Blob Blame Raw


// TnzCore includes
#include "tmeshimage.h"

// tcg includes
#include "tcg/tcg_misc.h"
#include "tcg/tcg_mesh_bgl.h"

using namespace tcg::bgl;

// Boost includes
#include <boost/graph/properties.hpp>
#include <boost/graph/breadth_first_search.hpp>

// STD includes
#include <queue>

#include "ext/plastichandle.h"

#include <cstring>

//***********************************************************************************************
//    Distance building
//***********************************************************************************************

namespace
{

typedef tcg::Mesh<TTextureVertex, tcg::Edge, tcg::FaceN<3>> Graph;

//----------------------------------------------------------------------------------

struct DistanceGreater {
	float *m_distances;

public:
	DistanceGreater(float *distances) : m_distances(distances) {}

	bool operator()(int a, int b) { return m_distances[a] > m_distances[b]; }
};

} // namespace

//==================================================================================

namespace local
{

struct BFS_DistanceBuilder {
	typedef boost::graph_traits<Graph>::edge_descriptor edge_descr;

	float *m_distances; //!< (NOT owned) Distances from selected vertex
	UCHAR *m_colormap;  //!< (NOT owned) Graph BFS colormap

public:
	BFS_DistanceBuilder(float *distances, UCHAR *colormap)
		: m_distances(distances), m_colormap(colormap) {}

	void tree_edge(const edge_descr &e, const Graph &g)
	{
		int v, v0 = -1, v1 = tcg::bgl::target(e, g);
		double d, dMin = (std::numeric_limits<double>::max)();

		assert(m_colormap[v1] == boost::white_color);

		// Search for the distance-nearest found vertex
		const Graph::vertex_type &vx1 = g.vertex(v1);

		Graph::vertex_type::edges_const_iterator et, eEnd(vx1.edgesEnd());
		for (et = vx1.edgesBegin(); et != eEnd; ++et) {
			v = g.edge(*et).otherVertex(v1);
			if (m_colormap[v] != boost::white_color) {
				d = tcg::point_ops::dist(g.vertex(v).P(), vx1.P());
				if (d < dMin)
					v0 = v, dMin = d;
			}
		}

		assert(v0 >= 0);

		// Just add to the distance from that vertex
		m_distances[v1] = m_distances[v0] + dMin;
	}

	// Unused bfs methods

	void initialize_vertex(int v, const Graph &g) {}
	void discover_vertex(int v, const Graph &g) {}
	void examine_vertex(int v, const Graph &g) {}
	void finish_vertex(int v, const Graph &g) {}

	void examine_edge(const edge_descr &e, const Graph &g) {}
	void non_tree_edge(const edge_descr &e, const Graph &g) {}
	void gray_target(const edge_descr &e, const Graph &g) {}
	void black_target(const edge_descr &e, const Graph &g) {}
};

} // namespace local

//==================================================================================

bool buildDistances(float *distances, const TTextureMesh &mesh, const TPointD &pos,
					int *faceHint)
{
	using namespace local;

	// First off, find the face containing the specified vertex
	int localF = -1, &f = faceHint ? *faceHint : localF;

	if (f < 0 || f >= mesh.facesCount() || !mesh.faceContains(f, pos))
		f = mesh.faceContaining(pos);

	if (f < 0)
		return false;

	int vCount = mesh.verticesCount();

	// Prepare the interpolation builder
	UCHAR *colorMap = (UCHAR *)calloc(vCount, sizeof(UCHAR));
	BFS_DistanceBuilder visitor(distances, colorMap);

	DistanceGreater gr(distances);
	std::priority_queue<int, std::vector<int>, DistanceGreater> verticesQueue(gr);

	int v0, v1, v2;
	mesh.faceVertices(f, v0, v1, v2);

	// Prepare BFS data
	distances[v0] = distances[v1] = distances[v2] = 0.0f;

	verticesQueue.push(v0), colorMap[v0] = boost::gray_color;
	verticesQueue.push(v1), colorMap[v1] = boost::gray_color;

	// Launch BFS algorithm
	boost::breadth_first_visit((const Graph &)mesh, v2, verticesQueue, visitor, colorMap);

	free(colorMap);
	return true;
}

//----------------------------------------------------------------------------------

void buildSO(double *so, const TTextureMesh &mesh,
			 const std::vector<PlasticHandle> &handles, int *faceHints)
{
	int v, vCount = mesh.verticesCount();

	// Build the interpolant function data
	const TRectD &bbox = mesh.getBBox();

	const double len = std::max(bbox.getLx(), bbox.getLy()), val = 1e-8;
	const double k = -log(val) / len;

	// Allocate / initialize arrays
	float *distances = (float *)malloc(vCount * sizeof(float));
	double *wSums = (double *)calloc(vCount, sizeof(double));

	memset(so, 0, vCount * sizeof(double));

	// Iterate handles - for each, add the corresponding interpolant
	int h, hCount = handles.size();
	for (h = 0; h != hCount; ++h) {
		const PlasticHandle &handle = handles[h];

		if (!buildDistances(distances, mesh, handle.m_pos, faceHints ? &faceHints[h] : 0))
			continue;

		for (v = 0; v != vCount; ++v) {
			double w = fabs(distances[v]);

			wSums[v] += w = exp(-k * w) / (1e-3 + w);
			so[v] += w * handle.m_so;
		}
	}

	// Normalize so values by the wSums
	for (v = 0; v != vCount; ++v)
		if (wSums[v] != 0.0)
			so[v] /= wSums[v];

	// Cleanup
	free(wSums);
	free(distances);
}