#include "autofill.h"
#include "tregion.h"
#include "tgeometry.h"
#include "tstroke.h"
#include "toonz4.6/tmacro.h"
#include <QMap>
#include <QPair>
#include <QList>
namespace {
#define BORDER_TOO 1
#define NO_BORDER 0
#define DIM_TRESH 0.00005
#define AMB_TRESH 130000
#define MIN_SIZE 20
//==============================================================================================
struct Region {
double m_area, m_perimeter;
TPointD m_barycentre;
TDimensionD m_size;
int m_match, m_styleId;
TRegion *m_region;
Region()
: m_area(0)
, m_perimeter(0)
, m_barycentre(0, 0)
, m_size(0, 0)
, m_match(-1)
, m_styleId(0)
, m_region(0) {}
};
struct MatchingProbs {
int m_from, m_to;
int m_perimeterProb, m_areaProb, m_barycenterProb;
bool m_overlappingArea, m_matched;
MatchingProbs()
: m_from(0)
, m_to(0)
, m_perimeterProb(0)
, m_areaProb(0)
, m_barycenterProb(0)
, m_overlappingArea(false)
, m_matched(false) {}
};
typedef QMap<int, Region> RegionDataList;
static RegionDataList regionsReference, regionsWork;
static TPointD referenceB(0, 0);
static TPointD workB(0, 0);
//==============================================================================================
class AreasAndPerimeterFormula : public TRegionFeatureFormula {
double m_signedArea, m_perimeter;
public:
AreasAndPerimeterFormula() : m_signedArea(0), m_perimeter(0) {}
~AreasAndPerimeterFormula() {}
void update(const TPointD &p1, const TPointD &p2) {
m_perimeter += norm(p2 - p1);
m_signedArea += ((p1.x * p2.y) - (p2.x * p1.y)) * 0.5;
}
double getPerimeter() { return m_perimeter; }
double getSignedArea() { return m_signedArea; }
double getArea() { return fabs(m_signedArea); }
};
//---------------------------------------------------------------------------------------------
class CentroidFormula : public TRegionFeatureFormula {
TPointD m_centroid;
double m_signedArea;
public:
CentroidFormula() : m_centroid(), m_signedArea(0) {}
~CentroidFormula() {}
void update(const TPointD &p1, const TPointD &p2) {
double factor = ((p1.x * p2.y) - (p2.x * p1.y));
m_centroid.x += (p1.x + p2.x) * factor;
m_centroid.y += (p1.y + p2.y) * factor;
}
void setSignedArea(double signedArea) { m_signedArea = signedArea; }
TPointD getCentroid() { return (1 / (6 * m_signedArea)) * m_centroid; }
};
//---------------------------------------------------------------------------------------------
int match(std::vector<MatchingProbs> &probsVector, int &from, int &to) {
int i = 0, maxProb = 0;
bool overlappingArea = false;
std::vector<MatchingProbs>::iterator it, matchedProbs;
for (it = probsVector.begin(); it != probsVector.end(); it++) {
MatchingProbs probs = *it;
if (probs.m_matched) continue;
int probValue =
probs.m_areaProb * probs.m_barycenterProb * probs.m_perimeterProb;
if ((!overlappingArea &&
(maxProb < probValue || probs.m_overlappingArea)) ||
(overlappingArea && maxProb < probValue && probs.m_overlappingArea)) {
overlappingArea = probs.m_overlappingArea;
maxProb = probValue;
from = probs.m_from;
to = probs.m_to;
matchedProbs = it;
}
}
if (maxProb) matchedProbs->m_matched = true;
return maxProb;
}
//---------------------------------------------------------------------------------------------
void assignProbs(std::vector<MatchingProbs> &probVector,
const Region &reference, const Region &work, int from,
int to) {
double delta_posx1, delta_posy1, delta_posx2, delta_posy2;
int delta_area, delta_per;
double delta_pos, delta_pos_max;
MatchingProbs probs;
probs.m_from = from;
probs.m_to = to;
TRegion *refRegion = reference.m_region;
TRegion *workRegion = work.m_region;
probs.m_overlappingArea =
refRegion->getBBox().overlaps(workRegion->getBBox());
delta_posx1 = reference.m_barycentre.x / reference.m_area - referenceB.x;
delta_posy1 = reference.m_barycentre.y / reference.m_area - referenceB.y;
delta_posx2 = work.m_barycentre.x / work.m_area - workB.x;
delta_posy2 = work.m_barycentre.y / work.m_area - workB.y;
// Cosi' calcolo il modulo della differenza
delta_pos = sqrt((delta_posx2 - delta_posx1) * (delta_posx2 - delta_posx1) +
(delta_posy2 - delta_posy1) * (delta_posy2 - delta_posy1));
delta_pos_max = sqrt((double)(work.m_size.lx * work.m_size.lx +
work.m_size.ly * work.m_size.ly));
probs.m_barycenterProb = tround(1000 * (1 - (delta_pos / delta_pos_max)));
delta_area = abs(reference.m_area - work.m_area);
probs.m_areaProb = tround(
1000 * (1 - ((double)delta_area / (reference.m_area + work.m_area))));
delta_per = abs(reference.m_perimeter - work.m_perimeter);
probs.m_perimeterProb = tround(
1000 *
(1 - ((double)delta_per / (reference.m_perimeter + work.m_perimeter))));
probVector.push_back(probs);
}
//----------------------------------------------------------------------------------------------
void scanRegion(TRegion *reg, int regionIndex, RegionDataList &rlst,
const TRectD &selectingRect) {
assert(!rlst.contains(regionIndex));
if (!selectingRect.contains(reg->getBBox())) return;
AreasAndPerimeterFormula areasAndPerimeter;
CentroidFormula centroid;
computeRegionFeature(*reg, areasAndPerimeter);
computeRegionFeature(*reg, centroid);
centroid.setSignedArea(areasAndPerimeter.getSignedArea());
Region regionData;
regionData.m_area = areasAndPerimeter.getArea();
regionData.m_perimeter = areasAndPerimeter.getPerimeter();
regionData.m_barycentre = centroid.getCentroid() * regionData.m_area;
regionData.m_size = reg->getBBox().getSize();
UINT i, subRegCount = reg->getSubregionCount();
for (i = 0; i < subRegCount; i++) {
TRegion *subReg = reg->getSubregion(i);
AreasAndPerimeterFormula subAreasAndPerimeter;
CentroidFormula subCentroid;
computeRegionFeature(*subReg, subAreasAndPerimeter);
computeRegionFeature(*subReg, subCentroid);
subCentroid.setSignedArea(subAreasAndPerimeter.getSignedArea());
regionData.m_area -= subAreasAndPerimeter.getArea();
regionData.m_barycentre -=
subCentroid.getCentroid() * subAreasAndPerimeter.getArea();
}
regionData.m_barycentre.x /= regionData.m_area;
regionData.m_barycentre.y /= regionData.m_area;
regionData.m_styleId = reg->getStyle();
regionData.m_region = reg;
rlst[regionIndex] = regionData;
}
//----------------------------------------------------------------------------------------------
void scanSubRegion(TRegion *region, int &index, RegionDataList &rlst,
const TRectD &selectingRect) {
scanRegion(region, index, rlst, selectingRect);
index++;
int j, subRegionCount = region->getSubregionCount();
for (j = 0; j < subRegionCount; j++) {
TRegion *subRegion = region->getSubregion(j);
scanSubRegion(subRegion, index, rlst, selectingRect);
}
}
//----------------------------------------------------------------------------------------------
bool contains(TRegion *container, TRegion *contained) {
if (!(container->getBBox().contains(contained->getBBox()))) return false;
for (UINT i = 0; i < contained->getEdgeCount(); i++)
for (UINT j = 0; j < container->getEdgeCount(); j++)
if (*contained->getEdge(i) == *container->getEdge(j)) return false;
for (UINT i = 0; i < contained->getEdgeCount(); i++) {
TEdge *e = contained->getEdge(i);
if (!container->contains(e->m_s->getThickPoint(e->m_w0))) return false;
if (!container->contains(e->m_s->getThickPoint((e->m_w0 + e->m_w1) / 2.0)))
return false;
if (!container->contains(e->m_s->getThickPoint(e->m_w1))) return false;
}
return true;
}
} // namespace
//==============================================================================================
void rect_autofill_learn(const TVectorImageP &imgToLearn, const TRectD &rect)
{
if (rect.getLx() * rect.getLy() < MIN_SIZE) return;
double pbx, pby;
double totalArea = 0;
pbx = pby = 0;
if (!regionsReference.isEmpty()) regionsReference.clear();
int i, index = 0, regionCount = imgToLearn->getRegionCount();
for (i = 0; i < regionCount; i++) {
TRegion *region = imgToLearn->getRegion(i);
if (rect.contains(region->getBBox())) {
scanRegion(region, index, regionsReference, rect);
index++;
}
int j, subRegionCount = region->getSubregionCount();
for (j = 0; j < subRegionCount; j++) {
TRegion *subRegion = region->getSubregion(j);
if (rect.contains(subRegion->getBBox()))
scanSubRegion(subRegion, index, regionsReference, rect);
}
}
QMap<int, Region>::Iterator it;
for (it = regionsReference.begin(); it != regionsReference.end(); it++) {
pbx += it.value().m_barycentre.x;
pby += it.value().m_barycentre.y;
totalArea += it.value().m_area;
}
if (totalArea > 0)
referenceB = TPointD(pbx / totalArea, pby / totalArea);
else
referenceB = TPointD(0.0, 0.0);
}
//----------------------------------------------------------------------------
bool rect_autofill_apply(const TVectorImageP &imgToApply, const TRectD &rect,
bool selective) {
if (rect.getLx() * rect.getLy() < MIN_SIZE) return false;
if (regionsReference.size() <= 0) return false;
double pbx, pby;
double totalArea = 0;
pbx = pby = 0.0;
if (!regionsWork.isEmpty()) regionsWork.clear();
int i, index = 0, regionCount = imgToApply->getRegionCount();
for (i = 0; i < regionCount; i++) {
TRegion *region = imgToApply->getRegion(i);
TRectD bbox = region->getBBox();
if (rect.contains(bbox)) {
scanRegion(region, index, regionsWork, rect);
index++;
}
int j, subRegionCount = region->getSubregionCount();
for (j = 0; j < subRegionCount; j++) {
TRegion *subRegion = region->getSubregion(j);
if (rect.contains(subRegion->getBBox()))
scanSubRegion(subRegion, index, regionsWork, rect);
}
}
if (regionsWork.size() <= 0) return false;
QMap<int, Region>::Iterator it;
for (it = regionsWork.begin(); it != regionsWork.end(); it++) {
pbx += it.value().m_barycentre.x;
pby += it.value().m_barycentre.y;
totalArea += it.value().m_area;
}
workB = TPointD(pbx / totalArea, pby / totalArea);
std::vector<MatchingProbs> probVector;
RegionDataList::Iterator refIt, workIt;
for (refIt = regionsReference.begin(); refIt != regionsReference.end();
refIt++)
for (workIt = regionsWork.begin(); workIt != regionsWork.end(); workIt++)
assignProbs(probVector, refIt.value(), workIt.value(), refIt.key(),
workIt.key());
bool filledRegions = false;
for (refIt = regionsReference.begin(); refIt != regionsReference.end();
refIt++) {
int to = 0, from = 0;
int valore = 0;
do
valore = match(probVector, from, to);
while ((regionsWork[to].m_match != -1 ||
regionsReference[from].m_match != -1) &&
valore > 0);
if (valore > AMB_TRESH) {
regionsWork[to].m_match = from;
regionsReference[from].m_match = to;
regionsWork[to].m_styleId = regionsReference[from].m_styleId;
TRegion *reg = regionsWork[to].m_region;
if (reg && (!selective || selective && reg->getStyle() == 0)) {
reg->setStyle(regionsWork[to].m_styleId);
filledRegions = true;
}
}
}
return filledRegions;
}
//----------------------------------------------------------------------------
void stroke_autofill_learn(const TVectorImageP &imgToLearn, TStroke *stroke) {
if (!imgToLearn || !stroke || stroke->getControlPointCount() == 0) return;
TVectorImage appImg;
TStroke *appStroke = new TStroke(*stroke);
appImg.addStroke(appStroke);
appImg.findRegions();
double pbx, pby;
double totalArea = 0;
pbx = pby = 0;
if (!regionsReference.isEmpty()) regionsReference.clear();
int i, j, index = 0;
for (i = 0; i < (int)imgToLearn->getRegionCount(); i++) {
TRegion *currentRegion = imgToLearn->getRegion(i);
for (j = 0; j < (int)appImg.getRegionCount(); j++) {
TRegion *region = appImg.getRegion(j);
if (contains(region, currentRegion)) {
scanRegion(currentRegion, index, regionsReference, region->getBBox());
index++;
int k, subRegionCount = currentRegion->getSubregionCount();
for (k = 0; k < subRegionCount; k++) {
TRegion *subRegion = currentRegion->getSubregion(k);
if (contains(region, subRegion))
scanSubRegion(subRegion, index, regionsReference,
region->getBBox());
}
}
}
}
QMap<int, Region>::Iterator it;
for (it = regionsReference.begin(); it != regionsReference.end(); it++) {
pbx += it.value().m_barycentre.x;
pby += it.value().m_barycentre.y;
totalArea += it.value().m_area;
}
if (totalArea > 0)
referenceB = TPointD(pbx / totalArea, pby / totalArea);
else
referenceB = TPointD(0.0, 0.0);
}
//----------------------------------------------------------------------------
bool stroke_autofill_apply(const TVectorImageP &imgToApply, TStroke *stroke,
bool selective) {
if (!imgToApply || !stroke || stroke->getControlPointCount() == 0)
return false;
TVectorImage appImg;
TStroke *appStroke = new TStroke(*stroke);
appImg.addStroke(appStroke);
appImg.findRegions();
if (regionsReference.size() <= 0) return false;
double pbx, pby;
double totalArea = 0;
pbx = pby = 0.0;
if (!regionsWork.isEmpty()) regionsWork.clear();
int i, j, index = 0;
for (i = 0; i < (int)imgToApply->getRegionCount(); i++) {
TRegion *currentRegion = imgToApply->getRegion(i);
for (j = 0; j < (int)appImg.getRegionCount(); j++) {
TRegion *region = appImg.getRegion(j);
if (contains(region, currentRegion)) {
scanRegion(currentRegion, index, regionsWork, region->getBBox());
index++;
int k, subRegionCount = currentRegion->getSubregionCount();
for (k = 0; k < subRegionCount; k++) {
TRegion *subRegion = currentRegion->getSubregion(k);
if (contains(region, subRegion))
scanSubRegion(subRegion, index, regionsWork, region->getBBox());
}
}
}
}
if (regionsWork.size() <= 0) return false;
QMap<int, Region>::Iterator it;
for (it = regionsWork.begin(); it != regionsWork.end(); it++) {
pbx += it.value().m_barycentre.x;
pby += it.value().m_barycentre.y;
totalArea += it.value().m_area;
}
workB = TPointD(pbx / totalArea, pby / totalArea);
std::vector<MatchingProbs> probVector;
RegionDataList::Iterator refIt, workIt;
for (refIt = regionsReference.begin(); refIt != regionsReference.end();
refIt++)
for (workIt = regionsWork.begin(); workIt != regionsWork.end(); workIt++)
assignProbs(probVector, refIt.value(), workIt.value(), refIt.key(),
workIt.key());
bool filledRegions = false;
for (refIt = regionsReference.begin(); refIt != regionsReference.end();
refIt++) {
int to = 0, from = 0;
int valore = 0;
do
valore = match(probVector, from, to);
while ((regionsWork[to].m_match != -1 ||
regionsReference[from].m_match != -1) &&
valore > 0);
if (valore > AMB_TRESH) {
regionsWork[to].m_match = from;
regionsReference[from].m_match = to;
regionsWork[to].m_styleId = regionsReference[from].m_styleId;
TRegion *reg = regionsWork[to].m_region;
if (reg && (!selective || selective && reg->getStyle() == 0)) {
reg->setStyle(regionsWork[to].m_styleId);
filledRegions = true;
}
}
}
return filledRegions;
}