Blob Blame Raw


// TnzCore includes
#include "tstream.h"
#include "trop.h"
#include "tflash.h"

// TnzBase includes
#include "tdoubleparam.h"
#include "tnotanimatableparam.h"
#include "tfxparam.h"
#include "trasterfx.h"
#include "tbasefx.h"

//******************************************************************************************
//    Local namespace
//******************************************************************************************

namespace
{
void makeRectCoherent(TRectD &rect, const TPointD &pos)
{
	rect -= pos;
	rect.x0 = tfloor(rect.x0);
	rect.y0 = tfloor(rect.y0);
	rect.x1 = tceil(rect.x1);
	rect.y1 = tceil(rect.y1);
	rect += pos;
}
}

//******************************************************************************************
//    TImageCombinationFx  declaration
//******************************************************************************************

class TImageCombinationFx : public TBaseRasterFx
{
	TFxPortDG m_group;

public:
	TImageCombinationFx();
	virtual ~TImageCombinationFx() {}

public:
	// Virtual interface for heirs

	//! The raster processing function that must be reimplemented to perform the fx
	virtual void process(const TRasterP &up, const TRasterP &down, double frame) = 0;

	//! Whether the 'up' rasters of process() invocations must be allocated to
	//! entirely cover the 'down' counterpart. Should be enabled if the process()
	//! function affects 'down' pixels when the 'up's are fully transparent.
	virtual bool requiresFullRect() { return false; }

public:
	// Low-level TRasterFx-related functions

	int dynamicPortGroupsCount() const { return 1; }
	const TFxPortDG *dynamicPortGroup(int g) const { return (g == 0) ? &m_group : 0; }

	bool canHandle(const TRenderSettings &info, double frame) { return true; }

	int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
	{
		// At max the memory of another tile with the same infos may be allocated apart from
		// the externally supplied one.
		return TRasterFx::memorySize(rect, info.m_bpp);
	}

	bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info);

	void doDryCompute(TRectD &rect, double frame, const TRenderSettings &info);
	void doCompute(TTile &tile, double frame, const TRenderSettings &info);

	void compatibilityTranslatePort(int majorVersion, int minorVersion, std::string &portName);

	int getPreferredInputPort() { return 1; }
};

//******************************************************************************************
//    TImageCombinationFx  implementation
//******************************************************************************************

TImageCombinationFx::TImageCombinationFx()
	: m_group("Source", 2)
{
	addInputPort("Source1", new TRasterFxPort, 0);
	addInputPort("Source2", new TRasterFxPort, 0);
	setName(L"ImageCombinationFx");
}

//---------------------------------------------------------------------------

bool TImageCombinationFx::doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info)
{
	bBox = TRectD();

	int p, pCount = getInputPortCount();
	for (p = 0; p != pCount; ++p) {
		TRasterFxPort *port = static_cast<TRasterFxPort *>(getInputPort(p));
		TRectD inputBBox;

		bool hasInput = (port && port->isConnected()) ? (*port)->doGetBBox(frame, inputBBox, info) : false;

		if (hasInput)
			bBox += inputBBox;
	}

	return (bBox.getLx() >= 0) && (bBox.getLy() >= 0);
}

//---------------------------------------------------------------------------

void TImageCombinationFx::doCompute(TTile &tile, double frame, const TRenderSettings &info)
{
	int p, pCount = getInputPortCount();
	TRasterFxPort *port = 0;

	// Skip empty ports
	for (p = pCount - 1; p >= 0; --p) // Reverse iteration - bottom ports have high indices
	{
		port = static_cast<TRasterFxPort *>(getInputPort(p));
		if (port && port->getFx())
			break;
	}

	// If there is no input, clear and return
	if (p < 0) {
		tile.getRaster()->clear(); // Probably not necessary unless externally invocation
		return;					   // deliberately soiled tile - however, should be rare anyway.
	}

	// Calculate the tiles' geometries
	const TRect &tileRect(tile.getRaster()->getBounds());
	const TDimension &tileSize(tileRect.getSize());
	TRectD tileRectD(tile.m_pos, TDimensionD(tileSize.lx, tileSize.ly));

	// Render the first viable port directly on tile
	(*port)->compute(tile, frame, info); // Should we do it only if the bbox is not empty?

	// Then, render each subsequent port and process() it on top of tile
	bool canRestrict = !requiresFullRect();

	for (--p; p >= 0; --p) {
		port = static_cast<TRasterFxPort *>(getInputPort(p));
		if (!(port && port->getFx())) // Skip empty ports
			continue;

		// Will allocate a new tile to calculate the input contribution - so, if possible
		// we'll restrict allocation to the input port's bbox
		TRectD computeRect(tileRectD);

		if (canRestrict) {
			TRectD inBBox;
			(*port)->getBBox(frame, inBBox, info);

			computeRect *= inBBox;

			makeRectCoherent(computeRect, tile.m_pos); // Make it coherent with tile's pixel geometry
		}

		// Calculate the input port and perform processing
		TDimension computeSize(tround(computeRect.getLx()), tround(computeRect.getLy()));
		if ((computeSize.lx > 0) && (computeSize.ly > 0)) {
			TTile inTile; // Observe its locality - not incidental
			(*port)->allocateAndCompute(inTile, computeRect.getP00(), computeSize,
										tile.getRaster(), frame, info);

			// Invoke process() to deal with the actual fx processing
			TRasterP up(inTile.getRaster()), down(tile.getRaster());

			if (canRestrict) {
				// Extract from tile the part corresponding to inTile
				TRect downRect(convert(computeRect.getP00() - tile.m_pos), computeSize);
				down = down->extract(downRect);
			}

			assert(up->getSize() == down->getSize());
			process(up, down, frame); // This is the point with the max concentration
									  // of allocated resources
		}
	}
}

//-------------------------------------------------------------------------------------

void TImageCombinationFx::doDryCompute(
	TRectD &rect, double frame, const TRenderSettings &info)
{
	// Mere copy of doCompute(), stripped of the actual computations

	int p, pCount = getInputPortCount();
	TRasterFxPort *port = 0;

	for (p = pCount - 1; p >= 0; --p) {
		port = static_cast<TRasterFxPort *>(getInputPort(p));
		if (port && port->getFx())
			break;
	}

	if (p < 0)
		return;

	(*port)->dryCompute(rect, frame, info);

	bool canRestrict = !requiresFullRect();

	for (--p; p >= 0; --p) {
		port = static_cast<TRasterFxPort *>(getInputPort(p));
		if (!(port && port->getFx()))
			continue;

		TRectD computeRect(rect);

		if (canRestrict) {
			TRectD inBBox;
			(*port)->getBBox(frame, inBBox, info);

			computeRect *= inBBox;
			makeRectCoherent(computeRect, rect.getP00());
		}

		TDimension computeSize(tround(computeRect.getLx()), tround(computeRect.getLy()));
		if ((computeSize.lx > 0) && (computeSize.ly > 0))
			(*port)->dryCompute(computeRect, frame, info);
	}
}

//-------------------------------------------------------------------------------------

void TImageCombinationFx::compatibilityTranslatePort(int major, int minor, std::string &portName)
{
	if (VersionNumber(major, minor) < VersionNumber(1, 20)) {
		if (portName == "Up")
			portName = "Source1";
		else if (portName == "Down")
			portName = "Source2";
	}
}

//******************************************************************************************
//    TImageCombinationFx  heir classes
//******************************************************************************************

class OverFx : public TImageCombinationFx
{

	FX_DECLARATION(OverFx)

public:
	OverFx()
	{
		setName(L"OverFx");
	}

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::over(down, up);
	}
};

//==================================================================

class AddFx : public TImageCombinationFx
{
	FX_DECLARATION(AddFx)

	TDoubleParamP m_value;

public:
	AddFx() : m_value(100.0)
	{
		bindParam(this, "value", m_value);
	}

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		double value = m_value->getValue(frame) / 100.0;

		if (value != 1.0)
			TRop::add(up, down, down, value);
		else
			TRop::add(up, down, down);
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class ColorDodgeFx : public TImageCombinationFx
{
	FX_DECLARATION(AddFx)

public:
	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::colordodge(up, down, down);
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class ColorBurnFx : public TImageCombinationFx
{
	FX_DECLARATION(AddFx)

public:
	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::colorburn(up, down, down);
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class ScreenFx : public TImageCombinationFx
{
	FX_DECLARATION(AddFx)

public:
	bool requiresFullRect() { return true; }

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::screen(up, down, down);
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class SubFx : public TImageCombinationFx
{
	FX_DECLARATION(SubFx)

	TBoolParamP m_matte;

public:
	SubFx() : m_matte(false)
	{
		bindParam(this, "matte", m_matte);
	}

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::sub(up, down, down, m_matte->getValue());
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class MultFx : public TImageCombinationFx
{
	FX_DECLARATION(MultFx)

	TDoubleParamP m_value;
	TBoolParamP m_matte;

public:
	MultFx() : m_value(0.0), m_matte(false)
	{
		bindParam(this, "value", m_value);
		bindParam(this, "matte", m_matte);
	}

	bool requiresFullRect() { return m_matte->getValue(); }

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::mult(up, down, down, m_value->getValue(frame), m_matte->getValue());
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class MinFx : public TImageCombinationFx
{
	FX_DECLARATION(MinFx)

	TBoolParamP m_matte;

public:
	MinFx() : m_matte(true)
	{
		bindParam(this, "matte", m_matte);
	}

	bool requiresFullRect() { return true; }

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::ropmin(up, down, down, m_matte->getValue());
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class MaxFx : public TImageCombinationFx
{
	FX_DECLARATION(MaxFx)

public:
	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::ropmax(up, down, down);
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

class LinearBurnFx : public TImageCombinationFx
{
	FX_DECLARATION(LinearBurnFx)

public:
	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::linearburn(up, down, down);
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//==================================================================

//This Fx is probably unused...!
class OverlayFx : public TImageCombinationFx
{
	FX_DECLARATION(OverlayFx)

public:
	OverlayFx() {}
	~OverlayFx() {}

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		TRop::overlay(up, down, down);
	}
};

//==================================================================

class BlendFx : public TImageCombinationFx
{
	FX_DECLARATION(BlendFx)

	TDoubleParamP m_value;

public:
	BlendFx() : m_value(0.0)
	{
		bindParam(this, "value", m_value);
		m_value->setValueRange(0.0, 100.0);
	}

	bool requiresFullRect() { return true; }

	void process(const TRasterP &up, const TRasterP &down, double frame)
	{
		double value = 0.01 * m_value->getValue(frame);
		UCHAR matteValue = (UCHAR)(value * 255.0 + 0.5);

		TRop::crossDissolve(up, down, down, matteValue);
	}

	TFxPort *getXsheetPort() const
	{
		return getInputPort(1);
	}
};

//******************************************************************************************
//    Matte Fxs  definition
//******************************************************************************************

class InFx : public TBaseRasterFx
{
	FX_DECLARATION(InFx)

	TRasterFxPort m_source, m_matte;

public:
	InFx()
	{
		addInputPort("Source", m_source);
		addInputPort("Matte", m_matte);
		setName(L"InFx");
	}

	~InFx() {}

	bool doGetBBox(double frame, TRectD &bbox, const TRenderSettings &info)
	{
		if (m_matte.isConnected() && m_source.isConnected()) {
			bool ret = m_matte->doGetBBox(frame, bbox, info);

			if (bbox == TConsts::infiniteRectD)
				return m_source->doGetBBox(frame, bbox, info);
			else
				return ret;
		}
		bbox = TRectD();
		return false;
	}

	bool canHandle(const TRenderSettings &info, double frame) { return true; }

	void doCompute(TTile &tile, double frame, const TRenderSettings &ri)
	{
		//This fx is not visible if either the source or the matte tiles are empty.
		//It's because only source is visible, and only where matte is opaque.
		if (!(m_source.isConnected() && m_matte.isConnected()))
			return;

		TTile srcTile;
		m_source->allocateAndCompute(srcTile, tile.m_pos, tile.getRaster()->getSize(), tile.getRaster(), frame, ri);

		m_matte->compute(tile, frame, ri);

		TRop::ropin(srcTile.getRaster(), tile.getRaster(), tile.getRaster());
	}

	void doDryCompute(TRectD &rect,
					  double frame,
					  const TRenderSettings &info)
	{
		if (!(m_source.isConnected() && m_matte.isConnected()))
			return;

		m_source->dryCompute(rect, frame, info);
		m_matte->dryCompute(rect, frame, info);
	}

	int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
	{
		return TRasterFx::memorySize(rect, info.m_bpp);
	}

	void compute(TFlash &flash, int frame)
	{
		if (m_matte.isConnected()) {
			flash.pushMatrix();
			flash.beginMask();
			((TRasterFxP)(m_matte.getFx()))->compute(flash, frame);
			flash.endMask();
			flash.popMatrix();
		}

		if (m_source.isConnected()) {
			flash.pushMatrix();
			flash.enableMask();
			((TRasterFxP)(m_source.getFx()))->compute(flash, frame);
			flash.disableMask();
			flash.popMatrix();
		}
	}
};

//==================================================================

class OutFx : public TBaseRasterFx
{
	FX_DECLARATION(OutFx)

	TRasterFxPort m_source, m_matte;

public:
	OutFx()
	{
		addInputPort("Source", m_source);
		addInputPort("Matte", m_matte);
		setName(L"OutFx");
	}

	~OutFx() {}

	bool doGetBBox(double frame, TRectD &bbox, const TRenderSettings &info)
	{
		if (m_source.isConnected())
			return m_source->doGetBBox(frame, bbox, info);

		return false;
	}

	bool canHandle(const TRenderSettings &info, double frame) { return true; }

	void doCompute(TTile &tile, double frame, const TRenderSettings &ri)
	{
		// If there is no source, do nothing
		if (!m_source.isConnected())
			return;

		// Here, source is visible where matte is transparent. So if there is
		// no matte, just build source.
		if (!m_matte.isConnected()) {
			m_source->compute(tile, frame, ri);
			return;
		}

		TTile srcTile;
		m_source->allocateAndCompute(srcTile, tile.m_pos, tile.getRaster()->getSize(), tile.getRaster(), frame, ri);

		m_matte->compute(tile, frame, ri);

		TRop::ropout(srcTile.getRaster(), tile.getRaster(), tile.getRaster());
	}

	void doDryCompute(TRectD &rect,
					  double frame,
					  const TRenderSettings &info)
	{
		if (!m_source.isConnected())
			return;

		if (!m_matte.isConnected()) {
			m_source->dryCompute(rect, frame, info);
			return;
		}

		m_source->dryCompute(rect, frame, info);
		m_matte->dryCompute(rect, frame, info);
	}

	int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
	{
		return TRasterFx::memorySize(rect, info.m_bpp);
	}
};

//==================================================================

class AtopFx : public TBaseRasterFx
{
	FX_DECLARATION(AtopFx)

	TRasterFxPort m_up, m_dn;

public:
	AtopFx()
	{
		addInputPort("Up", m_up);
		addInputPort("Down", m_dn);
	}

	bool canHandle(const TRenderSettings &info, double frame) { return true; }

	bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info)
	{
		bBox = TRectD();

		{
			TRectD inputBBox;

			bool hasInput = m_up.isConnected() ? m_up->doGetBBox(frame, inputBBox, info) : false;
			if (hasInput)
				bBox += inputBBox;
		}

		{
			TRectD inputBBox;

			bool hasInput = m_dn.isConnected() ? m_dn->doGetBBox(frame, inputBBox, info) : false;
			if (hasInput)
				bBox += inputBBox;
		}

		return (bBox.getLx() >= 0) && (bBox.getLy() >= 0);
	}

	void doCompute(TTile &tile, double frame, const TRenderSettings &ri)
	{
		// Here it's just like matte in, but the matte is visible under up.

		if (!m_dn.isConnected())
			return;

		if (!m_up.isConnected()) {
			m_dn->compute(tile, frame, ri);
			return;
		}

		TTile upTile;
		m_up->allocateAndCompute(upTile, tile.m_pos, tile.getRaster()->getSize(), tile.getRaster(), frame, ri);

		m_dn->compute(tile, frame, ri);

		TRop::atop(upTile.getRaster(), tile.getRaster(), tile.getRaster());
	}

	void doDryCompute(TRectD &rect,
					  double frame,
					  const TRenderSettings &info)
	{
		if (!m_dn.isConnected())
			return;

		if (!m_up.isConnected()) {
			m_dn->dryCompute(rect, frame, info);
			return;
		}

		m_up->dryCompute(rect, frame, info);
		m_dn->dryCompute(rect, frame, info);
	}

	int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
	{
		return TRasterFx::memorySize(rect, info.m_bpp);
	}
};

//==================================================================

//=======================
//    Fx identifiers
//-----------------------

FX_IDENTIFIER(OverFx, "overFx")
FX_IDENTIFIER(AddFx, "addFx")
FX_IDENTIFIER(SubFx, "subFx")
FX_IDENTIFIER(MultFx, "multFx")
FX_IDENTIFIER(InFx, "inFx")
FX_IDENTIFIER(OutFx, "outFx")
FX_IDENTIFIER(AtopFx, "atopFx")
//FX_IDENTIFIER(XorFx,       "xorFx")
FX_IDENTIFIER(MinFx, "minFx")
FX_IDENTIFIER(MaxFx, "maxFx")
FX_IDENTIFIER(LinearBurnFx, "linearBurnFx")
FX_IDENTIFIER(OverlayFx, "overlayFx")
FX_IDENTIFIER(BlendFx, "blendFx")
FX_IDENTIFIER(ColorDodgeFx, "colorDodgeFx")
FX_IDENTIFIER(ColorBurnFx, "colorBurnFx")
FX_IDENTIFIER(ScreenFx, "screenFx")