// tcg includes
#include "tcg/tcg_misc.h"
#include "trop.h"
/*! \file terodilate.cpp
This file contains an implementation of a greyscale (ie per-channel)
erode/dilate
morphological operator, following the van Herk/Gil-Werman O(row*cols) algorithm.
An extension with circular structuring element is attempted - unfortunately I
could
not retrieve a copy of Miyataka's paper about that, which seemingly claimed
O(rows * cols) too. The implemented algorithm is a sub-optimal
O(rows*cols*radius).
*/
//********************************************************
// Auxiliary functions
//********************************************************
namespace {
template <typename Pix>
void copyMatte(const TRasterPT<Pix> &src,
const TRasterPT<typename Pix::Channel> &matte) {
typedef typename Pix::Channel Chan;
int y, lx = src->getLx(), ly = src->getLy();
for (y = 0; y != ly; ++y) {
Pix *s, *sBegin = src->pixels(y), *sEnd = sBegin + lx;
Chan *m, *mBegin = matte->pixels(y);
for (s = sBegin, m = mBegin; s != sEnd; ++s, ++m) *m = s->m;
}
}
//--------------------------------------------------------------
template <typename Pix>
void copyChannels_erode(const TRasterPT<Pix> &src,
const TRasterPT<typename Pix::Channel> &matte,
const TRasterPT<Pix> &dst) {
typedef typename Pix::Channel Chan;
// Just assemble src and matte, remembering to depremultiply src pixels before
// applying the new matte
double fac;
int y, lx = src->getLx(), ly = src->getLy();
for (y = 0; y != ly; ++y) {
const Pix *s, *sBegin = src->pixels(y), *sEnd = sBegin + lx;
Pix *d, *dBegin = dst->pixels(y);
Chan *m, *mBegin = matte->pixels(y);
for (s = sBegin, d = dBegin, m = mBegin; s != sEnd; ++s, ++d, ++m) {
fac = double(*m) / double(s->m);
d->r = fac * s->r, d->g = fac * s->g, d->b = fac * s->b, d->m = *m;
}
}
}
//--------------------------------------------------------------
template <typename Pix>
void copyChannels_dilate(const TRasterPT<Pix> &src,
const TRasterPT<typename Pix::Channel> &matte,
const TRasterPT<Pix> &dst) {
typedef typename Pix::Channel Chan;
// Trickier - since src is presumably premultiplied, increasing its pixels'
// alpha by direct
// substitution would expose the excessive RGB discretization of pixels with a
// low matte value.
// So, let's just put the pixels on a black background. It should do fine.
double max = Pix::maxChannelValue;
int y, lx = src->getLx(), ly = src->getLy();
for (y = 0; y != ly; ++y) {
const Pix *s, *sBegin = src->pixels(y), *sEnd = sBegin + lx;
Pix *d, *dBegin = dst->pixels(y);
const Chan *m, *mBegin = matte->pixels(y);
for (s = sBegin, d = dBegin, m = mBegin; s != sEnd; ++s, ++d, ++m) {
*d = *s;
d->m = s->m + (1.0 - s->m / max) * *m;
}
}
}
} // namespace
//********************************************************
// EroDilate algorithms
//********************************************************
namespace {
template <typename Chan>
struct MaxFunc {
inline Chan operator()(const Chan &a, const Chan &b) {
return std::max(a, b);
}
};
template <typename Chan>
struct MinFunc {
inline Chan operator()(const Chan &a, const Chan &b) {
return std::min(a, b);
}
};
//--------------------------------------------------------------
// NOTE: src and dst must be NOT OVERLAPPING (eg src != dst)
template <typename Chan, typename Func>
void erodilate_row(int len, const Chan *src, int sIncr, Chan *dst, int dIncr,
int rad, double radR, Func func) {
assert(rad >= 0);
// Segment the row of specified length into wCount windows of max wSize
// elements
int w, wSize = 2 * rad + 1, wCount = len / wSize + 1;
int swIncr = wSize * sIncr, srIncr = rad * sIncr;
int dwIncr = wSize * dIncr, drIncr = rad * dIncr;
const Chan *s, *sEnd = src + len * sIncr;
Chan *d, *dEnd = dst + len * dIncr;
double one_radR = (1.0 - radR);
for (w = 0; w != wCount; ++w) {
Chan *dwBegin = dst + w * dwIncr, *dwEnd = std::min(dwBegin + dwIncr, dEnd);
// Compute prefixes
const Chan *swBegin = src + std::max(w * swIncr - srIncr - sIncr, 0),
*swEnd =
src + std::min(w * swIncr + srIncr + sIncr, len * sIncr);
s = swEnd - sIncr, d = dst + ((s - src) / sIncr) * dIncr +
drIncr; // d already decremented by dIncr
Chan val = *s, oldVal;
for (s -= sIncr; (d >= dEnd) && (s >= swBegin);
s -= sIncr, d -= dIncr) // s decremented here
{
assert(s >= src);
assert(s < sEnd);
assert((s - src) % sIncr == 0);
assert(d >= dst);
assert((d - dst) % dIncr == 0);
val = func(oldVal = val, *s);
}
for (; s >= swBegin; s -= sIncr, d -= dIncr) {
assert(s >= src);
assert(s < sEnd);
assert((s - src) % sIncr == 0);
assert(d >= dst);
assert(d < dEnd);
assert((d - dst) % dIncr == 0);
val = func(oldVal = val, *s);
*d = (oldVal == val) ? val : one_radR * oldVal + radR * val;
}
for (d = std::min(d, dEnd - dIncr); d >= dwBegin; d -= dIncr) {
assert(d >= dst);
assert(d < dEnd);
assert((d - dst) % dIncr == 0);
val = func(oldVal = val, 0);
*d = (oldVal == val) ? val : one_radR * oldVal + radR * val;
}
// Compute suffixes
swBegin = src + w * swIncr + srIncr,
swEnd = std::min(swBegin + swIncr + sIncr, sEnd);
if (swBegin >= swEnd) continue;
s = swBegin, d = dwBegin;
val = *s;
for (s += sIncr; (s < swEnd); s += sIncr, d += dIncr) {
assert(s >= src);
assert(s < sEnd);
assert((s - src) % sIncr == 0);
assert(d >= dst);
assert(d < dEnd);
assert((d - dst) % dIncr == 0);
val = func(oldVal = val, *s);
*d = func(*d, (oldVal == val) ? val : one_radR * oldVal + radR * val);
}
for (; d < dwEnd; d += dIncr) {
assert(d >= dst);
assert(d < dEnd);
assert((d - dst) % dIncr == 0);
val = func(oldVal = val, 0);
*d = func(*d, (oldVal == val) ? val : one_radR * oldVal + radR * val);
}
}
}
//--------------------------------------------------------------
template <typename Pix, typename Chan>
void erodilate_chan(const TRasterPT<Pix> &src, const TRasterPT<Chan> &dst,
double radius, bool dilate) {
assert(radius > 0.0);
int radI = tfloor(radius);
double radR = radius - radI;
// Using a temporary raster to keep intermediate results. This allows us to
// perform a cache-friendly iteration in the separable/square kernel case
int x, y, lx = src->getLx(), ly = src->getLy();
// Perform rows erodilation
TRasterPT<Chan> temp(ly, lx); // Notice transposition plz
{
if (dilate)
for (y = 0; y != ly; ++y)
::erodilate_row(lx, &src->pixels(y)->m, 4, temp->pixels(0) + y, ly,
radI, radR, MaxFunc<Chan>());
else
for (y = 0; y != ly; ++y)
::erodilate_row(lx, &src->pixels(y)->m, 4, temp->pixels(0) + y, ly,
radI, radR, MinFunc<Chan>());
}
// Perform columns erodilation
{
if (dilate)
for (x = 0; x != lx; ++x)
::erodilate_row(ly, temp->pixels(x), 1, dst->pixels(0) + x,
dst->getWrap(), radI, radR, MaxFunc<Chan>());
else
for (x = 0; x != lx; ++x)
::erodilate_row(ly, temp->pixels(x), 1, dst->pixels(0) + x,
dst->getWrap(), radI, radR, MinFunc<Chan>());
}
}
//--------------------------------------------------------------
template <typename Pix>
void rect_erodilate(const TRasterPT<Pix> &src, const TRasterPT<Pix> &dst,
double radius) {
typedef typename Pix::Channel Chan;
if (radius == 0.0) {
// No-op case
TRop::copy(dst, src);
return;
}
bool dilate = (radius >= 0.0);
// Perform columns erodilation
TRasterPT<Chan> temp(src->getLx(), src->getLy());
::erodilate_chan(src, temp, fabs(radius), dilate);
// Remember that we have just calculated the matte values. We still have to
// apply them to the old RGB
// values, which requires depremultiplying from source matte and
// premultiplying with the new one.
if (dilate)
::copyChannels_dilate(src, temp, dst);
else
::copyChannels_erode(src, temp, dst);
}
} // namespace
//********************************************************
// EroDilate round algorithm
//********************************************************
namespace {
template <typename Chan, typename Func>
void erodilate_quarters(int lx, int ly, Chan *src, int sIncrX, int sIncrY,
Chan *dst, int dIncrX, int dIncrY, double radius,
double shift, Func func) {
double sqRadius = sq(radius);
double squareHeight = radius * M_SQRT1_2;
int squareHeightI = tfloor(squareHeight);
// For every arc point
int arcY;
for (arcY = -squareHeightI; arcY <= squareHeightI; ++arcY) {
// Calculate x and weights
double sqArcY = sq(arcY);
assert(sqRadius >= sqArcY);
double x = shift + sqrt(sqRadius - sqArcY) - squareHeight;
int arcX = tfloor(x);
double w = x - arcX, one_w = 1.0 - w;
// Build dst area influenced by the arc point. Func with 0 outside that.
TRect bounds(0, 0, lx, ly);
TRect dRect(bounds * (bounds + TPoint(-arcX, -arcY)));
TRect sRect(bounds * (bounds + TPoint(arcX, arcY)));
int sy, dy;
// Func with 0 before dRect.y0
for (dy = 0; dy < dRect.y0; ++dy) {
Chan *d, *dBegin = dst + dy * dIncrY, *dEnd = dBegin + lx * dIncrX;
for (d = dBegin; d != dEnd; d += dIncrX) {
// assert(d >= dst); assert(d < dEnd); assert((d-dst) % dIncrX == 0);
*d = func(*d, 0);
}
}
// Func with 0 after dRect.y1
for (dy = dRect.y1; dy < ly; ++dy) {
Chan *d, *dBegin = dst + dy * dIncrY, *dEnd = dBegin + lx * dIncrX;
for (d = dBegin; d != dEnd; d += dIncrX) {
// assert(d >= dst); assert(d < dEnd); assert((d-dst) % dIncrX == 0);
*d = func(*d, 0);
}
}
// For every dst pixel in the area, Func with the corresponding pixel in src
for (dy = dRect.y0, sy = sRect.y0; dy != dRect.y1; ++dy, ++sy) {
Chan *d, *dLine = dst + dy * dIncrY, *dBegin = dLine + dRect.x0 * dIncrX;
Chan *s, *sLine = src + sy * sIncrY, *sBegin = sLine + sRect.x0 * sIncrX,
*sEnd = sLine + sRect.x1 * sIncrX;
Chan *sLast = sEnd - sIncrX; // sLast would lerp with sEnd
for (d = dBegin, s = sBegin; s != sLast;
d += dIncrX, s += sIncrX) // hence we stop before it
{
// assert(s >= src); assert(s < sEnd); assert((s-src) % sIncrX == 0);
// assert(d >= dst); assert(d < dEnd); assert((d-dst) % dIncrX == 0);
*d = func(*d, *s * one_w + *(s + sIncrX) * w);
}
// assert(s >= src); assert(s < sEnd); assert((s-src) % sIncrX == 0);
// assert(d >= dst); assert(d < dEnd); assert((d-dst) % dIncrX == 0);
*d = func(*d, *s * one_w); // lerp sLast with 0
}
}
}
//--------------------------------------------------------------
template <typename Pix>
void circular_erodilate(const TRasterPT<Pix> &src, const TRasterPT<Pix> &dst,
double radius) {
typedef typename Pix::Channel Chan;
if (radius == 0.0) {
// No-op case
TRop::copy(dst, src);
return;
}
// Ok, the idea is: consider the maximal embedded square in our circular
// structuring element.
// Erodilating by it consists in the consecutive erodilation by rows and
// columns with the same
// 'square' radius. Now, it's easy to see that the square could be 'bent' so
// that one of its
// edges matches that of a 1/4 of the circle's edge, while remaining inside
// the circle.
// Erodilating by the bent square can be achieved by erodilating first by rows
// or column for
// the square edge radius, followed by perpendicular erodilationg with a
// fourth of our
// circumference. Sum the 4 erodilations needed to complete the circumference
// - and it's done.
// NOTE: Unfortunately, the above decomposition has lots of intersections
// among the pieces - yet
// it's simple enough and removes an O(radius) from the naive algorithm. Could
// be done better?
// First, build the various erodilation data
bool dilate = (radius >= 0.0);
radius = fabs(radius);
double inner_square_diameter = radius * M_SQRT2;
double shift =
0.25 *
inner_square_diameter; // Shift of the bent square SE needed to avoid
// touching the circumference on the other side
double row_filter_radius = 0.5 * (inner_square_diameter - shift);
double cseShift = 0.5 * shift; // circumference structuring element shift
int lx = src->getLx(), ly = src->getLy();
TRasterPT<Chan> temp1(lx, ly), temp2(lx, ly);
int radI = tfloor(row_filter_radius);
double radR = row_filter_radius - radI;
if (dilate) {
temp2->fill(0); // Initialize with a Func-neutral value
if (row_filter_radius > 0.0)
for (int y = 0; y != ly; ++y)
::erodilate_row(lx, &src->pixels(y)->m, 4, temp1->pixels(y), 1, radI,
radR, MaxFunc<Chan>());
else
::copyMatte(src, temp1);
::erodilate_quarters(lx, ly, temp1->pixels(0), 1, lx, temp2->pixels(0), 1,
lx, radius, cseShift, MaxFunc<Chan>());
::erodilate_quarters(lx, ly, temp1->pixels(0) + lx - 1, -1, lx,
temp2->pixels(0) + lx - 1, -1, lx, radius, cseShift,
MaxFunc<Chan>());
if (row_filter_radius > 0.0)
for (int x = 0; x != lx; ++x)
::erodilate_row(ly, &src->pixels(0)[x].m, 4 * src->getWrap(),
temp1->pixels(0) + x, lx, radI, radR, MaxFunc<Chan>());
else
::copyMatte(src, temp1);
::erodilate_quarters(ly, lx, temp1->pixels(0), lx, 1, temp2->pixels(0), lx,
1, radius, cseShift, MaxFunc<Chan>());
::erodilate_quarters(ly, lx, temp1->pixels(0) + lx * ly - 1, -lx, -1,
temp2->pixels(0) + lx * ly - 1, -lx, -1, radius,
cseShift, MaxFunc<Chan>());
} else {
temp2->fill((std::numeric_limits<Chan>::max)()); // Initialize with a
// Func-neutral value
if (row_filter_radius > 0.0)
for (int y = 0; y != ly; ++y)
::erodilate_row(lx, &src->pixels(y)->m, 4, temp1->pixels(y), 1, radI,
radR, MinFunc<Chan>());
else
::copyMatte(src, temp1);
::erodilate_quarters(lx, ly, temp1->pixels(0), 1, lx, temp2->pixels(0), 1,
lx, radius, cseShift, MinFunc<Chan>());
::erodilate_quarters(lx, ly, temp1->pixels(0) + lx - 1, -1, lx,
temp2->pixels(0) + lx - 1, -1, lx, radius, cseShift,
MinFunc<Chan>());
if (row_filter_radius > 0.0)
for (int x = 0; x != lx; ++x)
::erodilate_row(ly, &src->pixels(0)[x].m, 4 * src->getWrap(),
temp1->pixels(0) + x, lx, radI, radR, MinFunc<Chan>());
else
::copyMatte(src, temp1);
::erodilate_quarters(ly, lx, temp1->pixels(0), lx, 1, temp2->pixels(0), lx,
1, radius, cseShift, MinFunc<Chan>());
::erodilate_quarters(ly, lx, temp1->pixels(0) + lx * ly - 1, -lx, -1,
temp2->pixels(0) + lx * ly - 1, -lx, -1, radius,
cseShift, MinFunc<Chan>());
}
// Remember that we have just calculated the matte values. We still have to
// apply them to the old RGB
// values, which requires depremultiplying from source matte and
// premultiplying with the new one.
if (dilate)
::copyChannels_dilate(src, temp2, dst);
else
::copyChannels_erode(src, temp2, dst);
}
} // namespace
//********************************************************
// EroDilate main functions
//********************************************************
void TRop::erodilate(const TRasterP &src, const TRasterP &dst, double radius,
ErodilateMaskType type) {
assert(src->getSize() == dst->getSize());
src->lock(), dst->lock();
if ((TRaster32P)src && (TRaster32P)dst) switch (type) {
case ED_rectangular:
::rect_erodilate<TPixel32>(src, dst, radius);
break;
case ED_circular:
::circular_erodilate<TPixel32>(src, dst, radius);
break;
default:
assert(!"Unknown mask type");
break;
}
else if ((TRaster64P)src && (TRaster64P)dst)
switch (type) {
case ED_rectangular:
::rect_erodilate<TPixel64>(src, dst, radius);
break;
case ED_circular:
::circular_erodilate<TPixel64>(src, dst, radius);
break;
default:
assert(!"Unknown mask type");
break;
}
else
assert(!"Unsupported raster type!");
src->unlock(), dst->unlock();
}