#include "drawutil.h"
#include "tstroke.h"
#include "tmathutil.h"
//#include "tregion.h"
#include "tcurveutil.h"
#include "tcurves.h"
namespace {
void drawQuadraticCenterline(const TQuadratic &inQuad, double pixelSize,
double from, double to) {
assert(0.0 <= from && from <= to && to <= 1.0);
to = (std::max)(0.0, (std::min)(to, 1.0));
from = (std::max)(0.0, (std::min)(from, to));
TQuadratic tmp(inQuad), s1, s2;
TQuadratic *quad = &tmp;
double newFrom = from;
if (to != 1.0) {
tmp.split(to, s1, s2);
quad = &s1;
newFrom = from / to;
}
if (from != 0.0) {
tmp = *quad;
tmp.split(newFrom, s1, s2);
quad = &s2;
}
// glColor( TPixel32::Black );
double step = computeStep(*quad, pixelSize);
// It draws the curve as a linear piecewise approximation
double invSqrtScale = 1.0;
// First of all, it computes the control circles of the curve in screen
// coordinates
TPointD scP0 = quad->getP0();
TPointD scP1 = quad->getP1();
TPointD scP2 = quad->getP2();
TPointD A = scP0 - 2 * scP1 + scP2;
TPointD B = scP0 - scP1;
double h;
h = invSqrtScale * step;
double h2 = h * h;
TPointD P = scP0, D2 = 2 * h2 * A, D1 = A * h2 - 2 * B * h;
if (h < 0 || isAlmostZero(h)) return;
// if ( h < from )
// h = from;
// It draws the whole curve, using forward differencing
glBegin(GL_LINE_STRIP); // The curve starts from scP0
// scP0 = quad.getPoint(from);
glVertex2d(scP0.x, scP0.y);
for (double t = from + h; t < to; t = t + h) {
P = P + D1;
D1 = D1 + D2;
glVertex2d(P.x, P.y);
}
// scP2 = quad.getPoint(to);
glVertex2d(scP2.x, scP2.y); // The curve ends in scP2
glEnd();
}
}
//-----------------------------------------------------------------------------
void stroke2polyline(std::vector<TPointD> &pnts, const TStroke &stroke,
double pixelSize, double w0, double w1,
bool lastRepeatable) {
TPointD p;
double step;
int i, index0, index1;
double t0, t1;
if (isAlmostZero(w0)) w0 = 0.0;
if (isAlmostZero(w1)) w1 = 0.0;
if (isAlmostZero(1 - w0)) w0 = 1.0;
if (isAlmostZero(1 - w1)) w1 = 1.0;
assert(w0 >= 0.0);
assert(w0 <= 1.0);
assert(w1 >= 0.0);
assert(w1 <= 1.0);
stroke.getChunkAndT(w0, index0, t0);
stroke.getChunkAndT(w1, index1, t1);
double t;
double endT;
if (index1 < index0 || (index1 == index0 && t1 < t0)) {
for (i = index0; i >= index1; i--) {
step = computeStep(*(stroke.getChunk(i)), pixelSize);
if (step < TConsts::epsilon) step = TConsts::epsilon;
p = stroke.getChunk(i)->getPoint(t0);
if (pnts.empty() || pnts.back() != p) pnts.push_back(p);
endT = (i == index1) ? t1 : 0;
pnts.reserve((UINT)((t0 - endT) / step) + 1 + pnts.size());
for (t = t0 - step; t >= endT; t -= step)
pnts.push_back(stroke.getChunk(i)->getPoint(t));
t0 = 1;
}
} else {
for (i = index0; i <= index1; i++) {
step = computeStep(*(stroke.getChunk(i)), pixelSize);
assert(step);
if (!step) step = TConsts::epsilon; // non dovrebbe accadere mai!!!
p = stroke.getChunk(i)->getPoint(t0);
if (pnts.empty() || pnts.back() != p) pnts.push_back(p);
endT = (i == index1) ? t1 : 1;
pnts.reserve((UINT)((endT - t0) / step) + 1 + pnts.size());
for (t = t0 + step; t <= endT; t += step)
pnts.push_back(stroke.getChunk(i)->getPoint(t));
t0 = 0;
}
}
p = stroke.getPoint(w1);
if (pnts.empty() ||
(p != pnts.back() && (p != pnts.front() || lastRepeatable)))
pnts.push_back(p);
}
//-----------------------------------------------------------------------------
/*
void region2polyline(vector<T3DPointD>& pnts,
const TRegion* reg,
double pixelSize )
{
assert( reg );
if(!reg) return;
const TStroke* stroke;
double w0;
double w1;
TPointD lastPnt;
for(UINT i=0; i<reg->getEdgeCount(); i++)
{
TRegion::edge* edge = reg->getEdge(i);
stroke = edge->m_stroke;
assert(stroke);
if (edge->m_w0==-1)
{
int index;
double t, dummy;
stroke->getNearestChunk(edge->m_p0, t, index, dummy);
edge->m_w0 = getWfromChunkAndT(stroke, index, t);
stroke->getNearestChunk(edge->m_p1, t, index, dummy);
edge->m_w1 = getWfromChunkAndT(stroke, index, t);
}
w0 = edge->m_w0;
w1 = edge->m_w1;
assert( 0 <= w0 && w0 <= 1.0 );
assert( 0 <= w1 && w1 <= 1.0 );
double step = computeStep( *stroke, pixelSize );
// assert( step != 2 && step != 0.0 );
if( isAlmostZero( step ) )
step = 1.0;
step/= stroke->getChunkCount();
double direction = 1;
if( w0 > w1 )
direction *=-1;
T3DPointD pnt;
double incr = direction*step;
pnt = T3DPointD( stroke->getPoint( w0 ), 0 );
if ( pnts.empty() || pnt != pnts.back() )
pnts.push_back( pnt );
for( double w = w0 + incr; direction*w < direction*w1; w+= incr)
{
pnt = T3DPointD( stroke->getPoint( w ), 0 );
if ( pnt != pnts.back() )
pnts.push_back( pnt );
}
}
}
*/
//-----------------------------------------------------------------------------
#if defined(MACOSX)
void lefttRotateBits(UCHAR *buf, int bufferSize) {
UINT *buffer = (UINT *)buf;
UINT app;
for (int i = 0; i < bufferSize; i++, buffer++) {
app = *buffer;
*buffer = app << 8 | app >> 24;
}
}
#endif
double computeStep(const TStroke &s, double pixelSize) {
double minVal = (std::numeric_limits<double>::max)();
double tempVal;
for (int i = 0; i < s.getChunkCount(); ++i)
if ((tempVal = computeStep(*s.getChunk(i), pixelSize)) < minVal)
minVal = tempVal;
return minVal;
}
/*
*/
TRasterP prepareTexture(const TRasterP &ras, TextureInfoForGL &texinfo) {
TDimension size = ras->getSize();
texinfo.width = size.lx;
texinfo.height = size.ly;
texinfo.internalformat = ras->getPixelSize();
texinfo.format = GL_UNSIGNED_BYTE;
texinfo.pixels = ras->getRawData();
switch (texinfo.internalformat) {
case 1:
texinfo.type = GL_LUMINANCE;
break;
case 2:
texinfo.type = GL_LUMINANCE_ALPHA;
break;
}
if (texinfo.internalformat > 2) {
switch (texinfo.internalformat) {
case 3:
texinfo.type = GL_RGB;
break;
case 4:
texinfo.type = GL_RGBA;
break; // GL_RGBA; break;
}
#ifdef TNZ_MACHINE_CHANNEL_ORDER_BGRM // under win32 pixel are in reverse order
#ifdef GL_EXT_bgra // if extension exists...
// and it's present at run time all okay
// if(TGLArea::isBGRASupported())
{
switch (texinfo.internalformat) {
case 3:
texinfo.type = GL_BGR_EXT;
break;
case 4:
texinfo.type = GL_BGRA_EXT;
break;
}
return ras;
}
#else
TDimension size = ras->getSize();
TRasterP outRas = ras->clone();
outRas->lock();
int pixelSize = ras->getPixelSize();
texinfo.pixels = outRas->getRawData();
UCHAR *p1, *p2;
for (int i = 0; i < size.lx; ++i)
for (int j = 0; j < size.ly; ++j) {
p1 = outRas->getRawData(i, j);
p2 = p1 + 2;
std::swap(*p1, *p2);
}
outRas->unlock();
return outRas;
#endif
#elif defined(TNZ_MACHINE_CHANNEL_ORDER_MRGB)
// mrgb
#warning "ottimizzare in qualche modo"
TDimension size = ras->getSize();
TRasterP outRas = ras->clone();
texinfo.pixels = outRas->getRawData();
lefttRotateBits((UCHAR *)texinfo.pixels, size.lx * size.ly);
return outRas;
#endif
}
texinfo.pixels = ras->getRawData();
return ras;
}
void drawStrokeCenterline(const TStroke &stroke, double pixelSize, double from,
double to) {
int c1 = 0, c2 = 0;
double t1 = 1.0, t2 = 0.0;
if (stroke.getChunkCount() == 0) return;
stroke.getChunkAndT(from, c1, t1);
stroke.getChunkAndT(to, c2, t2);
if (c1 == c2) {
if (from == to) return;
drawQuadraticCenterline(*stroke.getChunk(c1), pixelSize, t1, t2);
} else {
// partial first chunk
drawQuadraticCenterline(*stroke.getChunk(c1), pixelSize, t1, 1.0);
// next chunk
++c1;
if (c1 < c2) {
for (int i = c1; i < c2; ++i)
drawQuadraticCenterline(*stroke.getChunk(i), pixelSize, 0.0, 1.0);
}
// partial last chunk
drawQuadraticCenterline(*stroke.getChunk(c2), pixelSize, 0.0, t2);
}
}
//============================================================================
DVAPI TStroke *makeEllipticStroke(double thick, TPointD center, double radiusX,
double radiusY) {
std::vector<TThickPoint> points(17);
double xmin = center.x - radiusX; // x coordinate of the upper left corner of
// the bounding rectangle
double ymin = center.y - radiusY; // y coordinate of the upper left corner of
// the bounding rectangle
double xmax = center.x + radiusX; // x coordinate of the bottom right corner
// of the bounding rectangle
double ymax = center.y + radiusY; // y coordinate of the bottom right corner
// of the bounding rectangle
const double C1 = 0.1465; // magic number for coefficient1
const double C2 = 0.2070; // magic number for coefficient2
double dx = xmax - xmin; // dx is width diameter
double dy = ymax - ymin; // dy is height diameter
const double begin =
0.8535; // starting position to draw (bounding square is 1x1)
double c1dx = (double)(C1 * dx);
double c1dy = (double)(C1 * dy);
double c2dx = (double)(C2 * dx);
double c2dy = (double)(C2 * dy);
points[0] = TThickPoint(xmin + begin * dx, ymin + begin * dy, thick);
points[1] = points[0] + TThickPoint(-c1dx, c1dy, 0); //
points[2] = points[1] + TThickPoint(-c2dx, 0, 0); //
points[3] = points[2] + TThickPoint(-c2dx, 0, 0); //
points[4] = points[3] + TThickPoint(-c1dx, -c1dy, 0); //
points[5] = points[4] + TThickPoint(-c1dx, -c1dy, 0); //
points[6] = points[5] + TThickPoint(0, -c2dy, 0); //
points[7] = points[6] + TThickPoint(0, -c2dy, 0); //
points[8] = points[7] + TThickPoint(c1dx, -c1dy, 0); //
points[9] = points[8] + TThickPoint(c1dx, -c1dy, 0); //
points[10] = points[9] + TThickPoint(c2dx, 0, 0); //
points[11] = points[10] + TThickPoint(c2dx, 0, 0); //
points[12] = points[11] + TThickPoint(c1dx, c1dy, 0); //
points[13] = points[12] + TThickPoint(c1dx, c1dy, 0); //
points[14] = points[13] + TThickPoint(0, c2dy, 0); //
points[15] = points[14] + TThickPoint(0, c2dy, 0); //
points[16] = points[0]; // need to be closed!!!
// points[15]+TThickPoint(-c1dx, c1dy,0);//
TStroke *stroke = new TStroke(points);
stroke->setSelfLoop();
return stroke;
}