Blob Blame Raw

#ifndef TCG_TRIANGULATE_HPP
#define TCG_TRIANGULATE_HPP

// tcg includes
#include "../triangulate.h"
#include "../traits.h"
#include "../point_ops.h"

// OS-specific includes
#ifdef WIN32
#include "windows.h"
#include <GL/glu.h>
#elif MACOSX
#include <GLUT/glut.h>
#endif

#ifndef TCG_GLU_CALLBACK
#ifdef WIN32
#define TCG_GLU_CALLBACK void(CALLBACK *)()
#else
#define TCG_GLU_CALLBACK void (*)()
#endif
#endif

#ifndef CALLBACK
#define CALLBACK
#endif

namespace tcg
{

//**************************************************************************************
//    GLU Tessellator Callbacks
//**************************************************************************************

namespace detail
{

template <typename mesh_type>
struct CBackData {
	mesh_type *m_mesh;
	int m_triangle[3];
	int m_i;
};

//============================================================================

// NOTE: must be declared with CALLBACK directive
template <typename mesh_type>
void CALLBACK tessBegin(GLenum type, void *polygon_data)
{
	assert(type == GL_TRIANGLES);

	CBackData<mesh_type> *data = (CBackData<mesh_type> *)polygon_data;
	data->m_i = 0;
}

//----------------------------------------------------------------------------

template <typename mesh_type>
void CALLBACK tessEnd(void *polygon_data)
{
	CBackData<mesh_type> *data = (CBackData<mesh_type> *)polygon_data;
	assert(data->m_i == 0);
}

//----------------------------------------------------------------------------

template <typename mesh_type, typename vertex_type>
void CALLBACK tessVertex(void *vertex_data, void *polygon_data)
{
	typedef typename mesh_type::vertex_type::point_type point_type;

	CBackData<mesh_type> *data = (CBackData<mesh_type> *)polygon_data;
	vertex_type *vData = (vertex_type *)vertex_data;

	GLdouble(&pos)[3] = TriMeshStuff::glu_vertex_traits<vertex_type>::vertex3d(*vData);
	int &idx = TriMeshStuff::glu_vertex_traits<vertex_type>::index(*vData);

	if (idx < 0) {
		data->m_mesh->addVertex(typename mesh_type::vertex_type(point_type(pos[0], pos[1])));
		idx = data->m_mesh->verticesCount() - 1;
	}

	data->m_triangle[data->m_i] = idx;
	data->m_i = (data->m_i + 1) % 3;

	if (data->m_i == 0)
		data->m_mesh->addFace(data->m_triangle[0], data->m_triangle[1], data->m_triangle[2]);
}

//----------------------------------------------------------------------------

//Supplied to ensure that triangle primitives are always of type GL_TRIANGLE
template <typename mesh_type>
void CALLBACK edgeFlag(GLboolean flag)
{
}

} // namespace tcg::detail

//**************************************************************************************
//    Polygon triangulation
//**************************************************************************************

namespace detail
{

template <typename Func>
void gluRegister(GLUtesselator *tess, GLenum which, Func *func)
{
	gluTessCallback(tess, which, (TCG_GLU_CALLBACK)func);
}

} // namespace tcg::detail

//---------------------------------------------------------------------------

template <typename ForIt, typename ContainersReader>
void gluTriangulate(ForIt tribeBegin, ForIt tribeEnd, ContainersReader &meshes_reader)
{
	using namespace detail;

	typedef typename tcg::traits<typename ForIt::value_type>::pointed_type family_type;
	typedef typename tcg::traits<typename family_type::value_type>::pointed_type polygon_type;
	typedef typename polygon_type::value_type vertex_type;

	typedef typename tcg::container_reader_traits<ContainersReader> output;
	typedef typename tcg::traits<typename output::value_type>::pointed_type mesh_type;

	GLUtesselator *tess = gluNewTess(); // create a tessellator
	assert(tess);

	// Declare callbacks

	// NOTE: On g++, it seems that at this point each of the callbacks still have undefined type.
	// We use the above gluRegister template to force the compiler to generate these types.

	gluRegister(tess, GLU_TESS_BEGIN_DATA, tessBegin<mesh_type>);
	gluRegister(tess, GLU_TESS_END_DATA, tessEnd<mesh_type>);
	gluRegister(tess, GLU_TESS_VERTEX_DATA, tessVertex<mesh_type, vertex_type>);
	gluRegister(tess, GLU_TESS_EDGE_FLAG, edgeFlag<mesh_type>);

	output::openContainer(meshes_reader);

	// Iterate the tribe. For every polygons family, associate one output mesh
	for (ForIt it = tribeBegin; it != tribeEnd; ++it) {
		// Build the output mesh and initialize stuff
		mesh_type *mesh = new mesh_type;

		CBackData<mesh_type> cbData; // Callback Data about the mesh
		cbData.m_mesh = mesh;

		// Tessellate the family
		gluTessBeginPolygon(tess, (void *)&cbData);

		typename family_type::iterator ft, fEnd = (*it)->end();
		for (ft = (*it)->begin(); ft != fEnd; ++ft) {
			gluTessBeginContour(tess);

			typename polygon_type::iterator pt, pEnd = (*ft)->end();
			for (pt = (*ft)->begin(); pt != pEnd; ++pt)
				gluTessVertex(tess,
							  TriMeshStuff::glu_vertex_traits<vertex_type>::vertex3d(*pt),
							  (void *)&*pt);

			gluTessEndContour(tess);
		}

		gluTessEndPolygon(tess); // Invokes the family tessellation

		output::addElement(meshes_reader, mesh);
	}

	gluDeleteTess(tess); // delete after tessellation

	output::closeContainer(meshes_reader);
}

//**************************************************************************************
//    Mesh refinement
//**************************************************************************************

namespace detail
{

template <typename mesh_type>
inline void touchEdge(std::vector<UCHAR> &buildEdge, mesh_type &mesh, int e)
{
	typename mesh_type::edge_type &ed = mesh.edge(e);
	int f1 = ed.face(0), f2 = ed.face(1);

	if (f1 >= 0) {
		typename mesh_type::face_type &f = mesh.face(f1);
		buildEdge[f.edge(0)] = 1, buildEdge[f.edge(1)] = 1, buildEdge[f.edge(2)] = 1;
	}
	if (f2 >= 0) {
		typename mesh_type::face_type &f = mesh.face(f2);
		buildEdge[f.edge(0)] = 1, buildEdge[f.edge(1)] = 1, buildEdge[f.edge(2)] = 1;
	}
}

//---------------------------------------------------------------------------

template <typename mesh_type>
inline void touchVertex(std::vector<UCHAR> &buildEdge, mesh_type &mesh, int v)
{
	//Sign all adjacent edges and adjacent faces' edges to v
	typename mesh_type::vertex_type &vx = mesh.vertex(v);
	const tcg::list<int> &incidentEdges = vx.edges();
	tcg::list<int>::const_iterator it;

	for (it = incidentEdges.begin(); it != incidentEdges.end(); ++it)
		touchEdge(buildEdge, mesh, *it);
}

//================================================================================

template <typename mesh_type>
class BoundaryEdges
{
	std::vector<UCHAR> m_boundaryVertices;
	const mesh_type &m_mesh;

public:
	BoundaryEdges(const mesh_type &mesh)
		: m_mesh(mesh)
	{
		const tcg::list<typename mesh_type::edge_type> &edges = mesh.edges();
		const tcg::list<typename mesh_type::vertex_type> &vertices = mesh.vertices();

		m_boundaryVertices.resize(vertices.nodesCount(), 0);

		typename tcg::list<typename mesh_type::edge_type>::const_iterator it;
		for (it = edges.begin(); it != edges.end(); ++it) {
			if (it->face(0) < 0 || it->face(1) < 0) {
				m_boundaryVertices[it->vertex(0)] = true;
				m_boundaryVertices[it->vertex(1)] = true;
			}
		}
	}
	~BoundaryEdges() {}

	void setBoundaryVertex(int v)
	{
		m_boundaryVertices.resize(m_mesh.vertices().nodesCount(), 0);
		m_boundaryVertices[v] = 1;
	}

	bool isBoundaryVertex(int v) const
	{
		return v < int(m_boundaryVertices.size()) && m_boundaryVertices[v];
	}
	bool isBoundaryEdge(int e) const
	{
		const typename mesh_type::edge_type &ed = m_mesh.edge(e);
		return ed.face(0) < 0 || ed.face(1) < 0;
	}
};

} // namespace tcg::detail

//=============================================================================

template <typename mesh_type>
void TriMeshStuff::DefaultEvaluator<mesh_type>::actionSort(
	const mesh_type &mesh, int e, typename ActionEvaluator<mesh_type>::Action *actionSequence)
{
	typedef ActionEvaluator<mesh_type> ActionEvaluator;

	int count = 0;
	memset(actionSequence, ActionEvaluator::NONE, 3 * sizeof(typename ActionEvaluator::Action));

	//Try to minimize the edge length deviation in e's neighbourhood
	const typename mesh_type::edge_type &ed = mesh.edge(e);
	int f1 = ed.face(0), f2 = ed.face(1);
	const TPointD *v1, *v2, *v3, *v4;
	double length[6];

	v1 = &mesh.vertex(ed.vertex(0)).P();
	v2 = &mesh.vertex(ed.vertex(1)).P();

	length[0] = norm(*v2 - *v1);
	double lengthMax = length[0], lengthMin = length[0];

	if (f1 >= 0) {
		v3 = &mesh.vertex(mesh.otherFaceVertex(f1, e)).P();
		length[1] = norm(*v3 - *v1);
		length[2] = norm(*v3 - *v2);
		lengthMax = tmax(lengthMax, length[1], length[2]);
		lengthMin = tmin(lengthMin, length[1], length[2]);
	}

	if (f2 >= 0) {
		v4 = &mesh.vertex(mesh.otherFaceVertex(f2, e)).P();
		length[3] = norm(*v4 - *v1);
		length[4] = norm(*v4 - *v2);
		lengthMax = tmax(lengthMax, length[3], length[4]);
		lengthMin = tmin(lengthMin, length[3], length[4]);
	}

	if (f1 >= 0 && f2 >= 0) {
		//Build the edge lengths
		length[5] = norm(*v4 - *v3);

		//Evaluate swap - take the triangles with least maximum mean boundary edge
		double m1 = (length[0] + length[1] + length[2]) / 3.0;
		double m2 = (length[0] + length[3] + length[4]) / 3.0;
		double m3 = (length[5] + length[1] + length[3]) / 3.0;
		double m4 = (length[5] + length[2] + length[4]) / 3.0;

		if (tmax(m3, m4) < tmax(m1, m2) - 1e-5)
			actionSequence[count++] = ActionEvaluator::SWAP;

		//NOTE: The original swap evaluation was about maximizing the minimal face angle.
		//However, this requires quite some cross products - the above test is sufficiently
		//simple and has a similar behaviour.

		//Evaluate collapse
		if (length[0] < m_collapseValue)
			actionSequence[count++] = ActionEvaluator::COLLAPSE;
	}

	//Evaluate split
	if (length[0] > m_splitValue)
		actionSequence[count++] = ActionEvaluator::SPLIT;
}

//=============================================================================

namespace detail
{

template <typename mesh_type>
inline bool testSwap(const mesh_type &mesh, int e)
{
	//Retrieve adjacent faces
	const typename mesh_type::edge_type &ed = mesh.edge(e);

	int f1 = ed.face(0), f2 = ed.face(1);
	if (f1 < 0 || f2 < 0)
		return false;

	//Retrieve the 4 adjacent vertices
	const typename mesh_type::vertex_type &v1 = mesh.vertex(ed.vertex(0));
	const typename mesh_type::vertex_type &v2 = mesh.vertex(ed.vertex(1));
	const typename mesh_type::vertex_type &v3 = mesh.vertex(mesh.otherFaceVertex(f1, ed.getIndex()));
	const typename mesh_type::vertex_type &v4 = mesh.vertex(mesh.otherFaceVertex(f2, ed.getIndex()));

	//Make sure that vertex v4 lies between the semiplane generated by v3v1 and v3v2
	TPointD a(v1.P() - v3.P()), b(v2.P() - v3.P());

	double normA = norm(a), normB = norm(b);
	if (normA < 1e-5 || normB < 1e-5)
		return false;

	a = a * (1.0 / normA);
	b = b * (1.0 / normB);

	TPointD c(v4.P() - v1.P()), d(v4.P() - v2.P());

	double normC = norm(c), normD = norm(d);
	if (normC < 1e-5 || normD < 1e-5)
		return false;

	c = c * (1.0 / normC);
	d = d * (1.0 / normD);

	double crossAC = point_ops::cross(a, c);
	int signAC = crossAC < -1e-5 ? -1 : crossAC > 1e-5 ? 1 : 0;
	double crossBD = point_ops::cross(b, d);
	int signBD = crossBD < -1e-5 ? -1 : crossBD > 1e-5 ? 1 : 0;

	return signAC == -signBD;
}

//----------------------------------------------------------------------------

//Tests edge e for admissibility of ad edge collapse. Edge e must not have adjacent
//faces with boundary components.
//Furthermore, we must test that faces adjacent to f1 and f2 keep e on the same side of
//the line passing through v3v1 and v3v2.
template <typename mesh_type>
inline bool testCollapse(const mesh_type &mesh, int e, const BoundaryEdges<mesh_type> &boundary)
{
	//Any face adjacent to e must have no boundary edge
	const typename mesh_type::edge_type &ed = mesh.edge(e);
	int f1 = ed.face(0), f2 = ed.face(1);

	if (f1 < 0 || f2 < 0)
		return false;

	int v1 = mesh.edge(e).vertex(0), v2 = mesh.edge(e).vertex(1);
	if (boundary.isBoundaryVertex(v1) ||
		boundary.isBoundaryVertex(v2))
		return false;

	//Test faces adjacent to v1 or v2. Since one of their vertices will change, we must make sure that their
	//'side' does not change too.
	int v = mesh.otherFaceVertex(f1, e);
	int l = mesh.edgeInciding(v1, v);
	int f = mesh.edge(l).face(0) == f1 ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
	int vNext = mesh.otherFaceVertex(f, l);

	while (f != f2) {
		//Test face f
		if (tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(), mesh.vertex(v2).P() - mesh.vertex(v).P())) !=
			tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(), mesh.vertex(v1).P() - mesh.vertex(v).P())))
			return false;

		//Update vars
		v = vNext;
		l = mesh.edgeInciding(v1, v);
		f = mesh.edge(l).face(0) == f ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
		vNext = mesh.otherFaceVertex(f, l);
	}

	//Same with respect to v2
	v = mesh.otherFaceVertex(f1, e);
	l = mesh.edgeInciding(v2, v);
	f = mesh.edge(l).face(0) == f1 ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
	vNext = mesh.otherFaceVertex(f, l);

	while (f != f2) {
		//Test face f
		if (tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(), mesh.vertex(v2).P() - mesh.vertex(v).P())) !=
			tsign(point_ops::cross(mesh.vertex(vNext).P() - mesh.vertex(v).P(), mesh.vertex(v1).P() - mesh.vertex(v).P())))
			return false;

		//Update vars
		v = vNext;
		l = mesh.edgeInciding(v2, v);
		f = mesh.edge(l).face(0) == f ? mesh.edge(l).face(1) : mesh.edge(l).face(0);
		vNext = mesh.otherFaceVertex(f, l);
	}

	return true;
}

} // namespace tcg::detail

//----------------------------------------------------------------------------

template <typename mesh_type>
void refineMesh(
	mesh_type &mesh, TriMeshStuff::ActionEvaluator<mesh_type> &eval, unsigned long maxActions)
{
	using namespace detail;

	typedef TriMeshStuff::ActionEvaluator<mesh_type> Evaluator;
	typedef typename Evaluator::Action Action;

	//DIAGNOSTICS_TIMER("simplifyMesh");

	//Build boundary edges. They will not be altered by the simplification procedure.
	detail::BoundaryEdges<mesh_type> boundary(mesh);
	Action actions[3], *act, *actEnd = actions + 3;

	tcg::list<Edge> &edges = mesh.edges();
	tcg::list<Edge>::iterator it;

	//DIAGNOSTICS_SET("Simplify | Vertex count (before simplify)", mesh.vertexCount());
	//DIAGNOSTICS_SET("Simplify | Edges count (before simplify)", edges.size());

	//Build a vector of the edges to be analyzed
	std::vector<UCHAR> buildEdge(edges.nodesCount(), 1);
	int touchedIdx;
	bool boundaryEdge;

cycle:

	if (maxActions-- == 0)
		return;

	//Analyze mesh for possible updates. Perform the first one.
	for (it = edges.begin(); it != edges.end(); ++it) {
		if (!buildEdge[it.m_idx])
			continue;

		boundaryEdge = boundary.isBoundaryEdge(it.m_idx);

		eval.actionSort(mesh, it.m_idx, actions);

		for (act = actions; act < actEnd; ++act) {
			//Try to perform the i-th action
			if (*act == Evaluator::NONE)
				break;

			else if (!boundaryEdge && *act == Evaluator::SWAP && testSwap(mesh, it.m_idx)) {
				touchedIdx = mesh.swapEdge(it.m_idx);
				touchEdge(buildEdge, mesh, touchedIdx);

				goto cycle;
			} else if (!boundaryEdge && *act == Evaluator::COLLAPSE && testCollapse(mesh, it.m_idx, boundary)) {
				touchedIdx = mesh.collapseEdge(it.m_idx);
				touchVertex(buildEdge, mesh, touchedIdx);

				goto cycle;
			} else if (*act == Evaluator::SPLIT) {
				Edge &ed = mesh.edge(it.m_idx);
				touchVertex(buildEdge, mesh, ed.vertex(0));
				touchVertex(buildEdge, mesh, ed.vertex(1));

				touchedIdx = mesh.splitEdge(it.m_idx);
				if (buildEdge.size() < edges.size())
					buildEdge.resize(edges.size());

				touchVertex(buildEdge, mesh, touchedIdx);
				if (boundaryEdge)
					boundary.setBoundaryVertex(touchedIdx);

				goto cycle;
			}
		}

		buildEdge[it.m_idx] = 0;
	}

	//DIAGNOSTICS_SET("Simplify | Vertex count (after simplify)", mesh.vertexCount());
	//DIAGNOSTICS_SET("Simplify | Edges count (after simplify)", edges.size());
}

} // namespace tcg

#endif // TCG_TRIANGULATE_HPP