#ifdef WIN32
#define NOMINMAX
#endif
#include "texception.h"
#include "tfxparam.h"
#include "trop.h"
#include "stdfx.h"
#include "trasterfx.h"
//-------------------------------------------------------------------
class BlurFx : public TStandardRasterFx
{
FX_PLUGIN_DECLARATION(BlurFx)
TRasterFxPort m_input;
TDoubleParamP m_value;
TBoolParamP m_useSSE;
public:
BlurFx() : m_value(20), m_useSSE(true)
{
m_value->setMeasureName("fxLength");
bindParam(this, "value", m_value);
bindParam(this, "useSSE", m_useSSE, true);
addInputPort("Source", m_input);
m_value->setValueRange(0, std::numeric_limits<double>::max());
}
~BlurFx(){};
bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info)
{
if (m_input.isConnected()) {
bool ret = m_input->doGetBBox(frame, bBox, info);
double blur = fabs(m_value->getValue(frame));
int brad = tceil(blur);
bBox = bBox.enlarge(brad);
return ret;
} else {
bBox = TRectD();
return false;
}
}
void enlarge(const TRectD &bbox, TRectD &requestedRect, int blur);
void transform(
double frame,
int port,
const TRectD &rectOnOutput,
const TRenderSettings &infoOnOutput,
TRectD &rectOnInput,
TRenderSettings &infoOnInput);
void doCompute(TTile &tile, double frame, const TRenderSettings &);
int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info);
bool canHandle(const TRenderSettings &info, double frame)
{
if (m_value->getValue(frame) == 0)
return true;
return (isAlmostIsotropic(info.m_affine));
}
};
FX_PLUGIN_IDENTIFIER(BlurFx, "blurFx")
//-------------------------------------------------------------------
//!Calculates the geometry we need for this node computation, given
//!the known input data (bbox), the requested output (requestedRect) and the blur factor.
void BlurFx::enlarge(const TRectD &bbox, TRectD &requestedRect, int blur)
{
if (bbox.isEmpty() || requestedRect.isEmpty()) {
requestedRect.empty();
return;
}
//We are to find out the geometry that is useful for the fx computation.
//There are some rules to follow:
// a) First, the interesting output we can generate is bounded by both
// the requestedRect and the blurred bbox (i.e. enlarged by the blur radius).
// b) Pixels contributing to any output are necessarily part of bbox - and only
// those which are blurrable into the requestedRect are useful to us
// (i.e. pixels contained in its enlargement by the blur radius).
TRectD enlargedBBox(bbox.enlarge(blur));
TRectD enlargedOut(requestedRect.enlarge(blur));
TPointD originalP00(requestedRect.getP00());
requestedRect = (enlargedOut * bbox) + (enlargedBBox * requestedRect);
//Finally, make sure that the result is coherent with the original P00
requestedRect -= originalP00;
requestedRect.x0 = tfloor(requestedRect.x0);
requestedRect.y0 = tfloor(requestedRect.y0);
requestedRect.x1 = tceil(requestedRect.x1);
requestedRect.y1 = tceil(requestedRect.y1);
requestedRect += originalP00;
}
//-------------------------------------------------------------------
void BlurFx::transform(
double frame,
int port,
const TRectD &rectOnOutput,
const TRenderSettings &infoOnOutput,
TRectD &rectOnInput,
TRenderSettings &infoOnInput)
{
infoOnInput = infoOnOutput;
rectOnInput = rectOnOutput;
double blur = fabs(m_value->getValue(frame) * sqrt(fabs(infoOnOutput.m_affine.det())));
if (blur == 0) {
rectOnInput = rectOnOutput;
return;
}
int brad = tceil(blur);
TRectD bbox;
m_input->getBBox(frame, bbox, infoOnInput);
enlarge(bbox, rectOnInput, brad);
}
//-------------------------------------------------------------------
int BlurFx::getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
{
double blurValue = fabs(m_value->getValue(frame) * sqrt(fabs(info.m_affine.det())));
if (blurValue == 0.0)
return 0;
int brad = tceil(blurValue);
//Trop::blur is quite inefficient at the moment - it has to allocate a whole
//raster of the same size of the input/output made of FLOAT QUADRUPLES...!
return TRasterFx::memorySize(rect.enlarge(brad), sizeof(float) << 5);
}
//-------------------------------------------------------------------
void BlurFx::doCompute(
TTile &tile,
double frame,
const TRenderSettings &renderSettings)
{
if (!m_input.isConnected())
return;
double shrink = 0.5 * (renderSettings.m_shrinkX + renderSettings.m_shrinkY);
// Note: shrink is obsolete. It should be always = 1
double blurValue = fabs(m_value->getValue(frame) * sqrt(fabs(renderSettings.m_affine.det())) / shrink);
if (blurValue == 0) {
//No blur will be done. The underlying fx may pass by.
m_input->compute(tile, frame, renderSettings);
return;
}
int brad = tceil(blurValue);
//Get the requested tile's geometry
TRectD rectIn, rectOut;
rectOut = TRectD(
tile.m_pos, TDimensionD(tile.getRaster()->getLx(), tile.getRaster()->getLy()));
//Retrieve the input interesting geometry - and ensure that something actually has
//to be computed
if (!m_input->getBBox(frame, rectIn, renderSettings) || rectOut.isEmpty())
return;
enlarge(rectIn, rectOut, brad);
if (rectOut.isEmpty())
return;
//Finally, allocate and compute the blur argument
TTile tileIn;
m_input->allocateAndCompute(
tileIn, rectOut.getP00(), TDimension(rectOut.getLx(), rectOut.getLy()),
tile.getRaster(), frame, renderSettings);
TPointD displacement(rectOut.getP00() - tile.m_pos);
TRop::blur(tile.getRaster(), tileIn.getRaster(), blurValue, displacement.x, displacement.y, false);
}