#pragma once
#ifndef TCG_TRIANGULATE_HPP
#define TCG_TRIANGULATE_HPP
// tcg includes
#include "../triangulate.h"
#include "../traits.h"
#include "../point_ops.h"
// OS-specific includes
#if defined(_WIN32)
#include "windows.h"
#include <GL/glu.h>
#elif defined(MACOSX)
#include <GLUT/glut.h>
#elif defined(LINUX) || defined(FREEBSD) || defined(HAIKU)
#include <GL/glut.h>
#include <cstring>
#endif
#ifndef TCG_GLU_CALLBACK
#ifdef WIN32
#define TCG_GLU_CALLBACK void(CALLBACK *)()
#else
#define TCG_GLU_CALLBACK void (*)()
#endif
#endif
#ifndef CALLBACK
#define CALLBACK
#endif
namespace tcg {
//**************************************************************************************
// GLU Tessellator Callbacks
//**************************************************************************************
namespace detail {
template <typename mesh_type>
struct CBackData {
mesh_type *m_mesh;
int m_triangle[3];
int m_i;
};
//============================================================================
// NOTE: must be declared with CALLBACK directive
template <typename mesh_type>
void CALLBACK tessBegin(GLenum type, void *polygon_data) {
assert(type == GL_TRIANGLES);
CBackData<mesh_type> *data = (CBackData<mesh_type> *)polygon_data;
data->m_i = 0;
}
//----------------------------------------------------------------------------
template <typename mesh_type>
void CALLBACK tessEnd(void *polygon_data) {
CBackData<mesh_type> *data = (CBackData<mesh_type> *)polygon_data;
assert(data->m_i == 0);
}
//----------------------------------------------------------------------------
template <typename mesh_type, typename vertex_type>
void CALLBACK tessVertex(void *vertex_data, void *polygon_data) {
typedef typename mesh_type::vertex_type::point_type point_type;
CBackData<mesh_type> *data = (CBackData<mesh_type> *)polygon_data;
vertex_type *vData = (vertex_type *)vertex_data;
GLdouble(&pos)[3] =
TriMeshStuff::glu_vertex_traits<vertex_type>::vertex3d(*vData);
int &idx = TriMeshStuff::glu_vertex_traits<vertex_type>::index(*vData);
if (idx < 0) {
data->m_mesh->addVertex(
typename mesh_type::vertex_type(point_type(pos[0], pos[1])));
idx = data->m_mesh->verticesCount() - 1;
}
data->m_triangle[data->m_i] = idx;
data->m_i = (data->m_i + 1) % 3;
if (data->m_i == 0)
data->m_mesh->addFace(data->m_triangle[0], data->m_triangle[1],
data->m_triangle[2]);
}
//----------------------------------------------------------------------------
// Supplied to ensure that triangle primitives are always of type GL_TRIANGLE
template <typename mesh_type>
void CALLBACK edgeFlag(GLboolean flag) {}
} // namespace tcg::detail
//**************************************************************************************
// Polygon triangulation
//**************************************************************************************
namespace detail {
template <typename Func>
void gluRegister(GLUtesselator *tess, GLenum which, Func *func) {
gluTessCallback(tess, which, (TCG_GLU_CALLBACK)func);
}
} // namespace tcg::detail
//---------------------------------------------------------------------------
template <typename ForIt, typename ContainersReader>
void gluTriangulate(ForIt tribeBegin, ForIt tribeEnd,
ContainersReader &meshes_reader) {
using namespace detail;
typedef typename tcg::traits<typename ForIt::value_type>::pointed_type
family_type;
typedef typename tcg::traits<typename family_type::value_type>::pointed_type
polygon_type;
typedef typename polygon_type::value_type vertex_type;
typedef typename tcg::container_reader_traits<ContainersReader> output;
typedef
typename tcg::traits<typename output::value_type>::pointed_type mesh_type;
GLUtesselator *tess = gluNewTess(); // create a tessellator
assert(tess);
// Declare callbacks
// NOTE: On g++, it seems that at this point each of the callbacks still have
// undefined type.
// We use the above gluRegister template to force the compiler to generate
// these types.
gluRegister(tess, GLU_TESS_BEGIN_DATA, tessBegin<mesh_type>);
gluRegister(tess, GLU_TESS_END_DATA, tessEnd<mesh_type>);
gluRegister(tess, GLU_TESS_VERTEX_DATA, tessVertex<mesh_type, vertex_type>);
gluRegister(tess, GLU_TESS_EDGE_FLAG, edgeFlag<mesh_type>);
output::openContainer(meshes_reader);
// Iterate the tribe. For every polygons family, associate one output mesh
for (ForIt it = tribeBegin; it != tribeEnd; ++it) {
// Build the output mesh and initialize stuff
mesh_type *mesh = new mesh_type;
CBackData<mesh_type> cbData; // Callback Data about the mesh
cbData.m_mesh = mesh;
// Tessellate the family
gluTessBeginPolygon(tess, (void *)&cbData);
typename family_type::iterator ft, fEnd = (*it)->end();
for (ft = (*it)->begin(); ft != fEnd; ++ft) {
gluTessBeginContour(tess);
typename polygon_type::iterator pt, pEnd = (*ft)->end();
for (pt = (*ft)->begin(); pt != pEnd; ++pt)
gluTessVertex(
tess, TriMeshStuff::glu_vertex_traits<vertex_type>::vertex3d(*pt),
(void *)&*pt);
gluTessEndContour(tess);
}
gluTessEndPolygon(tess); // Invokes the family tessellation
output::addElement(meshes_reader, mesh);
}
gluDeleteTess(tess); // delete after tessellation
output::closeContainer(meshes_reader);
}
//**************************************************************************************
// Mesh refinement
//**************************************************************************************
namespace detail {
template <typename mesh_type>
inline void touchEdge(std::vector<UCHAR> &buildEdge, mesh_type &mesh, int e) {
typename mesh_type::edge_type &ed = mesh.edge(e);
int f1 = ed.face(0), f2 = ed.face(1);
if (f1 >= 0) {
typename mesh_type::face_type &f = mesh.face(f1);
buildEdge[f.edge(0)] = 1, buildEdge[f.edge(1)] = 1,
buildEdge[f.edge(2)] = 1;
}
if (f2 >= 0) {
typename mesh_type::face_type &f = mesh.face(f2);
buildEdge[f.edge(0)] = 1, buildEdge[f.edge(1)] = 1,
buildEdge[f.edge(2)] = 1;
}
}
//---------------------------------------------------------------------------
template <typename mesh_type>
inline void touchVertex(std::vector<UCHAR> &buildEdge, mesh_type &mesh, int v) {
// Sign all adjacent edges and adjacent faces' edges to v
typename mesh_type::vertex_type &vx = mesh.vertex(v);
const tcg::list<int> &incidentEdges = vx.edges();
tcg::list<int>::const_iterator it;
for (it = incidentEdges.begin(); it != incidentEdges.end(); ++it)
touchEdge(buildEdge, mesh, *it);
}
//================================================================================
template <typename mesh_type>
class BoundaryEdges {
std::vector<UCHAR> m_boundaryVertices;
const mesh_type &m_mesh;
public:
BoundaryEdges(const mesh_type &mesh) : m_mesh(mesh) {
const tcg::list<typename mesh_type::edge_type> &edges = mesh.edges();
const tcg::list<typename mesh_type::vertex_type> &vertices =
mesh.vertices();
m_boundaryVertices.resize(vertices.nodesCount(), 0);
typename tcg::list<typename mesh_type::edge_type>::const_iterator it;
for (it = edges.begin(); it != edges.end(); ++it) {
if (it->face(0) < 0 || it->face(1) < 0) {
m_boundaryVertices[it->vertex(0)] = true;
m_boundaryVertices[it->vertex(1)] = true;
}
}
}
~BoundaryEdges() {}
void setBoundaryVertex(int v) {
m_boundaryVertices.resize(m_mesh.vertices().nodesCount(), 0);
m_boundaryVertices[v] = 1;
}
bool isBoundaryVertex(int v) const {
return v < int(m_boundaryVertices.size()) && m_boundaryVertices[v];
}
bool isBoundaryEdge(int e) const {
const typename mesh_type::edge_type &ed = m_mesh.edge(e);
return ed.face(0) < 0 || ed.face(1) < 0;
}
};
} // namespace tcg::detail
//=============================================================================
template <typename mesh_type>
void TriMeshStuff::DefaultEvaluator<mesh_type>::actionSort(
const mesh_type &mesh, int e,
typename ActionEvaluator<mesh_type>::Action *actionSequence) {
typedef ActionEvaluator<mesh_type> ActionEvaluator;
int count = 0;
memset(actionSequence, ActionEvaluator::NONE,
3 * sizeof(typename ActionEvaluator::Action));
// Try to minimize the edge length deviation in e's neighbourhood
const typename mesh_type::edge_type &ed = mesh.edge(e);
int f1 = ed.face(0), f2 = ed.face(1);
const TPointD *v1, *v2, *v3, *v4;
double length[6];
v1 = &mesh.vertex(ed.vertex(0)).P();
v2 = &mesh.vertex(ed.vertex(1)).P();
length[0] = norm(*v2 - *v1);
double lengthMax = length[0], lengthMin = length[0];
if (f1 >= 0) {
v3 = &mesh.vertex(mesh.otherFaceVertex(f1, e)).P();
length[1] = norm(*v3 - *v1);
length[2] = norm(*v3 - *v2);
lengthMax = std::max({lengthMax, length[1], length[2]});
lengthMin = std::min({lengthMin, length[1], length[2]});
}
if (f2 >= 0) {
v4 = &mesh.vertex(mesh.otherFaceVertex(f2, e)).P();
length[3] = norm(*v4 - *v1);
length[4] = norm(*v4 - *v2);
lengthMax = std::max({lengthMax, length[3], length[4]});
lengthMin = std::min({lengthMin, length[3], length[4]});
}
if (f1 >= 0 && f2 >= 0) {
// Build the edge lengths
length[5] = norm(*v4 - *v3);
// Evaluate swap - take the triangles with least maximum mean boundary edge
double m1 = (length[0] + length[1] + length[2]) / 3.0;
double m2 = (length[0] + length[3] + length[4]) / 3.0;
double m3 = (length[5] + length[1] + length[3]) / 3.0;
double m4 = (length[5] + length[2] + length[4]) / 3.0;
if (std::max(m3, m4) < std::max(m1, m2) - 1e-5)
actionSequence[count++] = ActionEvaluator::SWAP;
// NOTE: The original swap evaluation was about maximizing the minimal face
// angle.
// However, this requires quite some cross products - the above test is
// sufficiently
// simple and has a similar behaviour.
// Evaluate collapse
if (length[0] < m_collapseValue)
actionSequence[count++] = ActionEvaluator::COLLAPSE;
}
// Evaluate split
if (length[0] > m_splitValue)
actionSequence[count++] = ActionEvaluator::SPLIT;
}
//=============================================================================
namespace detail {
template <typename mesh_type>
inline bool testSwap(const mesh_type &mesh, int e) {
// Retrieve adjacent faces
const typename mesh_type::edge_type &ed = mesh.edge(e);
int f1 = ed.face(0), f2 = ed.face(1);
if (f1 < 0 || f2 < 0) return false;
// Retrieve the 4 adjacent vertices
const typename mesh_type::vertex_type &v1 = mesh.vertex(ed.vertex(0));
const typename mesh_type::vertex_type &v2 = mesh.vertex(ed.vertex(1));
const typename mesh_type::vertex_type &v3 =
mesh.vertex(mesh.otherFaceVertex(f1, ed.getIndex()));
const typename mesh_type::vertex_type &v4 =
mesh.vertex(mesh.otherFaceVertex(f2, ed.getIndex()));
// Make sure that vertex v4 lies between the semiplane generated by v3v1 and
// v3v2
TPointD a(v1.P() - v3.P()), b(v2.P() - v3.P());
double normA = norm(a), normB = norm(b);
if (normA < 1e-5 || normB < 1e-5) return false;
a = a * (1.0 / normA);
b = b * (1.0 / normB);
TPointD c(v4.P() - v1.P()), d(v4.P() - v2.P());
double normC = norm(c), normD = norm(d);
if (normC < 1e-5 || normD < 1e-5) return false;
c = c * (1.0 / normC);
d = d * (1.0 / normD);
double crossAC = point_ops::cross(a, c);
int signAC = crossAC < -1e-5 ? -1 : crossAC > 1e-5 ? 1 : 0;
double crossBD = point_ops::cross(b, d);
int signBD = crossBD < -1e-5 ? -1 : crossBD > 1e-5 ? 1 : 0;
return signAC == -signBD;
}
//----------------------------------------------------------------------------
// Tests edge e for admissibility of ad edge collapse. Edge e must not have
// adjacent
// faces with boundary components.
// Furthermore, we must test that faces adjacent to f1 and f2 keep e on the same
// side of
// the line passing through v3v1 and v3v2.
template <typename mesh_type>
inline bool testCollapse(const mesh_type &mesh, int e,
const BoundaryEdges<mesh_type> &boundary) {
// Any face adjacent to e must have no boundary edge
const typename mesh_type::edge_type &ed = mesh.edge(e);
int f1 = ed.face(0), f2 = ed.face(1);
if (f1 < 0 || f2 < 0) return false;
int v1 = mesh.edge(e).vertex(0), v2 = mesh.edge(e).vertex(1);
if (boundary.isBoundaryVertex(v1) || boundary.isBoundaryVertex(v2))
return false;
// Test faces adjacent to v1 or v2. Since one of their vertices will change,
// we must make sure that their
//'side' does not change too.
int v = mesh.otherFaceVertex(f1, e);
int l = mesh.edgeInciding(v1, v);
int f =
mesh.edge(l).face(0) == f1 ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
int vNext = mesh.otherFaceVertex(f, l);
while (f != f2) {
// Test face f
if (tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(),
mesh.vertex(v2).P() - mesh.vertex(v).P())) !=
tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(),
mesh.vertex(v1).P() - mesh.vertex(v).P())))
return false;
// Update vars
v = vNext;
l = mesh.edgeInciding(v1, v);
f = mesh.edge(l).face(0) == f ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
vNext = mesh.otherFaceVertex(f, l);
}
// Same with respect to v2
v = mesh.otherFaceVertex(f1, e);
l = mesh.edgeInciding(v2, v);
f = mesh.edge(l).face(0) == f1 ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
vNext = mesh.otherFaceVertex(f, l);
while (f != f2) {
// Test face f
if (tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(),
mesh.vertex(v2).P() - mesh.vertex(v).P())) !=
tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(),
mesh.vertex(v1).P() - mesh.vertex(v).P())))
return false;
// Update vars
v = vNext;
l = mesh.edgeInciding(v2, v);
f = mesh.edge(l).face(0) == f ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
vNext = mesh.otherFaceVertex(f, l);
}
return true;
}
} // namespace tcg::detail
//----------------------------------------------------------------------------
template <typename mesh_type>
void refineMesh(mesh_type &mesh, TriMeshStuff::ActionEvaluator<mesh_type> &eval,
unsigned long maxActions) {
using namespace detail;
typedef TriMeshStuff::ActionEvaluator<mesh_type> Evaluator;
typedef typename Evaluator::Action Action;
// DIAGNOSTICS_TIMER("simplifyMesh");
// Build boundary edges. They will not be altered by the simplification
// procedure.
detail::BoundaryEdges<mesh_type> boundary(mesh);
Action actions[3], *act, *actEnd = actions + 3;
tcg::list<Edge> &edges = mesh.edges();
tcg::list<Edge>::iterator it;
// DIAGNOSTICS_SET("Simplify | Vertex count (before simplify)",
// mesh.vertexCount());
// DIAGNOSTICS_SET("Simplify | Edges count (before simplify)", edges.size());
// Build a vector of the edges to be analyzed
std::vector<UCHAR> buildEdge(edges.nodesCount(), 1);
int touchedIdx;
bool boundaryEdge;
cycle:
if (maxActions-- == 0) return;
// Analyze mesh for possible updates. Perform the first one.
for (it = edges.begin(); it != edges.end(); ++it) {
if (!buildEdge[it.m_idx]) continue;
boundaryEdge = boundary.isBoundaryEdge(it.m_idx);
eval.actionSort(mesh, it.m_idx, actions);
for (act = actions; act < actEnd; ++act) {
// Try to perform the i-th action
if (*act == Evaluator::NONE)
break;
else if (!boundaryEdge && *act == Evaluator::SWAP &&
testSwap(mesh, it.m_idx)) {
touchedIdx = mesh.swapEdge(it.m_idx);
touchEdge(buildEdge, mesh, touchedIdx);
goto cycle;
} else if (!boundaryEdge && *act == Evaluator::COLLAPSE &&
testCollapse(mesh, it.m_idx, boundary)) {
touchedIdx = mesh.collapseEdge(it.m_idx);
touchVertex(buildEdge, mesh, touchedIdx);
goto cycle;
} else if (*act == Evaluator::SPLIT) {
Edge &ed = mesh.edge(it.m_idx);
touchVertex(buildEdge, mesh, ed.vertex(0));
touchVertex(buildEdge, mesh, ed.vertex(1));
touchedIdx = mesh.splitEdge(it.m_idx);
if (buildEdge.size() < edges.size()) buildEdge.resize(edges.size());
touchVertex(buildEdge, mesh, touchedIdx);
if (boundaryEdge) boundary.setBoundaryVertex(touchedIdx);
goto cycle;
}
}
buildEdge[it.m_idx] = 0;
}
// DIAGNOSTICS_SET("Simplify | Vertex count (after simplify)",
// mesh.vertexCount());
// DIAGNOSTICS_SET("Simplify | Edges count (after simplify)", edges.size());
}
} // namespace tcg
#endif // TCG_TRIANGULATE_HPP