur_val) * transp + 0.5) : const_transp;

				k = (double)(CROP_VAL - shadow_matte) / CROP_VAL;
				val_r = pixin->r * k + 0.5;
				val_g = pixin->g * k + 0.5;
				val_b = pixin->b * k + 0.5;
				val_m = pixin->m;

				pixelOp(opColor, *pixin, color);
				matte = (1 - k) * (val_m / CROP_VAL);

				val_r += matte * opColor.r;
				val_g += matte * opColor.g;
				val_b += matte * opColor.b;

				pixout->r = (val_r > CROP_VAL) ? U_CROP_VAL : ((val_r < 0) ? 0 : (CHANNEL)val_r);
				pixout->g = (val_g > CROP_VAL) ? U_CROP_VAL : ((val_g < 0) ? 0 : (CHANNEL)val_g);
				pixout->b = (val_b > CROP_VAL) ? U_CROP_VAL : ((val_b < 0) ? 0 : (CHANNEL)val_b);
				pixout->m = (val_m > CROP_VAL) ? U_CROP_VAL : ((val_m < 0) ? 0 : (CHANNEL)val_m);
			} else
				*pixout = PIXEL::Transparent;
		}
}

//------------------------------------------------------------------------------

template <typename PIXEL>
void doBodyHighlight(const TRasterPT<PIXEL> rout, const TRasterPT<PIXEL> rin,
					 TRectD rectIn, int rasInLx, int rasInLy, double frame, int blur,
					 double transp, PIXEL color, TPointD point, bool invert,
					 void (*pixelOp)(PIXEL &, const PIXEL &, const PIXEL &),
					 TRasterFxPort &m_input, const TRenderSettings &ri)
{
	typedef typename PIXEL::Channel CHANNEL_TYPE;

	rin->lock();
	rout->lock();

	int inLx = rin->getLx(), inLy = rin->getLy(), inWrap = rin->getWrap();
	int outLx = rout->getLx(), outLy = rout->getLy(), outWrap = rout->getWrap();
	int dx = point.x, dy = point.y;

	transp = 1.0 - transp;

	PIXEL *src_buf, *dst_buf;

	dst_buf = rout->pixels(0);
	src_buf = rin->pixels(0) + blur + blur * inWrap;
	if (dy < 0)
		src_buf -= dy * inWrap;
	if (dx < 0)
		src_buf -= dx;

	//First, perform an optimized mean-convolution of the interesting part of image's matte
	int matteLxLy = inLx * inLy;
	CHANNEL_TYPE *matteGreymap = (CHANNEL_TYPE *)malloc(matteLxLy * sizeof(CHANNEL_TYPE));
	if (!matteGreymap)
		return;

	memset(matteGreymap, 0, matteLxLy * sizeof(CHANNEL_TYPE));
	doBlur<PIXEL, CHANNEL_TYPE>(matteGreymap, rin, blur);

	CHANNEL_TYPE U_CROP_VAL = PIXEL::maxChannelValue;

	//If specified, invert the matte
	if (invert) {
		CHANNEL_TYPE *mpix, *end = matteGreymap + matteLxLy;
		for (mpix = matteGreymap; mpix < end; ++mpix)
			*mpix = U_CROP_VAL - *mpix;
	}

	CHANNEL_TYPE *mattepix = matteGreymap + blur + blur * inLx;
	if (dy < 0)
		mattepix -= dy * inLx;
	if (dx < 0)
		mattepix -= dx;

	doLayerBlending(src_buf, dst_buf, mattepix, inLx, outLx, outLy,
					inWrap, outWrap, dx, dy, transp, color, pixelOp);

	free(matteGreymap);

	rin->unlock();
	rout->unlock();
}

} //namespace

//************************************************************************
//    BodyHighLightFx implementation
//************************************************************************

class BodyHighLightFx : public TStandardRasterFx
{
	FX_PLUGIN_DECLARATION(BodyHighLightFx)

	TRasterFxPort m_input;
	TIntEnumParamP m_mode;
	TPointParamP m_point;
	TDoubleParamP m_transparency;
	TDoubleParamP m_blur;
	TPixelParamP m_color;
	TBoolParamP m_invert;

public:
	BodyHighLightFx()
		: m_point(TPointD(10.0, 10.0)), m_mode(new TIntEnumParam(OVER, "Over")), m_transparency(0.5), m_blur(2.0), m_color(TPixel32::White), m_invert(false)
	{
		m_point->getX()->setMeasureName("fxLength");
		m_point->getY()->setMeasureName("fxLength");
		m_blur->setMeasureName("fxLength");
		bindParam(this, "mode", m_mode);
		bindParam(this, "point", m_point);
		bindParam(this, "transparency", m_transparency);
		bindParam(this, "blur", m_blur);
		bindParam(this, "color", m_color);
		bindParam(this, "invert", m_invert);
		addInputPort("Source", m_input);
		m_transparency->setValueRange(0.0, 1.0);
		m_blur->setValueRange(0, (std::numeric_limits<double>::max)());
		m_color->enableMatte(false);

		m_mode->addItem(ADD, "Add");
		m_mode->addItem(SUBTRACT, "Subtract");
		m_mode->addItem(MULTIPLY, "Multiply");
		m_mode->addItem(LIGHTEN, "Lighten");
		m_mode->addItem(DARKEN, "Darken");
	}

	~BodyHighLightFx(){};

	bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info)
	{
		if (m_input.isConnected())
			return m_input->doGetBBox(frame, bBox, info);
		else {
			bBox = TRectD();
			return false;
		}
	}

	bool canHandle(const TRenderSettings &info, double frame) { return true; }
	void doDryCompute(TRectD &rect, double frame, const TRenderSettings &info);
	void doCompute(TTile &tile, double frame, const TRenderSettings &);
	int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info);
};

//------------------------------------------------------------------------------

void BodyHighLightFx::doDryCompute(TRectD &rect, double frame, const TRenderSettings &info)
{
	m_input->dryCompute(rect, frame, info);

	double fac = sqrt(fabs(info.m_affine.det()));
	int blur = (int)(fac * fabs(m_blur->getValue(frame)));
	TPoint point = convert(fac * m_point->getValue(frame));

	TRectD rectIn = rect.enlarge(blur);

	int rasInLx = tround(rectIn.getLx() + abs(point.x)) + 1;
	int rasInLy = tround(rectIn.getLy() + abs(point.y)) + 1;
	if (point.x < 0) {
		rectIn.x0 += point.x;
	}
	if (point.y < 0) {
		rectIn.y0 += point.y;
	}

	rectIn = TRectD(rectIn.getP00(), TDimensionD(rasInLx, rasInLy));

	m_input->dryCompute(rectIn, frame, info);
}

//------------------------------------------------------------------------------

void BodyHighLightFx::doCompute(TTile &tile, double frame, const TRenderSettings &ri)
{
	double fac = sqrt(fabs(ri.m_affine.det()));

	if (!m_input.isConnected())
		return;

	//Compute the effective input tile
	m_input->compute(tile, frame, ri);

	double transp = m_transparency->getValue(frame);
	int blur = (int)(fac * fabs(m_blur->getValue(frame)));
	TPoint point = convert(fac * m_point->getValue(frame));
	bool invert = m_invert->getValue();

	//Build the shadow, blurred tile
	TDimension rectSize(tile.getRaster()->getSize());
	TRectD rectIn(tile.m_pos, TDimensionD(rectSize.lx, rectSize.ly));
	rectIn = rectIn.enlarge(blur);

	//Shift rectIn by the input 'point'
	int rasInLx = tround(rectIn.getLx() + abs(point.x)) + 1;
	int rasInLy = tround(rectIn.getLy() + abs(point.y)) + 1;
	if (point.x < 0) {
		rectIn.x0 += point.x;
	} else {
		rectIn.x1 += point.x;
	}
	if (point.y < 0) {
		rectIn.y0 += point.y;
	} else {
		rectIn.y1 += point.y;
	}

	const TPixel32 color = m_color->getPremultipliedValue(frame);

	TRaster32P raster32 = tile.getRaster();
	TRaster64P raster64 = tile.getRaster();

	TTile tileIn;
	m_input->allocateAndCompute(tileIn, rectIn.getP00(),
								TDimension(rasInLx, rasInLy),
								tile.getRaster(), frame, ri);

	//Select the specified pixel operation
	void (*pixelOp32)(TPixel32 &, const TPixel32 &, const TPixel32 &);
	void (*pixelOp64)(TPixel64 &, const TPixel64 &, const TPixel64 &);

	switch (m_mode->getValue()) {
	case OVER: {
		pixelOp32 = ::myOver<TPixel32>;
		pixelOp64 = ::myOver<TPixel64>;
		break;
	}

	case ADD: {
		pixelOp32 = ::myAdd<TPixel32>;
		pixelOp64 = ::myAdd<TPixel64>;
		break;
	}

	case SUBTRACT: {
		pixelOp32 = ::mySub<TPixel32>;
		pixelOp64 = ::mySub<TPixel64>;
		break;
	}

	case MULTIPLY: {
		pixelOp32 = ::myMult<TPixel32>;
		pixelOp64 = ::myMult<TPixel64>;
		break;
	}

	case LIGHTEN: {
		pixelOp32 = ::myLighten<TPixel32>;
		pixelOp64 = ::myLighten<TPixel64>;
		break;
	}

	case DARKEN: {
		pixelOp32 = ::myDarken<TPixel32>;
		pixelOp64 = ::myDarken<TPixel64>;
		break;
	}
	}

	TRaster32P rin = tileIn.getRaster();
	if (raster32)
		doBodyHighlight<TPixel32>(
			raster32, rin, rectIn, rasInLx, rasInLy, frame, blur,
			transp, color, convert(point), invert, pixelOp32, m_input, ri);
	else {
		TRaster64P rin = tileIn.getRaster();
		if (raster64)
			doBodyHighlight<TPixel64>(
				raster64, rin, rectIn, rasInLx, rasInLy, frame, blur,
				transp, toPixel64(color), convert(point), invert, pixelOp64, m_input, ri);
		else
			throw TException("Brightness&Contrast: unsupported Pixel Type");
	}
}

//------------------------------------------------------------------

int BodyHighLightFx::getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
{
	int blur = (int)(sqrt(fabs(info.m_affine.det())) * fabs(m_blur->getValue(frame)));
	return TRasterFx::memorySize(rect.enlarge(blur), info.m_bpp);
}

//------------------------------------------------------------------

FX_PLUGIN_IDENTIFIER(BodyHighLightFx, "bodyHighLightFx")