#include "trasterfx.h"
// Core-system includes
#include "tsystem.h"
#include "tthreadmessage.h"
// Fx basics
#include "tparamcontainer.h"
#include "tbasefx.h"
#include "tfxattributes.h"
// Images components
#include "timagecache.h"
#include "trasterimage.h"
#include "trop.h"
// Optimization components
#include "trenderresourcemanager.h"
#include "tfxcachemanager.h"
#include "trenderer.h"
// Diagnostics
//#define DIAGNOSTICS
#ifdef DIAGNOSTICS
#include "diagnostics.h"
#endif // DIAGNOSTICS
//===================================================
namespace {
inline bool areEqual(const TRasterFxRenderDataP &d1,
const TRasterFxRenderDataP &d2) {
return (*d1 == *d2);
}
//--------------------------------------------------
inline int myCeil(double x) {
return ((x - (int)(x)) > TConsts::epsilon ? (int)(x) + 1 : (int)(x));
}
//--------------------------------------------------
inline TRect myConvert(const TRectD &r, TPointD &dp) {
TRect ri(tfloor(r.x0), tfloor(r.y0), myCeil(r.x1), myCeil(r.y1));
dp.x = r.x0 - ri.x0;
dp.y = r.y0 - ri.y0;
assert(dp.x >= 0 && dp.y >= 0);
return ri;
}
//--------------------------------------------------
inline bool myIsEmpty(const TRectD &r) {
return r.getLx() < 1 || r.getLy() < 1;
}
//--------------------------------------------------
inline TRect myConvert(const TRectD &rect) {
return TRect(tround(rect.x0), tround(rect.y0), tround(rect.x1) - 1,
tround(rect.y1) - 1);
}
//--------------------------------------------------
inline TRectD myConvert(const TRect &rect) {
return TRectD(rect.x0, rect.y0, rect.x1 + 1, rect.y1 + 1);
}
//--------------------------------------------------
inline void enlargeToI(TRectD &r) {
TRectD temp(tfloor(r.x0), tfloor(r.y0), tceil(r.x1), tceil(r.y1));
// NOTE: If we enlarge a TConsts::infiniteRectD or one which trespass
// ints' numerical bounds, the rect may become empty.
if (!myIsEmpty(temp)) r = temp;
}
//--------------------------------------------------
// Calculates the 2-norm of the passed affine A - that is, the max modulus
// of A*A's eigenvalues (*A being the adjoint).
double norm2(const TAffine &aff) {
double a11 = aff.a11 * aff.a11 + aff.a12 * aff.a12;
double a12 = aff.a11 * aff.a21 + aff.a12 * aff.a22;
double a21 = aff.a21 * aff.a11 + aff.a22 * aff.a12;
double a22 = aff.a21 * aff.a21 + aff.a22 * aff.a22;
double a11plusa22 = a11 + a22;
double delta = sq(a11 - a22) + 4 * a12 * a21;
delta = sqrt(delta);
double eig1 = a11plusa22 + delta;
double eig2 = a11plusa22 - delta;
return std::max(sqrt(eig1 / 2.0), sqrt(eig2 / 2.0));
}
//--------------------------------------------------
inline int getResampleFilterRadius(const TRenderSettings &info) {
switch (info.m_quality) {
case TRenderSettings::StandardResampleQuality:
return 1;
case TRenderSettings::ImprovedResampleQuality:
return 2;
case TRenderSettings::HighResampleQuality:
return 3;
case TRenderSettings::Triangle_FilterResampleQuality:
return 1;
case TRenderSettings::Mitchell_FilterResampleQuality:
return 2;
case TRenderSettings::Cubic5_FilterResampleQuality:
return 2;
case TRenderSettings::Cubic75_FilterResampleQuality:
return 2;
case TRenderSettings::Cubic1_FilterResampleQuality:
return 2;
case TRenderSettings::Hann2_FilterResampleQuality:
return 2;
case TRenderSettings::Hann3_FilterResampleQuality:
return 3;
case TRenderSettings::Hamming2_FilterResampleQuality:
return 2;
case TRenderSettings::Hamming3_FilterResampleQuality:
return 3;
case TRenderSettings::Lanczos2_FilterResampleQuality:
return 2;
case TRenderSettings::Lanczos3_FilterResampleQuality:
return 3;
case TRenderSettings::Gauss_FilterResampleQuality:
return 2;
case TRenderSettings::ClosestPixel_FilterResampleQuality:
return 1;
case TRenderSettings::Bilinear_FilterResampleQuality:
return 1;
default:
assert(false);
return -1;
}
}
//--------------------------------------------------
inline QString traduce(const TRectD &rect) {
return "[" + QString::number(rect.x0) + " " + QString::number(rect.y0) + " " +
QString::number(rect.x1) + " " + QString::number(rect.y1) + "]";
}
//--------------------------------------------------
inline QString traduce(const TRect &rect) {
return "[" + QString::number(rect.x0) + " " + QString::number(rect.y0) + " " +
QString::number(rect.x1) + " " + QString::number(rect.y1) + "]";
}
//--------------------------------------------------
inline QString qTraduce(const TAffine &aff) {
return "[" + QString::number(aff.a11, 'g', 15) + "," +
QString::number(aff.a12, 'g', 15) + "," +
QString::number(aff.a13, 'g', 15) + "," +
QString::number(aff.a21, 'g', 15) + "," +
QString::number(aff.a22, 'g', 15) + "," +
QString::number(aff.a23, 'g', 15) + "]";
}
//--------------------------------------------------
inline std::string traduce(const TAffine &aff) {
return
// Observe that toString distinguishes + and - 0. That is a problem
// when comparing aliases - so near 0 values are explicitly rounded to 0.
(areAlmostEqual(aff.a11, 0.0) ? "0" : ::to_string(aff.a11, 5)) + "," +
(areAlmostEqual(aff.a12, 0.0) ? "0" : ::to_string(aff.a12, 5)) + "," +
(areAlmostEqual(aff.a13, 0.0) ? "0" : ::to_string(aff.a13, 5)) + "," +
(areAlmostEqual(aff.a21, 0.0) ? "0" : ::to_string(aff.a21, 5)) + "," +
(areAlmostEqual(aff.a22, 0.0) ? "0" : ::to_string(aff.a22, 5)) + "," +
(areAlmostEqual(aff.a23, 0.0) ? "0" : ::to_string(aff.a23, 5));
}
} // Local namespace
//------------------------------------------------------------------------------
// The following should be cleared - and its functionalities surrendered
// directly
// to an appropriate resource manager...
//! Declares an image to be kept in cache until the render ends or is canceled.
void addRenderCache(const std::string &alias, TImageP image) {
TFxCacheManager::instance()->add(alias, image);
}
//------------------------------------------------------------------------------
//! The inverse function to addRenderCache.
void removeRenderCache(const std::string &alias) {
TFxCacheManager::instance()->remove(alias);
}
//==============================================================================
//
// TrFx (Affine Transformer Fx)
//
//------------------------------------------------------------------------------
//! Internal fx node which applies the implicit affine stored in the
//! TRenderSettings structure,
//! replacing the old TRasterFx::doCompute.
class TrFx : public TBaseRasterFx {
FX_DECLARATION(TrFx)
TRasterFx *m_fx;
public:
TrFx() {}
~TrFx() {}
//-----------------------------------------------------------
void setFx(TRasterFx *fx) { m_fx = fx; }
//-----------------------------------------------------------
bool isCachable() const override {
return true;
} // Currently cachable as a test. Observe that it was NOT in Toonz 6.1
//-----------------------------------------------------------
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
//-----------------------------------------------------------
std::string getAlias(double frame,
const TRenderSettings &info) const override {
// NOTE: TrFx are not present at this recursive level. Affines dealing is
// currently handled by inserting the
// rendering affine AFTER a getAlias call. Ever.
std::string alias = getFxType();
return alias + "[" + m_fx->getAlias(frame, info) + "]";
}
//-----------------------------------------------------------
bool doGetBBox(double frame, TRectD &bBox,
const TRenderSettings &info) override {
// NOTE: TrFx are not present at this recursive level. Affines dealing is
// still handled by TGeometryFxs here....
return m_fx->doGetBBox(frame, bBox, info);
}
//-----------------------------------------------------------
void doCompute(TTile &tile, double frame,
const TRenderSettings &info) override {
const TRectD &rectOut =
myConvert(tile.getRaster()->getBounds()) + tile.m_pos;
TRectD rectIn;
TRenderSettings infoIn(info);
TAffine appliedAff;
if (!buildInput(rectOut, frame, info, rectIn, infoIn, appliedAff)) return;
const TRect &rectInI = myConvert(rectIn);
// rasIn e' un raster dello stesso tipo di tile.getRaster()
TTile inTile;
m_fx->allocateAndCompute(inTile, rectIn.getP00(),
TDimension(rectInI.getLx(), rectInI.getLy()),
tile.getRaster(), frame, infoIn);
infoIn.m_affine = appliedAff;
TRasterFx::applyAffine(tile, inTile, infoIn);
}
//-----------------------------------------------------------
void doDryCompute(TRectD &rect, double frame,
const TRenderSettings &info) override {
TRectD rectIn;
TRenderSettings infoIn(info);
TAffine appliedAff;
if (!buildInput(rect, frame, info, rectIn, infoIn, appliedAff)) return;
m_fx->dryCompute(rectIn, frame, infoIn);
}
//-----------------------------------------------------------
int getMemoryRequirement(const TRectD &rect, double frame,
const TRenderSettings &info) override {
TRectD rectIn;
TRenderSettings infoIn(info);
TAffine appliedAff;
if (!buildInput(rect, frame, info, rectIn, infoIn, appliedAff)) return 0;
return TRasterFx::memorySize(rectIn, info.m_bpp);
}
private:
bool buildInput(const TRectD &rectOut, double frame,
const TRenderSettings &infoOut, TRectD &rectIn,
TRenderSettings &infoIn, TAffine &appliedAff) {
if (myIsEmpty(rectOut)) return false;
// Build the affines
infoIn.m_affine = m_fx->handledAffine(infoOut, frame);
appliedAff = infoOut.m_affine * infoIn.m_affine.inv();
// Quick fix - prevent near-singular transforms.
// NOTE: This check **SHOULD BE REMOVED** and dealt with at the RESAMPLING
// level.
// Observe how the tolerance value is quite arbitrary! Yeah I know
// it's shameful... :(
if (fabs(appliedAff.det()) < 1e-6) // TO BE REMOVED
return false; // TO BE REMOVED
// Build the input rect
const TAffine &appliedAffInv = appliedAff.inv();
int filterRadius = getResampleFilterRadius(infoOut);
TRectD bbox;
m_fx->getBBox(frame, bbox, infoIn);
rectIn =
((appliedAffInv * rectOut)
.enlarge(
filterRadius) + // The filter size applies in input during
(appliedAffInv * rectOut.enlarge(filterRadius))) *
bbox; // magnifications, and in output during
// minifications. Thus, they basically cumulate.
if (myIsEmpty(rectIn)) return false;
enlargeToI(rectIn);
return true;
}
};
FX_IDENTIFIER_IS_HIDDEN(TrFx, "trFx")
//==============================================================================
//
// FxResourceBuilder
//
//------------------------------------------------------------------------------
// This class is the internal interface with the cache regarding intermediate
// render
// results. Please refer to the ResourceBuilder documentation in
// tfxcachemanager.cpp
class FxResourceBuilder : public ResourceBuilder {
TRasterFxP m_rfx;
double m_frame;
const TRenderSettings *m_rs;
TTile *m_outTile;
TTile *m_currTile;
TTile m_newTile;
TRectD m_outRect;
public:
FxResourceBuilder(const std::string &resourceName, const TRasterFxP &fx,
const TRenderSettings &rs, double frame)
: ResourceBuilder(resourceName, fx.getPointer(), frame, rs)
, m_rfx(fx)
, m_frame(frame)
, m_rs(&rs)
, m_currTile(0) {}
inline void build(TTile &tile);
protected:
void simCompute(const TRectD &rect) override {
TRectD rectCpy(
rect); // Why the hell dryCompute(..) has non-const TRectD& input ????
m_rfx->doDryCompute(rectCpy, m_frame, *m_rs);
}
void buildTileToCalculate(const TRectD &tileRect);
void compute(const TRectD &tileRect) override;
void upload(TCacheResourceP &resource) override;
bool download(TCacheResourceP &resource) override;
};
//------------------------------------------------------------------------------
inline void FxResourceBuilder::build(TTile &tile) {
m_outTile = &tile;
TDimension dim(tile.getRaster()->getSize());
m_outRect = TRectD(tile.m_pos, TDimensionD(dim.lx, dim.ly));
ResourceBuilder::build(m_outRect);
}
//------------------------------------------------------------------------------
void FxResourceBuilder::buildTileToCalculate(const TRectD &tileGeom) {
if (tileGeom == m_outRect) {
m_currTile = m_outTile;
return;
}
m_newTile.m_pos = tileGeom.getP00();
TRasterP outRas(m_outTile->getRaster());
// If possible, try to reuse outRas's buffer.
TDimension outputSize(outRas->getSize());
TDimension requiredSize(tceil(tileGeom.getLx()), tceil(tileGeom.getLy()));
TRasterP ras;
if (outputSize.lx >= requiredSize.lx && outputSize.ly >= requiredSize.ly) {
// Reuse fxOutput's buffer
TRect rect(0, 0, requiredSize.lx - 1, requiredSize.ly - 1);
ras = outRas->extract(rect);
ras->clear();
} else
ras = outRas->create(requiredSize.lx, requiredSize.ly);
m_newTile.setRaster(ras);
m_currTile = &m_newTile;
}
//------------------------------------------------------------------------------
void FxResourceBuilder::compute(const TRectD &tileRect) {
#ifdef DIAGNOSTICS
TStopWatch sw;
sw.start();
#endif
buildTileToCalculate(tileRect);
m_rfx->doCompute(*m_currTile, m_frame, *m_rs);
#ifdef DIAGNOSTICS
sw.stop();
DIAGNOSTICS_THRSET("FComputeTime", sw.getTotalTime());
#endif
}
//------------------------------------------------------------------------------
void FxResourceBuilder::upload(TCacheResourceP &resource) {
resource->upload(*m_currTile);
if (m_currTile == &m_newTile) m_newTile.setRaster(0);
}
//------------------------------------------------------------------------------
bool FxResourceBuilder::download(TCacheResourceP &resource) {
// In case the output tile was used to calculate the fx, avoid downloading
if (m_currTile == m_outTile) return true;
return resource->downloadAll(*m_outTile);
}
//==============================================================================
//
// TRasterFx
//
//------------------------------------------------------------------------------
class TRasterFx::TRasterFxImp {
public:
bool m_cacheEnabled;
TTile m_cachedTile;
double m_frame;
bool m_isEnabled;
TRenderSettings m_info;
std::string m_interactiveCacheId;
mutable TThread::Mutex m_mutex; // brutto
TRasterFxImp() : m_cacheEnabled(false), m_isEnabled(true), m_cachedTile(0) {}
~TRasterFxImp() {}
void enableCache(bool on) {
QMutexLocker sl(&m_mutex);
m_cacheEnabled = on;
if (!m_cacheEnabled) {
m_interactiveCacheId = "";
m_frame = 0;
m_info = TRenderSettings();
m_cachedTile.setRaster(0);
m_cachedTile.m_pos = TPointD();
}
}
bool isCacheEnabled() const { return m_cacheEnabled; }
bool isEnabled() const {
QMutexLocker sl(&m_mutex); // a che serve??
return m_isEnabled;
}
void enable(bool on) {
QMutexLocker sl(&m_mutex); // a che serve
m_isEnabled = on;
}
};
//--------------------------------------------------
TRasterFx::TRasterFx() : m_rasFxImp(new TRasterFxImp) {}
//--------------------------------------------------
TRasterFx::~TRasterFx() { delete m_rasFxImp; }
//--------------------------------------------------
TAffine TRasterFx::handledAffine(const TRenderSettings &info, double frame) {
return (info.m_affine.a11 == info.m_affine.a22 && info.m_affine.a12 == 0 &&
info.m_affine.a21 == 0 && info.m_affine.a13 == 0 &&
info.m_affine.a23 == 0)
? info.m_affine
: TScale(norm2(info.m_affine));
}
//--------------------------------------------------
bool TRasterFx::getBBox(double frame, TRectD &bBox,
const TRenderSettings &info) {
bool ret = doGetBBox(frame, bBox, info);
bBox = info.m_affine * bBox;
enlargeToI(bBox);
return ret;
}
//--------------------------------------------------
void TRasterFx::transform(double frame, int port, const TRectD &rectOnOutput,
const TRenderSettings &infoOnOutput,
TRectD &rectOnInput, TRenderSettings &infoOnInput) {
rectOnInput = rectOnOutput;
infoOnInput = infoOnOutput;
}
//--------------------------------------------------
int TRasterFx::memorySize(const TRectD &rect, int bpp) {
if (rect.x1 <= rect.x0 || rect.y1 <= rect.y0) return 0;
return (unsigned long)(rect.getLx() + 1) * (unsigned long)(rect.getLy() + 1) *
(bpp >> 3) >>
20;
}
//--------------------------------------------------
//! Specifies the approximate size (in MegaBytes) of the maximum allocation
//! instance that this fx
//! will need to perform in order to render the passed input.
//! This method should be reimplemented in order to make the Toonz rendering
//! process aware of
//! the use of big raster memory chunks, at least.
//! Observe that the passed tile geometry is implicitly <i> already allocated
//! <\i> for the fx output.
//! \n
//! The default implementation returns 0, assuming that the passed implicit
//! memory size is passed
//! below in node computation without further allocation of resources. Fxs can
//! reimplement this
//! to -1 to explicitly disable the Toonz's smart memory handling.
//! \n \n
//! \note The rendering process ensures that the passed render settings are \a
//! handled
//! by the fx before this function is invoked - do not waste code for it.
//! \sa TRasterFx::memorySize and TRasterFx::canHandle methods.
int TRasterFx::getMemoryRequirement(const TRectD &rect, double frame,
const TRenderSettings &info) {
return 0;
}
//--------------------------------------------------
std::string TRasterFx::getAlias(double frame,
const TRenderSettings &info) const {
std::string alias = getFxType();
alias += "[";
// alias degli effetti connessi alle porte di input separati da virgole
// una porta non connessa da luogo a un alias vuoto (stringa vuota)
int i;
for (i = 0; i < getInputPortCount(); i++) {
TFxPort *port = getInputPort(i);
if (port->isConnected()) {
TRasterFxP ifx = port->getFx();
assert(ifx);
alias += ifx->getAlias(frame, info);
}
alias += ",";
}
// alias dei valori dei parametri dell'effetto al frame dato
for (i = 0; i < getParams()->getParamCount(); i++) {
TParam *param = getParams()->getParam(i);
alias += param->getName() + "=" + param->getValueAlias(frame, 3);
}
alias += "]";
return alias;
}
//--------------------------------------------------
void TRasterFx::dryCompute(TRectD &rect, double frame,
const TRenderSettings &info) {
if (checkActiveTimeRegion() && !getActiveTimeRegion().contains(frame)) return;
if (!getAttributes()->isEnabled() || !m_rasFxImp->isEnabled()) {
if (getInputPortCount() == 0) return;
TFxPort *port = getInputPort(getPreferredInputPort());
if (port->isConnected())
TRasterFxP(port->getFx())->dryCompute(rect, frame, info);
return;
}
// If the input tile has a fractionary position, it is passed to the
// rendersettings' accumulated affine.
TPoint intTilePos(tfloor(rect.x0), tfloor(rect.y0));
TPointD fracTilePos(rect.x0 - intTilePos.x, rect.y0 - intTilePos.y);
TPointD fracInfoTranslation(info.m_affine.a13 - fracTilePos.x,
info.m_affine.a23 - fracTilePos.y);
TPoint intInfoTranslation(tfloor(fracInfoTranslation.x),
tfloor(fracInfoTranslation.y));
TPointD newTilePos(intTilePos.x - intInfoTranslation.x,
intTilePos.y - intInfoTranslation.y);
if (rect.getP00() != newTilePos) {
TRenderSettings newInfo(info);
newInfo.m_affine.a13 = fracInfoTranslation.x - intInfoTranslation.x;
newInfo.m_affine.a23 = fracInfoTranslation.y - intInfoTranslation.y;
TRectD newRect(newTilePos, rect.getSize());
dryCompute(newRect, frame, newInfo);
return;
}
// If the fx can't handle the whole affine passed with the TRenderSettings,
// the part
// of it that the fx can't handle is retained and applied by an affine
// transformer fx (TrFx)
// after the node has been computed.
bool canHandleAffine =
canHandle(info, frame) || (handledAffine(info, frame) == info.m_affine);
if (!info.m_affine.isIdentity() && !canHandleAffine) {
TrFx *transformerFx = new TrFx;
TFxP locker(transformerFx);
transformerFx->setFx(this);
transformerFx->dryCompute(rect, frame, info);
return;
}
std::string alias = getAlias(frame, info) + "[" + ::traduce(info.m_affine) +
"][" + std::to_string(info.m_bpp) + "]";
int renderStatus =
TRenderer::instance().getRenderStatus(TRenderer::renderId());
TFxCacheManager *cacheManager = TFxCacheManager::instance();
if (renderStatus == TRenderer::FIRSTRUN) {
TRectD bbox;
// ret = getBBox... puo' darsi che l'enlarge del trFx (o naturale del bbox)
// faccia
// diventare TRectD() non vuoto!!
getBBox(frame, bbox, info);
enlargeToI(bbox);
TRectD interestingRect(rect * bbox);
if (myIsEmpty(interestingRect)) return;
// Declare the tile to the tiles manager
ResourceBuilder::declareResource(alias, this, interestingRect, frame, info);
doDryCompute(interestingRect, frame, info);
} else {
TRectD bbox;
getBBox(frame, bbox, info);
enlargeToI(bbox);
TRectD interestingRect(rect * bbox);
if (myIsEmpty(interestingRect)) return;
// Invoke the fx-specific simulation process
FxResourceBuilder rBuilder(alias, this, info, frame);
rBuilder.simBuild(interestingRect);
}
}
//--------------------------------------------------
//! Declares the computation scheme of this fx for rendering optimization
//! purposes.
//! This is an important function of the Toonz rendering API, and should be
//! reimplemented
//! with the necessary care.
//! The Toonz rendering process makes use of this function to enact most of the
//! optimization steps about the fx computation, in particular fx caching.
//! A correct implementation of this method should follow these rules:
//! <li> The invocation of child node computations should be faithfully
//! reproduced.
//! <li> TRasterFx::compute and TRasterFx::allocateAndCompute calls have to be
//! translated to TRasterFx::dryCompute calls.
//! <li> This fx is intended for precomputation stage, so the hard rendering
//! code
//! should be skipped here.
//! By default, this method raises a dryCompute call to each input port in
//! increasing
//! order, using the TRasterFx::transform method to identify the tiles to be
//! passed
//! on input precomputation.
void TRasterFx::doDryCompute(TRectD &rect, double frame,
const TRenderSettings &info) {
int inputPortCount = getInputPortCount();
for (int i = 0; i < inputPortCount; ++i) {
TFxPort *port = getInputPort(i);
if (port->isConnected()) {
TRectD rectOnInput;
TRenderSettings infoOnInput;
TRasterFxP fx = port->getFx();
transform(frame, i, rect, info, rectOnInput, infoOnInput);
if (!myIsEmpty(rectOnInput))
fx->dryCompute(rectOnInput, frame, infoOnInput);
}
}
}
//--------------------------------------------------
//! This is an overloaded member function that deals with
//! the allocation of an input tile before invoking the TRasterFx::compute
//! method on it.
void TRasterFx::allocateAndCompute(TTile &tile, const TPointD &pos,
const TDimension &size, TRasterP templateRas,
double frame, const TRenderSettings &info) {
if (templateRas) {
TRaster32P ras32(templateRas);
TRaster64P ras64(templateRas);
templateRas = 0; // Release the reference to templateRas before allocation
TRasterP tileRas;
if (ras32)
tileRas = TRaster32P(size.lx, size.ly);
else if (ras64)
tileRas = TRaster64P(size.lx, size.ly);
else {
assert(false);
return;
}
tile.setRaster(tileRas);
} else {
if (info.m_bpp == 32) {
TRaster32P tileRas(size.lx, size.ly);
tile.setRaster(tileRas);
} else if (info.m_bpp == 64) {
TRaster64P tileRas(size.lx, size.ly);
tile.setRaster(tileRas);
} else
assert(false);
}
tile.m_pos = pos;
compute(tile, frame, info);
}
//-----------------------------------------------------------------------
//! This method supplies the actual fx rendering code.
void TRasterFx::compute(TTile &tile, double frame,
const TRenderSettings &info) {
// If the render was aborted, avoid everything
// if(TRenderer::instance().isAborted(TRenderer::renderId()))
// throw TException("Render canceled");
if (checkActiveTimeRegion() && !getActiveTimeRegion().contains(frame)) return;
if (!getAttributes()->isEnabled() || !m_rasFxImp->isEnabled()) {
if (getInputPortCount() == 0) return;
TFxPort *port = getInputPort(0);
// la porta 0 non deve essere una porta di controllo
assert(port->isaControlPort() == false);
if (port->isConnected()) {
TRasterFxP(port->getFx())->compute(tile, frame, info);
return;
}
return;
}
// If the input tile has a fractionary position, it is passed to the
// rendersettings' accumulated affine. At the same time, the integer part of
// such affine is transferred to the tile.
TPoint intTilePos(tfloor(tile.m_pos.x), tfloor(tile.m_pos.y));
TPointD fracTilePos(tile.m_pos.x - intTilePos.x, tile.m_pos.y - intTilePos.y);
TPointD fracInfoTranslation(info.m_affine.a13 - fracTilePos.x,
info.m_affine.a23 - fracTilePos.y);
TPoint intInfoTranslation(tfloor(fracInfoTranslation.x),
tfloor(fracInfoTranslation.y));
TPointD newTilePos(intTilePos.x - intInfoTranslation.x,
intTilePos.y - intInfoTranslation.y);
/*-- 入力タイルの位置が、小数値を持っていた場合 --*/
if (tile.m_pos != newTilePos) {
/*-- RenderSettingsのaffine行列に位置ずれを足しこむ --*/
TRenderSettings newInfo(info);
newInfo.m_affine.a13 = fracInfoTranslation.x - intInfoTranslation.x;
newInfo.m_affine.a23 = fracInfoTranslation.y - intInfoTranslation.y;
/*-- タイルの位置は整数値にする --*/
TPointD oldPos(tile.m_pos);
tile.m_pos = newTilePos;
compute(tile, frame, newInfo);
tile.m_pos = oldPos;
return;
}
bool canHandleAffine =
canHandle(info, frame) || (handledAffine(info, frame) == info.m_affine);
if (!info.m_affine.isIdentity() && !canHandleAffine) {
TrFx *transformerFx = new TrFx;
TFxP locker(transformerFx);
transformerFx->setFx(this);
transformerFx->compute(tile, frame, info);
return;
}
// Retrieve tile's geometry
TRectD tilePlacement = myConvert(tile.getRaster()->getBounds()) + tile.m_pos;
// Build the fx result alias (in other words, its name)
std::string alias = getAlias(frame, info) + "[" + ::traduce(info.m_affine) +
"][" + std::to_string(info.m_bpp) +
"]"; // To be moved below
TRectD bbox;
getBBox(frame, bbox, info);
enlargeToI(bbox);
TRectD interestingRect(tilePlacement * bbox);
if (myIsEmpty(interestingRect)) return;
// Extract the interesting tile from requested one
TTile interestingTile;
interestingTile.m_pos = interestingRect.getP00();
TRect interestingRectI(myConvert(interestingRect - tilePlacement.getP00()));
interestingTile.setRaster(tile.getRaster()->extract(interestingRectI));
#ifdef DIAGNOSTICS
// 1. Push fx name on call stack
QString fxName = QString::fromStdString(getDeclaration()->getId());
DIAGNOSTICS_PUSH("FName", fxName);
DIAGNOSTICS_THRSET("FComputeTime", 0);
TStopWatch sw;
sw.start();
#endif
// Invoke the fx-specific computation process
FxResourceBuilder rBuilder(alias, this, info, frame);
rBuilder.build(interestingTile);
#ifdef DIAGNOSTICS
sw.stop();
QString countsStr("#ftimes.txt | 4. " + fxName + " | 4. Calls count");
QString fxStr("fcum_4. " + fxName);
long computeTime = DIAGNOSTICS_THRGET("FComputeTime");
long fxTime = sw.getTotalTime();
long fxCumulativeTime = DIAGNOSTICS_GLOGET(fxStr);
long count = DIAGNOSTICS_GET(countsStr);
// 2. Add this time to fx time, and subtract it from parent time
DIAGNOSTICS_GLOADD(fxStr, computeTime);
DIAGNOSTICS_ADD(countsStr, 1);
DIAGNOSTICS_SET("#ftimes.txt | 4. " + fxName + " | 3. Mean time",
(fxCumulativeTime + computeTime) / (count + 1));
DIAGNOSTICS_POP("FName", 1);
QString parentFxName = DIAGNOSTICS_STACKGET("FName");
if (!parentFxName.isEmpty())
DIAGNOSTICS_GLOADD("fcum_4. " + parentFxName, -fxTime);
DIAGNOSTICS_GLOADD("fcum_03. Cached Fxs Retrieval", fxTime - computeTime);
#endif
#ifdef WRITEIMAGES
static int iCount = 0;
QString qPath("C:\\butta\\image_" +
QString::number(++iCount).rightJustified(3, '0') + ".tif");
TImageWriter::save(TFilePath(qPath.toStdWString()), tile.getRaster());
if (iCount >= 35) int aa = 1;
#endif
/*
return;
tryCanceled:
//if(TRenderer::instance().isAborted(TRenderer::renderId()))
// throw TException("Render canceled");
;
*/
}
//------------------------------------------------------------------------------
TRasterP TRasterFx::applyAffine(TTile &tileOut, const TTile &tileIn,
const TRenderSettings &info) {
TAffine aff = info.m_affine;
TRasterP src_ras = tileIn.getRaster();
TRasterP dst_ras = tileOut.getRaster();
if (aff.isTranslation()) {
// Check the tile origins' fractionary displacement
TPointD diff(tileOut.m_pos - tileIn.m_pos - TPointD(aff.a13, aff.a23));
double fracX = diff.x - tfloor(diff.x);
double fracY = diff.y - tfloor(diff.y);
if ((fracX < 0.01 || fracX > 0.99) && (fracY < 0.01 || fracY > 0.99)) {
// Just copy part of tileIn into tileOut
TRect geomIn(src_ras->getBounds());
TRect geomOut(dst_ras->getBounds());
TPoint diffI(convert(diff));
geomIn -= diffI;
geomOut += diffI;
geomIn *= dst_ras->getBounds();
geomOut *= src_ras->getBounds();
if (geomIn.isEmpty()) return dst_ras;
TRasterP rasIn(src_ras->extract(geomOut));
TRasterP rasOut(dst_ras->extract(geomIn));
TRop::copy(rasOut, rasIn);
return dst_ras;
}
}
TRectD rectIn = myConvert(src_ras->getBounds()) + tileIn.m_pos;
TRectD rectOut = myConvert(dst_ras->getBounds()) + tileOut.m_pos;
TRectD rectInAfter = aff * myConvert(src_ras->getBounds());
TAffine rasterAff = TTranslation((aff * rectIn).getP00() - rectOut.getP00() -
rectInAfter.getP00()) *
aff;
TRop::ResampleFilterType qual;
switch (info.m_quality) {
case TRenderSettings::StandardResampleQuality:
qual = TRop::Triangle;
break;
case TRenderSettings::ImprovedResampleQuality:
qual = TRop::Hann2;
break;
case TRenderSettings::HighResampleQuality:
qual = TRop::Hamming3;
break;
case TRenderSettings::Triangle_FilterResampleQuality:
qual = TRop::Triangle;
break;
case TRenderSettings::Mitchell_FilterResampleQuality:
qual = TRop::Mitchell;
break;
case TRenderSettings::Cubic5_FilterResampleQuality:
qual = TRop::Cubic5;
break;
case TRenderSettings::Cubic75_FilterResampleQuality:
qual = TRop::Cubic75;
break;
case TRenderSettings::Cubic1_FilterResampleQuality:
qual = TRop::Cubic1;
break;
case TRenderSettings::Hann2_FilterResampleQuality:
qual = TRop::Hann2;
break;
case TRenderSettings::Hann3_FilterResampleQuality:
qual = TRop::Hann3;
break;
case TRenderSettings::Hamming2_FilterResampleQuality:
qual = TRop::Hamming2;
break;
case TRenderSettings::Hamming3_FilterResampleQuality:
qual = TRop::Hamming3;
break;
case TRenderSettings::Lanczos2_FilterResampleQuality:
qual = TRop::Lanczos2;
break;
case TRenderSettings::Lanczos3_FilterResampleQuality:
qual = TRop::Lanczos3;
break;
case TRenderSettings::Gauss_FilterResampleQuality:
qual = TRop::Gauss;
break;
case TRenderSettings::ClosestPixel_FilterResampleQuality:
qual = TRop::ClosestPixel;
break;
case TRenderSettings::Bilinear_FilterResampleQuality:
qual = TRop::Bilinear;
break;
default:
assert(false);
}
TRop::resample(dst_ras, src_ras, rasterAff, qual);
return dst_ras;
}
//--------------------------------------------------
bool TRasterFx::isCacheEnabled() const { return m_rasFxImp->m_cacheEnabled; }
//--------------------------------------------------
void TRasterFx::enableCache(bool on) { m_rasFxImp->enableCache(on); }
//==============================================================================
//
// TRenderSettings
//
//------------------------------------------------------------------------------
TRenderSettings::TRenderSettings()
: m_gamma(1)
, m_timeStretchFrom(25)
, m_timeStretchTo(25)
, m_stereoscopicShift(0.05)
, m_bpp(32)
, m_maxTileSize((std::numeric_limits<int>::max)())
, m_shrinkX(1)
, m_shrinkY(1)
, m_quality(StandardResampleQuality)
, m_fieldPrevalence(NoField)
, m_stereoscopic(false)
, m_isSwatch(false)
, m_applyShrinkToViewer(false)
, m_userCachable(true)
, m_isCanceled(NULL) {}
//------------------------------------------------------------------------------
TRenderSettings::~TRenderSettings() {}
//------------------------------------------------------------------------------
std::string TRenderSettings::toString() const {
std::string ss =
std::to_string(m_bpp) + ";" + std::to_string(m_quality) + ";" +
std::to_string(m_gamma) + ";" + std::to_string(m_timeStretchFrom) + ";" +
std::to_string(m_timeStretchTo) + ";" +
std::to_string(m_fieldPrevalence) + ";" + std::to_string(m_shrinkX) +
"," + std::to_string(m_shrinkY) + ";" + std::to_string(m_affine.a11) +
"," + std::to_string(m_affine.a12) + "," + std::to_string(m_affine.a13) +
"," + std::to_string(m_affine.a21) + "," + std::to_string(m_affine.a22) +
"," + std::to_string(m_affine.a23) + ";" + std::to_string(m_maxTileSize) +
";" + std::to_string(m_isSwatch) + ";" + std::to_string(m_userCachable) +
";{";
if (!m_data.empty()) {
ss += m_data[0]->toString();
for (int i = 1; i < (int)m_data.size(); i++)
ss += "," + m_data[i]->toString();
}
ss += "}";
return ss;
}
//------------------------------------------------------------------------------
bool TRenderSettings::operator==(const TRenderSettings &rhs) const {
if (m_bpp != rhs.m_bpp || m_quality != rhs.m_quality ||
m_fieldPrevalence != rhs.m_fieldPrevalence ||
m_stereoscopic != rhs.m_stereoscopic ||
m_stereoscopicShift != rhs.m_stereoscopicShift ||
m_gamma != rhs.m_gamma || m_timeStretchFrom != rhs.m_timeStretchFrom ||
m_timeStretchTo != rhs.m_timeStretchTo || m_shrinkX != rhs.m_shrinkX ||
m_shrinkY != rhs.m_shrinkY ||
m_applyShrinkToViewer != rhs.m_applyShrinkToViewer ||
m_maxTileSize != rhs.m_maxTileSize || m_affine != rhs.m_affine ||
m_mark != rhs.m_mark || m_isSwatch != rhs.m_isSwatch ||
m_userCachable != rhs.m_userCachable)
return false;
return std::equal(m_data.begin(), m_data.end(), rhs.m_data.begin(), areEqual);
}
//------------------------------------------------------------------------------
bool TRenderSettings::operator!=(const TRenderSettings &rhs) const {
return !operator==(rhs);
}