Blob Blame Raw


#include "stdfx.h"
#include "tfxparam.h"
#include "warp.h"
#include "trop.h"
#include "trasterfx.h"
#include "tspectrumparam.h"
#include "gradients.h"
#include "timage_io.h"
#include "perlinnoise.h"
#include "tparamuiconcept.h"

//-------------------------------------------------------------------

class RandomWaveFx : public TStandardRasterFx
{
	FX_PLUGIN_DECLARATION(RandomWaveFx)
protected:
	TRasterFxPort m_warped;
	TDoubleParamP m_intensity;
	TDoubleParamP m_gridStep;
	TDoubleParamP m_evol;
	TDoubleParamP m_posx;
	TDoubleParamP m_posy;
	TBoolParamP m_sharpen;

public:
	RandomWaveFx()
		: m_intensity(20), m_gridStep(2), m_evol(0.0), m_posx(0.0), m_posy(0.0), m_sharpen(false)
	{

		m_posx->setMeasureName("fxLength");
		m_posy->setMeasureName("fxLength");

		addInputPort("Source", m_warped);
		bindParam(this, "intensity", m_intensity);
		bindParam(this, "sensitivity", m_gridStep);
		bindParam(this, "evolution", m_evol);
		bindParam(this, "positionx", m_posx);
		bindParam(this, "positiony", m_posy);
		bindParam(this, "sharpen", m_sharpen);
		m_intensity->setValueRange(-1000, 1000);
		m_gridStep->setValueRange(2, 20);
	}

	//-------------------------------------------------------------------

	virtual ~RandomWaveFx() {}

	//-------------------------------------------------------------------

	void getParamUIs(TParamUIConcept *&concepts, int &length)
	{
		concepts = new TParamUIConcept[length = 1];

		concepts[0].m_type = TParamUIConcept::POINT_2;
		concepts[0].m_label = "Position";
		concepts[0].m_params.push_back(m_posx);
		concepts[0].m_params.push_back(m_posy);
	}

	//-------------------------------------------------------------------

	bool canHandle(const TRenderSettings &info, double frame)
	{
		return isAlmostIsotropic(info.m_affine);
	}

	//-------------------------------------------------------------------

	bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info)
	{
		if (m_warped.isConnected()) {
			int ret = m_warped->doGetBBox(frame, bBox, info);

			if (ret && !bBox.isEmpty()) {
				if (bBox != TConsts::infiniteRectD) {
					WarpParams params;
					params.m_intensity = m_intensity->getValue(frame);

					bBox = bBox.enlarge(getWarpRadius(params));
				}
				return true;
			}
		}

		bBox = TRectD();
		return false;
	}

	//-------------------------------------------------------------------

	void doDryCompute(TRectD &rect,
					  double frame,
					  const TRenderSettings &info)
	{
		bool isWarped = m_warped.isConnected();
		if (!isWarped)
			return;
		if (fabs(m_intensity->getValue(frame)) < 0.01) {
			m_warped->dryCompute(rect, frame, info);
			return;
		}

		double scale = sqrt(fabs(info.m_affine.det()));
		double gridStep = 1.5 * m_gridStep->getValue(frame);

		WarpParams params;
		params.m_intensity = m_intensity->getValue(frame) / gridStep;
		params.m_warperScale = scale * gridStep;
		params.m_sharpen = m_sharpen->getValue();

		TRectD warpedBox, warpedComputeRect, tileComputeRect;
		m_warped->getBBox(frame, warpedBox, info);

		getWarpComputeRects(tileComputeRect, warpedComputeRect, warpedBox, rect, params);

		if (tileComputeRect.getLx() <= 0 || tileComputeRect.getLy() <= 0)
			return;
		if (warpedComputeRect.getLx() <= 0 || warpedComputeRect.getLy() <= 0)
			return;

		m_warped->dryCompute(warpedComputeRect, frame, info);
	}

	//-------------------------------------------------------------------

	void doCompute(TTile &tile, double frame, const TRenderSettings &info)
	{
		bool isWarped = m_warped.isConnected();

		if (!isWarped)
			return;

		if (fabs(m_intensity->getValue(frame)) < 0.01) {
			m_warped->compute(tile, frame, info);
			return;
		}

		int shrink = (info.m_shrinkX + info.m_shrinkY) / 2;
		double scale = sqrt(fabs(info.m_affine.det()));
		double gridStep = 1.5 * m_gridStep->getValue(frame);

		WarpParams params;
		params.m_intensity = m_intensity->getValue(frame) / gridStep;
		params.m_warperScale = scale * gridStep;
		params.m_sharpen = m_sharpen->getValue();
		params.m_shrink = shrink;
		double evolution = m_evol->getValue(frame);
		double size = 100.0 / info.m_shrinkX;
		TPointD pos(m_posx->getValue(frame), m_posy->getValue(frame));

		//The warper is calculated on a standard reference, with fixed dpi. This makes sure
		//that the lattice created for the warp does not depend on camera transforms and resolution.
		TRenderSettings warperInfo(info);
		double warperScaleFactor = 1.0 / params.m_warperScale;
		warperInfo.m_affine = TScale(warperScaleFactor) * info.m_affine;

		//Retrieve tile's geometry
		TRectD tileRect;
		{
			TRasterP tileRas = tile.getRaster();
			tileRect = TRectD(tile.m_pos, TDimensionD(tileRas->getLx(), tileRas->getLy()));
		}

		//Build the compute rect
		TRectD warpedBox, warpedComputeRect, tileComputeRect;
		m_warped->getBBox(frame, warpedBox, info);

		getWarpComputeRects(tileComputeRect, warpedComputeRect, warpedBox, tileRect, params);

		if (tileComputeRect.getLx() <= 0 || tileComputeRect.getLy() <= 0)
			return;
		if (warpedComputeRect.getLx() <= 0 || warpedComputeRect.getLy() <= 0)
			return;

		TRectD warperComputeRect(TScale(warperScaleFactor) * tileComputeRect);
		double warperEnlargement = getWarperEnlargement(params);
		warperComputeRect = warperComputeRect.enlarge(warperEnlargement);
		warperComputeRect.x0 = tfloor(warperComputeRect.x0);
		warperComputeRect.y0 = tfloor(warperComputeRect.y0);
		warperComputeRect.x1 = tceil(warperComputeRect.x1);
		warperComputeRect.y1 = tceil(warperComputeRect.y1);

		//Compute the warped tile
		TTile tileIn;
		m_warped->allocateAndCompute(tileIn, warpedComputeRect.getP00(),
									 TDimension(warpedComputeRect.getLx(), warpedComputeRect.getLy()),
									 tile.getRaster(), frame, info);
		TRasterP rasIn = tileIn.getRaster();

		//Compute the warper tile
		TSpectrum::ColorKey colors[] = {
			TSpectrum::ColorKey(0, TPixel32::White),
			TSpectrum::ColorKey(1, TPixel32::Black)};

		TSpectrumParamP cloudscolors = TSpectrumParamP(tArrayCount(colors), colors);

		//Build the warper
		warperInfo.m_affine = warperInfo.m_affine;
		TAffine aff = warperInfo.m_affine.inv();

		TTile warperTile;
		TRasterP rasWarper = rasIn->create(warperComputeRect.getLx(), warperComputeRect.getLy());
		warperTile.m_pos = warperComputeRect.getP00();
		warperTile.setRaster(rasWarper);

		{
			TRenderSettings info2(warperInfo);

			//Now, separate the part of the affine the Fx can handle from the rest.
			TAffine fxHandledAffine = handledAffine(warperInfo, frame);
			info2.m_affine = fxHandledAffine;

			TAffine aff = warperInfo.m_affine * fxHandledAffine.inv();
			aff.a13 /= warperInfo.m_shrinkX;
			aff.a23 /= warperInfo.m_shrinkY;

			TRectD rectIn = aff.inv() * warperComputeRect;

			//rectIn = rectIn.enlarge(getResampleFilterRadius(info));  //Needed to counter the resample filter

			TRect rectInI(tfloor(rectIn.x0), tfloor(rectIn.y0), tceil(rectIn.x1) - 1, tceil(rectIn.y1) - 1);

			// rasIn e' un raster dello stesso tipo di tile.getRaster()

			TTile auxtile(warperTile.getRaster()->create(rectInI.getLx(), rectInI.getLy()), convert(rectInI.getP00()));

			TPointD mypos(auxtile.m_pos - pos);

			double scale2 = sqrt(fabs(info2.m_affine.det()));
			doClouds(auxtile.getRaster(), cloudscolors, mypos, evolution, size, 0.0, 1.0, PNOISE_CLOUDS, scale2, frame);

			info2.m_affine = aff;
			TRasterFx::applyAffine(warperTile, auxtile, info2);
		}

		//Warp
		TPointD db;
		TRect rasComputeRectI(convert(tileComputeRect - tileRect.getP00(), db));
		TRasterP tileRas = tile.getRaster()->extract(rasComputeRectI);

		TPointD rasInPos(warpedComputeRect.getP00() - tileComputeRect.getP00());
		TPointD warperPos((TScale(params.m_warperScale) * warperComputeRect.getP00()) - tileComputeRect.getP00());
		warp(tileRas, rasIn, rasWarper, rasInPos, warperPos, params);
	}

	//-------------------------------------------------------------------

	int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
	{
		//return -1;   //Deactivated. This fx is currently very inefficient if subdivided!

		int shrink = (info.m_shrinkX + info.m_shrinkY) / 2;
		double scale = sqrt(fabs(info.m_affine.det()));
		double gridStep = 1.5 * m_gridStep->getValue(frame);

		WarpParams params;
		params.m_intensity = m_intensity->getValue(frame) / gridStep;
		params.m_warperScale = scale * gridStep;
		params.m_sharpen = m_sharpen->getValue();
		params.m_shrink = shrink;

		double warperScaleFactor = 1.0 / params.m_warperScale;

		TRectD warpedBox, warpedComputeRect, tileComputeRect;
		m_warped->getBBox(frame, warpedBox, info);

		getWarpComputeRects(tileComputeRect, warpedComputeRect, warpedBox, rect, params);

		TRectD warperComputeRect(TScale(warperScaleFactor) * tileComputeRect);
		double warperEnlargement = getWarperEnlargement(params);
		warperComputeRect = warperComputeRect.enlarge(warperEnlargement);

		return tmax(
			TRasterFx::memorySize(warpedComputeRect, info.m_bpp),
			TRasterFx::memorySize(warperComputeRect, info.m_bpp));
	}
};

//-------------------------------------------------------------------

FX_PLUGIN_IDENTIFIER(RandomWaveFx, "randomWaveFx")