#include "pins.h"
#include "tfxparam.h"
#include "trop.h"
#include "tmathutil.h"
#include "tofflinegl.h"
#include <cmath>
//------------------------------------------------------------------------------
#ifdef _WIN32
#define ISNAN _isnan
#else
#define ISNAN std::isnan
#endif
namespace {
//----------------------------------------------------------------------------
bool lineIntersection(const TPointD &P, const TPointD &R, const TPointD &Q,
const TPointD &S, TPointD &ret);
//----------------------------------------------------------------------------
bool lineIntersection(const TPointD &P, const TPointD &R, const TPointD &Q,
const TPointD &S, TPointD &ret) {
TPointD u = R - P;
TPointD v = S - Q;
double r;
if (u.y * v.x - u.x * v.y != 0) {
r = (P.x * u.y - Q.x * u.y + u.x * (Q.y - P.y)) / (u.y * v.x - u.x * v.y);
assert(!ISNAN(r));
ret = Q + v * r;
assert(!ISNAN(ret.x) && !ISNAN(ret.y));
return true;
} else {
ret = P;
assert(!ISNAN(ret.x) && !ISNAN(ret.y));
return false;
}
}
//----------------------------------------------------------------------------
};
#ifndef checkErrorsByGL
#define checkErrorsByGL \
{ \
GLenum err = glGetError(); \
assert(err != GL_INVALID_ENUM); \
assert(err != GL_INVALID_VALUE); \
assert(err != GL_INVALID_OPERATION); \
assert(err != GL_STACK_OVERFLOW); \
assert(err != GL_STACK_UNDERFLOW); \
assert(err != GL_OUT_OF_MEMORY); \
assert(err == GL_NO_ERROR); \
}
#endif
// ---------------------------------------- --------------------------------
void subCompute(TRasterFxPort &m_input, TTile &tile, double frame,
const TRenderSettings &ri, TPointD p00, TPointD p01,
TPointD p11, TPointD p10, int details, bool wireframe,
TDimension m_offScreenSize, bool isCast) {
TPixel32 bgColor;
TRectD outBBox, inBBox;
outBBox = inBBox = TRectD(tile.m_pos, TDimensionD(tile.getRaster()->getLx(),
tile.getRaster()->getLy()));
m_input->getBBox(frame, inBBox, ri);
if (inBBox == TConsts::infiniteRectD) // e' uno zerario
inBBox = outBBox;
int inBBoxLx = (int)inBBox.getLx() / ri.m_shrinkX;
int inBBoxLy = (int)inBBox.getLy() / ri.m_shrinkY;
if (inBBox.isEmpty()) return;
if (p00 == p01 && p00 == p10 && p00 == p11 &&
!isCast) // significa che non c'e' deformazione
{
m_input->compute(tile, frame, ri);
return;
}
TRaster32P rasIn;
TPointD rasInPos;
if (!wireframe) {
if (ri.m_bpp == 64 || ri.m_bpp == 48) {
TRaster64P aux = TRaster64P(inBBoxLx, inBBoxLy);
rasInPos = TPointD(inBBox.x0 / ri.m_shrinkX, inBBox.y0 / ri.m_shrinkY);
TTile tmp(aux, rasInPos);
m_input->compute(tmp, frame, ri);
rasIn = TRaster32P(inBBoxLx, inBBoxLy);
TRop::convert(rasIn, aux);
} else {
rasInPos = TPointD(inBBox.x0 / ri.m_shrinkX, inBBox.y0 / ri.m_shrinkY);
TTile tmp(TRaster32P(inBBoxLx, inBBoxLy), rasInPos);
m_input->allocateAndCompute(tmp, rasInPos, TDimension(inBBoxLx, inBBoxLy),
TRaster32P(), frame, ri);
rasIn = tmp.getRaster();
}
}
unsigned int texWidth = 2;
unsigned int texHeight = 2;
while (texWidth < (unsigned int)inBBoxLx) texWidth = texWidth << 1;
while (texHeight < (unsigned int)inBBoxLy) texHeight = texHeight << 1;
while (texWidth > 1024 || texHeight > 1024) // avevo usato la costante
// GL_MAX_TEXTURE_SIZE invece di
// 1024, ma non funzionava!
{
inBBoxLx = inBBoxLx >> 1;
inBBoxLy = inBBoxLy >> 1;
texWidth = texWidth >> 1;
texHeight = texHeight >> 1;
}
if (rasIn->getLx() != inBBoxLx || rasIn->getLy() != inBBoxLy) {
TRaster32P rasOut = TRaster32P(inBBoxLx, inBBoxLy);
TRop::resample(rasOut, rasIn,
TScale((double)rasOut->getLx() / rasIn->getLx(),
(double)rasOut->getLy() / rasIn->getLy()));
rasIn = rasOut;
}
int rasterWidth = tile.getRaster()->getLx() + 2;
int rasterHeight = tile.getRaster()->getLy() + 2;
assert(rasterWidth > 0);
assert(rasterHeight > 0);
TRectD clippingRect =
TRectD(tile.m_pos,
TDimensionD(tile.getRaster()->getLx(), tile.getRaster()->getLy()));
#ifdef CREATE_GL_CONTEXT_ONE_TIME
int ret = wglMakeCurrent(m_offScreenGL.m_offDC, m_offScreenGL.m_hglRC);
assert(ret == TRUE);
#else
TOfflineGL offScreenRendering(TDimension(rasterWidth, rasterHeight));
//#ifdef _WIN32
offScreenRendering.makeCurrent();
//#else
//#if defined(LINUX) || defined(MACOSX)
// offScreenRendering.m_offlineGL->makeCurrent();
//#endif
#endif
checkErrorsByGL
// disabilito quello che non mi serve per le texture
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
glDisable(GL_DITHER);
glDisable(GL_DEPTH_TEST);
glCullFace(GL_FRONT);
glDisable(GL_STENCIL_TEST);
glDisable(GL_LOGIC_OP);
// creo la texture in base all'immagine originale
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
checkErrorsByGL
#ifndef CREATE_GL_CONTEXT_ONE_TIME
TRaster32P rasaux;
if (!wireframe) {
TRaster32P texture(texWidth, texHeight);
texture->clear();
rasaux = texture;
rasaux->lock();
texture->copy(rasIn);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glTexImage2D(GL_TEXTURE_2D, 0, 4, texWidth, texHeight, 0, GL_RGBA,
GL_UNSIGNED_BYTE, texture->getRawData());
}
#else
unsigned int texWidth = 1024;
unsigned int texHeight = 1024;
rasaux = rasIn;
rasaux->lock();
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, rasIn->getLx(), rasIn->getLy(),
GL_RGBA, GL_UNSIGNED_BYTE, rasIn->getRawData());
#endif
checkErrorsByGL
glEnable(GL_TEXTURE_2D);
// cfr. help: OpenGL/Programming tip/OpenGL Correctness Tips
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-rasterWidth * 0.5, rasterWidth * 0.5, -rasterHeight * 0.5,
rasterHeight * 0.5, -1, 1);
glViewport(0, 0, rasterWidth, rasterHeight);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
// do OpenGL draw
double lwTex = (double)(inBBoxLx - 1) / (double)(texWidth - 1);
double lhTex = (double)(inBBoxLy - 1) / (double)(texHeight - 1);
TPointD tex00 = TPointD(0.0, 0.0);
TPointD tex10 = TPointD(lwTex, 0.0);
TPointD tex11 = TPointD(lwTex, lhTex);
TPointD tex01 = TPointD(0.0, lhTex);
GLenum polygonStyle;
if (wireframe) {
polygonStyle = GL_LINE;
glDisable(GL_TEXTURE_2D);
} else
polygonStyle = GL_FILL;
checkErrorsByGL p00.x /= ri.m_shrinkX;
p00.y /= ri.m_shrinkY;
p10.x /= ri.m_shrinkX;
p10.y /= ri.m_shrinkY;
p11.x /= ri.m_shrinkX;
p11.y /= ri.m_shrinkY;
p01.x /= ri.m_shrinkX;
p01.y /= ri.m_shrinkY;
TPointD translate = TPointD(tile.m_pos.x + tile.getRaster()->getLx() * 0.5,
tile.m_pos.y + tile.getRaster()->getLy() * 0.5);
glTranslated(-translate.x, -translate.y, 0.0);
// disegno il poligono
double dist_p00_p01 = tdistance2(p00, p01);
double dist_p10_p11 = tdistance2(p10, p11);
double dist_p01_p11 = tdistance2(p01, p11);
double dist_p00_p10 = tdistance2(p00, p10);
bool vertical = (dist_p00_p01 == dist_p10_p11);
bool horizontal = (dist_p00_p10 == dist_p01_p11);
if (vertical && horizontal) details = 1;
glPolygonMode(GL_FRONT_AND_BACK, polygonStyle);
subdivision(p00, p10, p11, p01, tex00, tex10, tex11, tex01, clippingRect,
details);
if (!wireframe) {
// abilito l'antialiasing delle linee
glEnable(GL_LINE_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
// disegno il bordo del poligono
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_QUADS);
glTexCoord2d(tex00.x, tex00.y);
tglVertex(p00);
glTexCoord2d(tex10.x, tex10.y);
tglVertex(p10);
glTexCoord2d(tex11.x, tex11.y);
tglVertex(p11);
glTexCoord2d(tex01.x, tex01.y);
tglVertex(p01);
glEnd();
// disabilito l'antialiasing per le linee
glDisable(GL_LINE_SMOOTH);
glDisable(GL_BLEND);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
}
// force to finish
glFlush();
// rimetto il disegno dei poligoni a GL_FILL
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
// metto il frame buffer nel raster del tile
glPixelStorei(GL_UNPACK_ROW_LENGTH, rasterWidth);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
TRaster32P newRas(tile.getRaster()->getLx(), tile.getRaster()->getLy());
newRas->lock();
glReadPixels(1, 1, newRas->getLx(), newRas->getLy(), GL_RGBA,
GL_UNSIGNED_BYTE, (void *)newRas->getRawData());
newRas->unlock();
checkErrorsByGL
rasaux->unlock();
tile.getRaster()->copy(newRas);
}
// ------------------------------------------------------------------------
void subdivision(const TPointD &p00, const TPointD &p10, const TPointD &p11,
const TPointD &p01, const TPointD &tex00, const TPointD &tex10,
const TPointD &tex11, const TPointD &tex01,
const TRectD &clippingRect, int details) {
if (details == 1) {
glBegin(GL_QUADS);
glTexCoord2d(tex00.x, tex00.y);
tglVertex(p00);
glTexCoord2d(tex10.x, tex10.y);
tglVertex(p10);
glTexCoord2d(tex11.x, tex11.y);
tglVertex(p11);
glTexCoord2d(tex01.x, tex01.y);
tglVertex(p01);
glEnd();
} else {
TPointD A = p00;
TPointD B = p10;
TPointD C = p11;
TPointD D = p01;
/*
* D L2 C
* +----------------+----------------+
* | | |
* | | |
* | | |
* | | |
* | | |
* H1 +----------------+----------------+ H2
* | | M |
* | | |
* | | |
* | | |
* | | |
* +----------------+----------------+
* A L1 B
*
*/
TPointD M, L1, L2, H1, H2, P1, P2;
bool intersection;
// M
intersection = lineIntersection(A, C, B, D, M);
assert(intersection);
// P1 (punto di fuga)
intersection = lineIntersection(D, C, A, B, P1);
if (!intersection) {
P1.x = 0.5 * (A.x + D.x);
P1.y = 0.5 * (A.y + D.y);
}
// H1
intersection = lineIntersection(A, D, P1, M, H1);
assert(intersection);
// H2
intersection = lineIntersection(B, C, P1, M, H2);
assert(intersection);
// P2 (punto di fuga)
intersection = lineIntersection(A, D, B, C, P2);
if (!intersection) {
P2.x = 0.5 * (A.x + B.x);
P2.y = 0.5 * (A.y + B.y);
}
// L1
intersection = lineIntersection(A, B, P2, M, L1);
assert(intersection);
// L2
intersection = lineIntersection(D, C, P2, M, L2);
assert(intersection);
TPointD texA = (tex00 + tex10) * 0.5;
TPointD texB = (tex10 + tex11) * 0.5;
TPointD texC = (tex11 + tex01) * 0.5;
TPointD texD = (tex01 + tex00) * 0.5;
TPointD texM = (texA + texC) * 0.5;
details--;
TRectD r1 = TRectD(
std::min({A.x, L1.x, M.x, H1.x}), std::min({A.y, L1.y, M.y, H1.y}),
std::max({A.x, L1.x, M.x, H1.x}), std::max({A.y, L1.y, M.y, H1.y}));
TRectD r2 = TRectD(
std::min({L1.x, B.x, H2.x, M.x}), std::min({L1.y, B.y, H2.y, M.y}),
std::max({L1.x, B.x, H2.x, M.x}), std::max({L1.y, B.y, H2.y, M.y}));
TRectD r3 = TRectD(
std::min({M.x, H2.x, C.x, L2.x}), std::min({M.y, H2.y, C.y, L2.y}),
std::max({M.x, H2.x, C.x, L2.x}), std::max({M.y, H2.y, C.y, L2.y}));
TRectD r4 = TRectD(
std::min({H1.x, M.x, L2.x, D.x}), std::min({H1.y, M.y, L2.y, D.y}),
std::max({H1.x, M.x, L2.x, D.x}), std::max({H1.y, M.y, L2.y, D.y}));
if (r1.overlaps(clippingRect))
subdivision(A, L1, M, H1, tex00, texA, texM, texD, clippingRect, details);
if (r2.overlaps(clippingRect))
subdivision(L1, B, H2, M, texA, tex10, texB, texM, clippingRect, details);
if (r3.overlaps(clippingRect))
subdivision(M, H2, C, L2, texM, texB, tex11, texC, clippingRect, details);
if (r4.overlaps(clippingRect))
subdivision(H1, M, L2, D, texD, texM, texC, tex01, clippingRect, details);
}
}
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
#define TINY 1.0e-20
static int splitMatrix(double **a, int n, int *index) {
int i, imax = 0, j, k;
double big, dum, sum, temp;
double *vv, d;
vv = new double[n];
d = 1.00;
for (i = 0; i < n; i++) {
big = 0.0;
for (j = 0; j < n; j++)
if ((temp = fabs(a[i][j])) > big) big = temp;
if (big == 0.0) {
/*printf("aho, sta matrice e 'vota!!\n");*/
return 0;
// exit(0);
}
vv[i] = 1.0 / big;
}
for (j = 0; j < n; j++) {
for (i = 0; i < j; i++) {
sum = a[i][j];
for (k = 0; k < i; k++) sum -= a[i][k] * a[k][j];
a[i][j] = sum;
}
big = 0.0;
for (i = j; i < n; i++) {
sum = a[i][j];
for (k = 0; k < j; k++) sum -= a[i][k] * a[k][j];
a[i][j] = sum;
if ((dum = vv[i] * fabs(sum)) >= big) {
big = dum;
imax = i;
}
}
if (j != imax) {
for (k = 0; k < n; k++) {
dum = a[imax][k];
a[imax][k] = a[j][k];
a[j][k] = dum;
}
d = -d;
vv[imax] = vv[j];
}
index[j] = imax;
if (fabsf(a[j][j]) <= TINY && (j != n - 1)) {
/*printf("Cazzo, E' singolare %f!\n", a[j][j] );*/
return imax + 1;
}
if (j != n - 1) {
dum = 1.0 / a[j][j];
for (i = j + 1; i < n; i++) a[i][j] *= dum;
}
}
delete[] vv;
return 0;
}
/*-----------------------------------------------------------------*/
static void buildMatrixes(const FourPoints &ss, const FourPoints &dd,
double **a, double *b) {
int i;
TPointD s[4], d[4];
s[0] = ss.m_p00, s[1] = ss.m_p01, s[2] = ss.m_p10, s[3] = ss.m_p11;
d[0] = dd.m_p00, d[1] = dd.m_p01, d[2] = dd.m_p10, d[3] = dd.m_p11;
for (i = 0; i < 4; i++) {
a[i][0] = a[i + 4][3] = s[i].x;
a[i][1] = a[i + 4][4] = s[i].y;
a[i][2] = a[i + 4][5] = 1;
a[i][3] = a[i + 4][0] = 0;
a[i][4] = a[i + 4][1] = 0;
a[i][5] = a[i + 4][2] = 0;
a[i][6] = -s[i].x * d[i].x;
a[i + 4][6] = -s[i].x * d[i].y;
a[i][7] = -s[i].y * d[i].x;
a[i + 4][7] = -s[i].y * d[i].y;
b[i] = d[i].x;
b[i + 4] = d[i].y;
}
}
/*-----------------------------------------------------------------*/
static void computeSolutions(double **a, int *index, double *b) {
int i, ii = 0, ip, j;
double sum;
for (i = 0; i < 8; i++) {
ip = index[i];
sum = b[ip];
b[ip] = b[i];
if (ii)
for (j = ii - 1; j <= i - 1; j++) sum -= a[i][j] * b[j];
else if (sum)
ii = i + 1;
b[i] = sum;
}
for (i = 7; i >= 0; i--) {
sum = b[i];
for (j = i + 1; j < 8; j++) sum -= a[i][j] * b[j];
b[i] = sum / a[i][i];
}
}
/*-----------------------------------------------------------------*/
static void solveSystems(double **a, double *bx) {
int index[255], i, count = 0, bad_line;
double **atmp;
int n = 8;
atmp = new double *[n];
for (i = 0; i < n; i++) {
atmp[i] = new double[n];
memcpy(atmp[i], a[i], n * sizeof(double));
}
while ((bad_line = splitMatrix(atmp, n, index)) != 0 && n > 0) {
/*printf("la riga %d fa schifo!\n", bad_line);*/
/*bad_lines[count] = bad_line;*/
for (i = bad_line - 1; i < n - 1; i++)
memcpy(atmp[i], a[i + 1], n * sizeof(a[i + 1]));
n--;
count++;
}
if (count == 0) computeSolutions(atmp, index, bx);
for (i = 0; i < n; i++) delete atmp[i];
delete atmp;
}
/*-----------------------------------------------------------------*/
static void computeTransformation(const FourPoints &s, const FourPoints &d,
TAffine &aff, TPointD &perspectDen) {
double **a, *b;
int i;
a = new double *[8];
for (i = 0; i < 8; i++) a[i] = new double[8];
b = new double[8];
buildMatrixes(s, d, a, b);
solveSystems(a, b);
aff.a11 = b[0];
aff.a12 = b[1];
aff.a13 = b[2];
aff.a21 = b[3];
aff.a22 = b[4];
aff.a23 = b[5];
perspectDen.x = b[6];
perspectDen.y = b[7];
for (i = 0; i < 8; i++) delete a[i];
delete b;
delete a;
}
/*-----------------------------------------------------------------*/
FourPoints computeTransformed(const FourPoints &pointsFrom,
const FourPoints &pointsTo,
const FourPoints &from) {
TAffine aff;
TPointD perspectiveDen;
computeTransformation(pointsFrom, pointsTo, aff, perspectiveDen);
double den;
FourPoints fp;
den = perspectiveDen.x * from.m_p00.x + perspectiveDen.y * from.m_p00.y + 1;
assert(den != 0);
fp.m_p00 = (1.0 / den) * (aff * from.m_p00);
den = perspectiveDen.x * from.m_p01.x + perspectiveDen.y * from.m_p01.y + 1;
assert(den != 0);
fp.m_p01 = (1.0 / den) * (aff * from.m_p01);
den = perspectiveDen.x * from.m_p10.x + perspectiveDen.y * from.m_p10.y + 1;
assert(den != 0);
fp.m_p10 = (1.0 / den) * (aff * from.m_p10);
den = perspectiveDen.x * from.m_p11.x + perspectiveDen.y * from.m_p11.y + 1;
assert(den != 0);
fp.m_p11 = (1.0 / den) * (aff * from.m_p11);
return fp;
}