// TnzCore includes
#include "tmeshimage.h"
// tcg includes
#include "tcg/tcg_misc.h"
#include "tcg/tcg_mesh_bgl.h"
using namespace tcg::bgl;
// Boost includes
#include <boost/graph/properties.hpp>
#include <boost/graph/breadth_first_search.hpp>
// STD includes
#include <queue>
#include "ext/plastichandle.h"
//***********************************************************************************************
// Distance building
//***********************************************************************************************
namespace
{
typedef tcg::Mesh<TTextureVertex, tcg::Edge, tcg::FaceN<3>> Graph;
//----------------------------------------------------------------------------------
struct DistanceGreater {
float *m_distances;
public:
DistanceGreater(float *distances) : m_distances(distances) {}
bool operator()(int a, int b) { return m_distances[a] > m_distances[b]; }
};
} // namespace
//==================================================================================
namespace local
{
struct BFS_DistanceBuilder {
typedef boost::graph_traits<Graph>::edge_descriptor edge_descr;
float *m_distances; //!< (NOT owned) Distances from selected vertex
UCHAR *m_colormap; //!< (NOT owned) Graph BFS colormap
public:
BFS_DistanceBuilder(float *distances, UCHAR *colormap)
: m_distances(distances), m_colormap(colormap) {}
void tree_edge(const edge_descr &e, const Graph &g)
{
int v, v0 = -1, v1 = tcg::bgl::target(e, g);
double d, dMin = (std::numeric_limits<double>::max)();
assert(m_colormap[v1] == boost::white_color);
// Search for the distance-nearest found vertex
const Graph::vertex_type &vx1 = g.vertex(v1);
Graph::vertex_type::edges_const_iterator et, eEnd(vx1.edgesEnd());
for (et = vx1.edgesBegin(); et != eEnd; ++et) {
v = g.edge(*et).otherVertex(v1);
if (m_colormap[v] != boost::white_color) {
d = tcg::point_ops::dist(g.vertex(v).P(), vx1.P());
if (d < dMin)
v0 = v, dMin = d;
}
}
assert(v0 >= 0);
// Just add to the distance from that vertex
m_distances[v1] = m_distances[v0] + dMin;
}
// Unused bfs methods
void initialize_vertex(int v, const Graph &g) {}
void discover_vertex(int v, const Graph &g) {}
void examine_vertex(int v, const Graph &g) {}
void finish_vertex(int v, const Graph &g) {}
void examine_edge(const edge_descr &e, const Graph &g) {}
void non_tree_edge(const edge_descr &e, const Graph &g) {}
void gray_target(const edge_descr &e, const Graph &g) {}
void black_target(const edge_descr &e, const Graph &g) {}
};
} // namespace local
//==================================================================================
bool buildDistances(float *distances, const TTextureMesh &mesh, const TPointD &pos,
int *faceHint)
{
using namespace local;
// First off, find the face containing the specified vertex
int localF = -1, &f = faceHint ? *faceHint : localF;
if (f < 0 || f >= mesh.facesCount() || !mesh.faceContains(f, pos))
f = mesh.faceContaining(pos);
if (f < 0)
return false;
int vCount = mesh.verticesCount();
// Prepare the interpolation builder
UCHAR *colorMap = (UCHAR *)calloc(vCount, sizeof(UCHAR));
BFS_DistanceBuilder visitor(distances, colorMap);
DistanceGreater gr(distances);
std::priority_queue<int, std::vector<int>, DistanceGreater> verticesQueue(gr);
int v0, v1, v2;
mesh.faceVertices(f, v0, v1, v2);
// Prepare BFS data
distances[v0] = distances[v1] = distances[v2] = 0.0f;
verticesQueue.push(v0), colorMap[v0] = boost::gray_color;
verticesQueue.push(v1), colorMap[v1] = boost::gray_color;
// Launch BFS algorithm
boost::breadth_first_visit((const Graph &)mesh, v2, verticesQueue, visitor, colorMap);
free(colorMap);
return true;
}
//----------------------------------------------------------------------------------
void buildSO(double *so, const TTextureMesh &mesh,
const std::vector<PlasticHandle> &handles, int *faceHints)
{
int v, vCount = mesh.verticesCount();
// Build the interpolant function data
const TRectD &bbox = mesh.getBBox();
const double len = tmax(bbox.getLx(), bbox.getLy()), val = 1e-8;
const double k = -log(val) / len;
// Allocate / initialize arrays
float *distances = (float *)malloc(vCount * sizeof(float));
double *wSums = (double *)calloc(vCount, sizeof(double));
memset(so, 0, vCount * sizeof(double));
// Iterate handles - for each, add the corresponding interpolant
int h, hCount = handles.size();
for (h = 0; h != hCount; ++h) {
const PlasticHandle &handle = handles[h];
if (!buildDistances(distances, mesh, handle.m_pos, faceHints ? &faceHints[h] : 0))
continue;
for (v = 0; v != vCount; ++v) {
double w = fabs(distances[v]);
wSums[v] += w = exp(-k * w) / (1e-3 + w);
so[v] += w * handle.m_so;
}
}
// Normalize so values by the wSums
for (v = 0; v != vCount; ++v)
if (wSums[v] != 0.0)
so[v] /= wSums[v];
// Cleanup
free(wSums);
free(distances);
}