Blob Blame Raw

/*! @file ilu_cpivotL.c
 * \brief Performs numerical pivoting
 *
 * <pre>
 * -- SuperLU routine (version 4.0) --
 * Lawrence Berkeley National Laboratory
 * June 30, 2009
 * </pre>
 */


#include <math.h>
#include <stdlib.h>
#include "slu_cdefs.h"

#ifndef SGN
#define SGN(x) ((x)>=0?1:-1)
#endif

/*! \brief
 *
 * <pre>
 * Purpose
 * =======
 *   Performs the numerical pivoting on the current column of L,
 *   and the CDIV operation.
 *
 *   Pivot policy:
 *   (1) Compute thresh = u * max_(i>=j) abs(A_ij);
 *   (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN
 *	     pivot row = k;
 *	 ELSE IF abs(A_jj) >= thresh THEN
 *	     pivot row = j;
 *	 ELSE
 *	     pivot row = m;
 *
 *   Note: If you absolutely want to use a given pivot order, then set u=0.0.
 *
 *   Return value: 0	  success;
 *		   i > 0  U(i,i) is exactly zero.
 * </pre>
 */

int
ilu_cpivotL(
	const int  jcol,     /* in */
	const double u,      /* in - diagonal pivoting threshold */
	int	   *usepr,   /* re-use the pivot sequence given by
			      * perm_r/iperm_r */
	int	   *perm_r,  /* may be modified */
	int	   diagind,  /* diagonal of Pc*A*Pc' */
	int	   *swap,    /* in/out record the row permutation */
	int	   *iswap,   /* in/out inverse of swap, it is the same as
				perm_r after the factorization */
	int	   *marker,  /* in */
	int	   *pivrow,  /* in/out, as an input if *usepr!=0 */
	double	   fill_tol, /* in - fill tolerance of current column
			      * used for a singular column */
	milu_t	   milu,     /* in */
	complex	   drop_sum, /* in - computed in ilu_ccopy_to_ucol()
                                (MILU only) */
	GlobalLU_t *Glu,     /* modified - global LU data structures */
	SuperLUStat_t *stat  /* output */
       )
{

    int		 n;	 /* number of columns */
    int		 fsupc;  /* first column in the supernode */
    int		 nsupc;  /* no of columns in the supernode */
    int		 nsupr;  /* no of rows in the supernode */
    int		 lptr;	 /* points to the starting subscript of the supernode */
    register int	 pivptr;
    int		 old_pivptr, diag, ptr0;
    register float  pivmax, rtemp;
    float	 thresh;
    complex	 temp;
    complex	 *lu_sup_ptr;
    complex	 *lu_col_ptr;
    int		 *lsub_ptr;
    register int	 isub, icol, k, itemp;
    int		 *lsub, *xlsub;
    complex	 *lusup;
    int		 *xlusup;
    flops_t	 *ops = stat->ops;
    int		 info;
    complex one = {1.0, 0.0};

    /* Initialize pointers */
    n	       = Glu->n;
    lsub       = Glu->lsub;
    xlsub      = Glu->xlsub;
    lusup      = Glu->lusup;
    xlusup     = Glu->xlusup;
    fsupc      = (Glu->xsup)[(Glu->supno)[jcol]];
    nsupc      = jcol - fsupc;		/* excluding jcol; nsupc >= 0 */
    lptr       = xlsub[fsupc];
    nsupr      = xlsub[fsupc+1] - lptr;
    lu_sup_ptr = &lusup[xlusup[fsupc]]; /* start of the current supernode */
    lu_col_ptr = &lusup[xlusup[jcol]];	/* start of jcol in the supernode */
    lsub_ptr   = &lsub[lptr];	/* start of row indices of the supernode */

    /* Determine the largest abs numerical value for partial pivoting;
       Also search for user-specified pivot, and diagonal element. */
    pivmax = -1.0;
    pivptr = nsupc;
    diag = EMPTY;
    old_pivptr = nsupc;
    ptr0 = EMPTY;
    for (isub = nsupc; isub < nsupr; ++isub) {
        if (marker[lsub_ptr[isub]] > jcol)
            continue; /* do not overlap with a later relaxed supernode */

	switch (milu) {
	    case SMILU_1:
                c_add(&temp, &lu_col_ptr[isub], &drop_sum);
		rtemp = c_abs1(&temp);
		break;
	    case SMILU_2:
	    case SMILU_3:
                /* In this case, drop_sum contains the sum of the abs. value */
		rtemp = c_abs1(&lu_col_ptr[isub]);
		break;
	    case SILU:
	    default:
		rtemp = c_abs1(&lu_col_ptr[isub]);
		break;
	}
	if (rtemp > pivmax) { pivmax = rtemp; pivptr = isub; }
	if (*usepr && lsub_ptr[isub] == *pivrow) old_pivptr = isub;
	if (lsub_ptr[isub] == diagind) diag = isub;
	if (ptr0 == EMPTY) ptr0 = isub;
    }

    if (milu == SMILU_2 || milu == SMILU_3) pivmax += drop_sum.r;

    /* Test for singularity */
    if (pivmax < 0.0) {
	fprintf(stderr, "[0]: jcol=%d, SINGULAR!!!\n", jcol);
	fflush(stderr);
	exit(1);
    }
    if ( pivmax == 0.0 ) {
	if (diag != EMPTY)
	    *pivrow = lsub_ptr[pivptr = diag];
	else if (ptr0 != EMPTY)
	    *pivrow = lsub_ptr[pivptr = ptr0];
	else {
	    /* look for the first row which does not
	       belong to any later supernodes */
	    for (icol = jcol; icol < n; icol++)
		if (marker[swap[icol]] <= jcol) break;
	    if (icol >= n) {
		fprintf(stderr, "[1]: jcol=%d, SINGULAR!!!\n", jcol);
		fflush(stderr);
		exit(1);
	    }

	    *pivrow = swap[icol];

	    /* pick up the pivot row */
	    for (isub = nsupc; isub < nsupr; ++isub)
		if ( lsub_ptr[isub] == *pivrow ) { pivptr = isub; break; }
	}
	pivmax = fill_tol;
	lu_col_ptr[pivptr].r = pivmax;
	lu_col_ptr[pivptr].i = 0.0;
	*usepr = 0;
#ifdef DEBUG
	printf("[0] ZERO PIVOT: FILL (%d, %d).\n", *pivrow, jcol);
	fflush(stdout);
#endif
	info =jcol + 1;
    } /* if (*pivrow == 0.0) */
    else {
	thresh = u * pivmax;

	/* Choose appropriate pivotal element by our policy. */
	if ( *usepr ) {
	    switch (milu) {
		case SMILU_1:
                    c_add(&temp, &lu_col_ptr[old_pivptr], &drop_sum);
		    rtemp = c_abs1(&temp);
		    break;
		case SMILU_2:
		case SMILU_3:
		    rtemp = c_abs1(&lu_col_ptr[old_pivptr]) + drop_sum.r;
		    break;
		case SILU:
		default:
		    rtemp = c_abs1(&lu_col_ptr[old_pivptr]);
		    break;
	    }
	    if ( rtemp != 0.0 && rtemp >= thresh ) pivptr = old_pivptr;
	    else *usepr = 0;
	}
	if ( *usepr == 0 ) {
	    /* Use diagonal pivot? */
	    if ( diag >= 0 ) { /* diagonal exists */
		switch (milu) {
		    case SMILU_1:
                        c_add(&temp, &lu_col_ptr[diag], &drop_sum);
         	        rtemp = c_abs1(&temp);
			break;
		    case SMILU_2:
		    case SMILU_3:
			rtemp = c_abs1(&lu_col_ptr[diag]) + drop_sum.r;
			break;
		    case SILU:
		    default:
			rtemp = c_abs1(&lu_col_ptr[diag]);
			break;
		}
		if ( rtemp != 0.0 && rtemp >= thresh ) pivptr = diag;
	    }
	    *pivrow = lsub_ptr[pivptr];
	}
	info = 0;

	/* Reset the diagonal */
	switch (milu) {
	    case SMILU_1:
		c_add(&lu_col_ptr[pivptr], &lu_col_ptr[pivptr], &drop_sum);
		break;
	    case SMILU_2:
	    case SMILU_3:
                temp = c_sgn(&lu_col_ptr[pivptr]);
                cc_mult(&temp, &temp, &drop_sum);
                c_add(&lu_col_ptr[pivptr], &lu_col_ptr[pivptr], &drop_sum);
		break;
	    case SILU:
	    default:
		break;
	}

    } /* else */

    /* Record pivot row */
    perm_r[*pivrow] = jcol;
    if (jcol < n - 1) {
	register int t1, t2, t;
	t1 = iswap[*pivrow]; t2 = jcol;
	if (t1 != t2) {
	    t = swap[t1]; swap[t1] = swap[t2]; swap[t2] = t;
	    t1 = swap[t1]; t2 = t;
	    t = iswap[t1]; iswap[t1] = iswap[t2]; iswap[t2] = t;
	}
    } /* if (jcol < n - 1) */

    /* Interchange row subscripts */
    if ( pivptr != nsupc ) {
	itemp = lsub_ptr[pivptr];
	lsub_ptr[pivptr] = lsub_ptr[nsupc];
	lsub_ptr[nsupc] = itemp;

	/* Interchange numerical values as well, for the whole snode, such 
	 * that L is indexed the same way as A.
	 */
	for (icol = 0; icol <= nsupc; icol++) {
	    itemp = pivptr + icol * nsupr;
	    temp = lu_sup_ptr[itemp];
	    lu_sup_ptr[itemp] = lu_sup_ptr[nsupc + icol*nsupr];
	    lu_sup_ptr[nsupc + icol*nsupr] = temp;
	}
    } /* if */

    /* cdiv operation */
    ops[FACT] += 10 * (nsupr - nsupc);
    c_div(&temp, &one, &lu_col_ptr[nsupc]);
    for (k = nsupc+1; k < nsupr; k++) 
	cc_mult(&lu_col_ptr[k], &lu_col_ptr[k], &temp);

    return info;
}