#include "stdfx.h"
#include "tfxparam.h"
#include "tparamset.h"
#include "toonz/tdistort.h"
//****************************************************************************
// Local namespace stuff
//****************************************************************************
namespace
{
class KaleidoDistorter : public TDistorter
{
double m_angle;
TAffine m_aff;
TPointD m_shift;
public:
KaleidoDistorter(double angle, const TAffine &aff, const TPointD shift)
: m_angle(angle), m_aff(aff), m_shift(shift) {}
TPointD map(const TPointD &p) const { return TPointD(); }
int maxInvCount() const { return 1; }
int invMap(const TPointD &p, TPointD *results) const;
};
//-------------------------------------------------------------------
int KaleidoDistorter::invMap(const TPointD &p, TPointD *results) const
{
TPointD q(m_aff * p);
// Build p's angular position
double qAngle = atan2(q.y, q.x);
if (qAngle < 0.0)
qAngle += 2.0 * TConsts::pi;
assert(qAngle >= 0.0);
int section = tfloor(qAngle / m_angle);
bool reflect = (bool)(section % 2);
double normQ = norm(q);
if (reflect) {
double newAngle = qAngle - (section + 1) * m_angle;
results[0].x = normQ * cos(newAngle) + m_shift.x;
results[0].y = -normQ * sin(newAngle) + m_shift.y;
} else {
double newAngle = qAngle - section * m_angle;
results[0].x = normQ * cos(newAngle) + m_shift.x;
results[0].y = normQ * sin(newAngle) + m_shift.y;
}
return 1;
}
} // namespace
//****************************************************************************
// Kaleido Fx
//****************************************************************************
class KaleidoFx : public TStandardRasterFx
{
FX_PLUGIN_DECLARATION(KaleidoFx)
TRasterFxPort m_input;
TPointParamP m_center;
TDoubleParamP m_angle;
TIntParamP m_count;
public:
KaleidoFx()
: m_center(TPointD()), m_angle(0.0), m_count(3)
{
m_center->getX()->setMeasureName("fxLength");
m_center->getY()->setMeasureName("fxLength");
m_angle->setMeasureName("angle");
bindParam(this, "center", m_center);
bindParam(this, "angle", m_angle);
bindParam(this, "count", m_count);
addInputPort("Source", m_input);
m_count->setValueRange(1, 100);
}
~KaleidoFx(){};
bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info);
void doDryCompute(TRectD &rect, double frame, const TRenderSettings &ri);
void doCompute(TTile &tile, double frame, const TRenderSettings &ri);
int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info);
bool canHandle(const TRenderSettings &info, double frame)
{
return isAlmostIsotropic(info.m_affine);
}
private:
void buildSectionRect(TRectD &inRect, double angle);
void rotate(TRectD &rect);
TAffine buildInputReference(double frame,
TRectD &inRect, TRenderSettings &inInfo,
const TRectD &outRect, const TRenderSettings &outInfo);
};
//-------------------------------------------------------------------
void KaleidoFx::buildSectionRect(TRectD &inRect, double angle)
{
inRect.y0 = std::max(inRect.y0, 0.0);
if (angle <= TConsts::pi_2) {
inRect.x0 = std::max(inRect.x0, 0.0);
inRect.y1 = std::min(inRect.y1, inRect.x1 * tan(angle));
}
}
//-------------------------------------------------------------------
void KaleidoFx::rotate(TRectD &rect)
{
TPointD pMax(std::max(-rect.x0, rect.x1), std::max(-rect.y0, rect.y1));
double normPMax = norm(pMax);
rect = TRectD(-normPMax, -normPMax, normPMax, normPMax);
}
//-------------------------------------------------------------------
TAffine KaleidoFx::buildInputReference(
double frame,
TRectD &inRect, TRenderSettings &inInfo,
const TRectD &outRect, const TRenderSettings &outInfo)
{
double scale = fabs(sqrt(outInfo.m_affine.det()));
double angle = TConsts::pi / m_count->getValue();
inInfo.m_affine = TRotation(-m_angle->getValue(frame) - angle) *
TScale(scale).place(m_center->getValue(frame), TPointD());
TAffine outRefToInRef(inInfo.m_affine * outInfo.m_affine.inv());
// Build the input bounding box
TRectD inBBox;
m_input->getBBox(frame, inBBox, inInfo);
// Rotate the output rect in the input reference. This is required since the rotational
// deformation may rotate points outside the rect, inside it.
TRectD outRect_inputRef(outRefToInRef * outRect);
rotate(outRect_inputRef);
// Intersect with the useful kaleido region
inRect = inBBox * outRect_inputRef;
buildSectionRect(inRect, angle);
return outRefToInRef;
}
//-------------------------------------------------------------------
bool KaleidoFx::doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info)
{
//Remember: info.m_affine MUST NOT BE CONSIDERED in doGetBBox's implementation
//Retrieve the input bbox without applied affines.
if (!m_input.getFx())
return false;
double angle = TConsts::pi / m_count->getValue();
TRenderSettings inInfo(info);
inInfo.m_affine = TRotation(-m_angle->getValue(frame) - angle) *
TTranslation(-m_center->getValue(frame));
if (!m_input->getBBox(frame, bBox, inInfo))
return false;
TRectD infiniteRect(TConsts::infiniteRectD);
TRectD kaleidoRect(
(m_count->getValue() > 1) ? 0.0 : infiniteRect.x0, 0.0,
infiniteRect.x1, infiniteRect.y1);
bBox *= kaleidoRect;
if (bBox.x0 == infiniteRect.x0 || bBox.x1 == infiniteRect.x1 || bBox.y1 == infiniteRect.y1) {
bBox = infiniteRect;
return true;
}
buildSectionRect(bBox, angle);
// Now, we must rotate the bBox in order to obtain the kaleidoscoped box
rotate(bBox);
// Finally, bring it back to standard reference
bBox = inInfo.m_affine.inv() * bBox;
return true;
}
//-------------------------------------------------------------------
void KaleidoFx::doDryCompute(TRectD &rect, double frame, const TRenderSettings &info)
{
if (!m_input.isConnected())
return;
if (fabs(info.m_affine.det()) < TConsts::epsilon)
return;
// Build the input reference
TRectD inRect;
TRenderSettings inInfo(info);
TAffine outRefToInRef(buildInputReference(frame, inRect, inInfo, rect, info));
if (inRect.getLx() <= 0.0 || inRect.getLy() <= 0.0)
return;
inRect = inRect.enlarge(1.0); // tdistort() seems to need it
// Allocate a corresponding input tile and calculate it
m_input->dryCompute(inRect, frame, inInfo);
}
//-------------------------------------------------------------------
void KaleidoFx::doCompute(TTile &tile, double frame, const TRenderSettings &info)
{
if (!m_input.isConnected())
return;
if (fabs(info.m_affine.det()) < TConsts::epsilon)
return;
// Build the output rect
TDimension tileSize(tile.getRaster()->getSize());
TRectD tileRect(tile.m_pos, TDimensionD(tileSize.lx, tileSize.ly));
// Build the input reference
TRectD inRect;
TRenderSettings inInfo(info);
TAffine outRefToInRef(buildInputReference(frame, inRect, inInfo, tileRect, info));
if (inRect.getLx() <= 0.0 || inRect.getLy() <= 0.0)
return;
inRect = inRect.enlarge(1.0); // tdistort() seems to need it
// Allocate a corresponding input tile and calculate it
TTile inTile;
TDimension inDim(tceil(inRect.getLx()), tceil(inRect.getLy()));
m_input->allocateAndCompute(inTile, inRect.getP00(), inDim, tile.getRaster(), frame, inInfo);
// Now, perform kaleido
double angle = TConsts::pi / m_count->getValue();
KaleidoDistorter distorter(angle, outRefToInRef, -inRect.getP00());
TRasterP inRas(inTile.getRaster());
TRasterP tileRas(tile.getRaster());
distort(tileRas, inRas, distorter, convert(tile.m_pos));
}
//------------------------------------------------------------------
int KaleidoFx::getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
{
if (!m_input.isConnected())
return 0;
if (fabs(info.m_affine.det()) < TConsts::epsilon)
return 0;
// Build the input reference
TRectD inRect;
TRenderSettings inInfo(info);
TAffine outRefToInRef(buildInputReference(frame, inRect, inInfo, rect, info));
if (inRect.getLx() <= 0.0 || inRect.getLy() <= 0.0)
return 0;
inRect = inRect.enlarge(1.0); // tdistort() seems to need it
return TRasterFx::memorySize(inRect, info.m_bpp);
}
//------------------------------------------------------------------
FX_PLUGIN_IDENTIFIER(KaleidoFx, "kaleidoFx");