#include "kiss_fftr.h"
#include "_kiss_fft_guts.h"
#include <sys/times.h>
#include <time.h>
#include <unistd.h>
static double cputime(void)
{
struct tms t;
times(&t);
return (double)(t.tms_utime + t.tms_stime)/ sysconf(_SC_CLK_TCK) ;
}
static
kiss_fft_scalar rand_scalar(void)
{
#ifdef USE_SIMD
return _mm_set1_ps(rand()-RAND_MAX/2);
#else
kiss_fft_scalar s = (kiss_fft_scalar)(rand() -RAND_MAX/2);
return s/2;
#endif
}
static
double snr_compare( kiss_fft_cpx * vec1,kiss_fft_cpx * vec2, int n)
{
int k;
double sigpow=1e-10,noisepow=1e-10,err,snr,scale=0;
#ifdef USE_SIMD
float *fv1 = (float*)vec1;
float *fv2 = (float*)vec2;
for (k=0;k<8*n;++k) {
sigpow += *fv1 * *fv1;
err = *fv1 - *fv2;
noisepow += err*err;
++fv1;
++fv2;
}
#else
for (k=0;k<n;++k) {
sigpow += (double)vec1[k].r * (double)vec1[k].r +
(double)vec1[k].i * (double)vec1[k].i;
err = (double)vec1[k].r - (double)vec2[k].r;
noisepow += err * err;
err = (double)vec1[k].i - (double)vec2[k].i;
noisepow += err * err;
if (vec1[k].r)
scale +=(double) vec2[k].r / (double)vec1[k].r;
}
#endif
snr = 10*log10( sigpow / noisepow );
scale /= n;
if (snr<10) {
printf( "\npoor snr, try a scaling factor %f\n" , scale );
exit(1);
}
return snr;
}
#ifndef NUMFFTS
#define NUMFFTS 10000
#endif
int main(int argc,char ** argv)
{
int nfft = 8*3*5;
double ts,tfft,trfft;
int i;
if (argc>1)
nfft = atoi(argv[1]);
kiss_fft_cpx cin[nfft];
kiss_fft_cpx cout[nfft];
kiss_fft_cpx sout[nfft];
kiss_fft_cfg kiss_fft_state;
kiss_fftr_cfg kiss_fftr_state;
kiss_fft_scalar rin[nfft+2];
kiss_fft_scalar rout[nfft+2];
kiss_fft_scalar zero;
memset(&zero,0,sizeof(zero) ); // ugly way of setting short,int,float,double, or __m128 to zero
srand(time(0));
for (i=0;i<nfft;++i) {
rin[i] = rand_scalar();
cin[i].r = rin[i];
cin[i].i = zero;
}
kiss_fft_state = kiss_fft_alloc(nfft,0,0,0);
kiss_fftr_state = kiss_fftr_alloc(nfft,0,0,0);
kiss_fft(kiss_fft_state,cin,cout);
kiss_fftr(kiss_fftr_state,rin,sout);
/*
printf(" results from kiss_fft : (%f,%f), (%f,%f), (%f,%f) ...\n "
, (float)cout[0].r , (float)cout[0].i
, (float)cout[1].r , (float)cout[1].i
, (float)cout[2].r , (float)cout[2].i);
printf(" results from kiss_fftr: (%f,%f), (%f,%f), (%f,%f) ...\n "
, (float)sout[0].r , (float)sout[0].i
, (float)sout[1].r , (float)sout[1].i
, (float)sout[2].r , (float)sout[2].i);
*/
printf( "nfft=%d, inverse=%d, snr=%g\n",
nfft,0, snr_compare(cout,sout,(nfft/2)+1) );
ts = cputime();
for (i=0;i<NUMFFTS;++i) {
kiss_fft(kiss_fft_state,cin,cout);
}
tfft = cputime() - ts;
ts = cputime();
for (i=0;i<NUMFFTS;++i) {
kiss_fftr( kiss_fftr_state, rin, cout );
/* kiss_fftri(kiss_fftr_state,cout,rin); */
}
trfft = cputime() - ts;
printf("%d complex ffts took %gs, real took %gs\n",NUMFFTS,tfft,trfft);
free(kiss_fft_state);
free(kiss_fftr_state);
kiss_fft_state = kiss_fft_alloc(nfft,1,0,0);
kiss_fftr_state = kiss_fftr_alloc(nfft,1,0,0);
memset(cin,0,sizeof(cin));
#if 1
for (i=1;i< nfft/2;++i) {
//cin[i].r = (kiss_fft_scalar)(rand()-RAND_MAX/2);
cin[i].r = rand_scalar();
cin[i].i = rand_scalar();
}
#else
cin[0].r = 12000;
cin[3].r = 12000;
cin[nfft/2].r = 12000;
#endif
// conjugate symmetry of real signal
for (i=1;i< nfft/2;++i) {
cin[nfft-i].r = cin[i].r;
cin[nfft-i].i = - cin[i].i;
}
kiss_fft(kiss_fft_state,cin,cout);
kiss_fftri(kiss_fftr_state,cin,rout);
/*
printf(" results from inverse kiss_fft : (%f,%f), (%f,%f), (%f,%f), (%f,%f), (%f,%f) ...\n "
, (float)cout[0].r , (float)cout[0].i , (float)cout[1].r , (float)cout[1].i , (float)cout[2].r , (float)cout[2].i , (float)cout[3].r , (float)cout[3].i , (float)cout[4].r , (float)cout[4].i
);
printf(" results from inverse kiss_fftr: %f,%f,%f,%f,%f ... \n"
,(float)rout[0] ,(float)rout[1] ,(float)rout[2] ,(float)rout[3] ,(float)rout[4]);
*/
for (i=0;i<nfft;++i) {
sout[i].r = rout[i];
sout[i].i = zero;
}
printf( "nfft=%d, inverse=%d, snr=%g\n",
nfft,1, snr_compare(cout,sout,nfft/2) );
free(kiss_fft_state);
free(kiss_fftr_state);
return 0;
}