Blob Blame Raw


#include "autopos.h"
#include "cleanupcommon.h"

#include <strstream>

using namespace CleanupTypes;

/*
guardare DAFARE
guardare assumo
autoalign rgb ->ora viene chiamata con un buffer rgbm ! modificare opportunamente

fare resize e realloc size dello stack a 65000 unita' 

*/

#if defined(MACOSX) || defined(LINUX)
#define TRUE 1
#define FALSE 0
#endif

#define SECURITY_MARGIN_MM 4.0

static int Debug_flag = FALSE;

/*===========================================================================*/
/*

     AUTOALIGNMENT 


*/

#define AUTOAL_BLACK_COLS 2
#define AUTOAL_WHITE_COLS 2
#define AUTOAL_THRESHOLD 160

static int autoalign_gr8(UCHAR *buffer_gr8,
						 int wrap, int lx, int ly, int pix_origin,
						 int dpix_dx, int dpix_dy, int strip_width)
{
	int first_x[2], dx_dcol[2], target[2];
	int i, x, y, cols;
	int col_value, threshold;
	int consec_black_cols, consec_white_cols, black_strip_edge;
	UCHAR *pix, *origin;
	int delta_x, delta_pix;

	origin = buffer_gr8 + pix_origin;

	first_x[0] = 0;
	dx_dcol[0] = 1;
	target[0] = strip_width / 2;
	first_x[1] = lx - 1;
	dx_dcol[1] = -1;
	target[1] = lx - 1 - strip_width / 2;

	threshold = AUTOAL_THRESHOLD * ly;

	for (i = 0; i < 2; i++) {
		consec_black_cols = 0;
		consec_white_cols = 0;
		black_strip_edge = 0;
		for (x = first_x[i], cols = 0; cols < strip_width; x += dx_dcol[i], cols++) {
			col_value = 0;
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				col_value += *pix;
				pix += dpix_dy;
			}
			if (col_value < threshold) {
				consec_white_cols = 0;
				consec_black_cols++;
				if (consec_black_cols >= AUTOAL_BLACK_COLS)
					black_strip_edge = x;
			} else {
				consec_black_cols = 0;
				consec_white_cols++;
				if (consec_white_cols >= AUTOAL_WHITE_COLS && black_strip_edge)
					goto found;
			}
		}
	}
	return FALSE;

found:

	for (x = first_x[i], cols = 0; cols < strip_width; x += dx_dcol[i], cols++) {
		pix = origin + x * dpix_dx;
		for (y = 0; y < ly; y++) {
			*pix = 255;
			pix += dpix_dy;
		}
	}
	delta_x = target[i] - black_strip_edge;
	delta_pix = delta_x * dpix_dx;
	if (delta_x > 0) {
		for (x = lx - 1 - delta_x; x >= 0; x--) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				*(pix + delta_pix) = *pix;
				pix += dpix_dy;
			}
		}
		for (x = lx - delta_x; x < lx; x++) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				*pix = 255;
				pix += dpix_dy;
			}
		}
	} else if (delta_x < 0) {
		for (x = -delta_x; x < lx; x++) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				*(pix + delta_pix) = *pix;
				pix += dpix_dy;
			}
		}
		for (x = 0; x < -delta_x; x++) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				*pix = 255;
				pix += dpix_dy;
			}
		}
	}
	return TRUE;
}

/*---------------------------------------------------------------------------*/

static int autoalign_rgb(TPixel32 *buffer_rgb,
						 int wrap, int lx, int ly, int pix_origin,
						 int dpix_dx, int dpix_dy, int strip_width)
{
	int first_x[2], dx_dcol[2], target[2];
	int i, x, y, cols;
	int col_value, threshold;
	int consec_black_cols, consec_white_cols, black_strip_edge;
	TPixel32 *pix, *origin;
	int delta_x, delta_pix;

	origin = buffer_rgb + pix_origin;

	first_x[0] = 0;
	dx_dcol[0] = 1;
	target[0] = strip_width / 2;
	first_x[1] = lx - 1;
	dx_dcol[1] = -1;
	target[1] = lx - 1 - strip_width / 2;

	threshold = AUTOAL_THRESHOLD * ly;

	for (i = 0; i < 2; i++) {
		consec_black_cols = 0;
		consec_white_cols = 0;
		black_strip_edge = 0;
		for (x = first_x[i], cols = 0; cols < strip_width; x += dx_dcol[i], cols++) {
			col_value = 0;
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				col_value += (pix->r * 2 + pix->g * 5 + pix->b) >> 3;
				pix += dpix_dy;
			}
			if (col_value < threshold) {
				consec_white_cols = 0;
				consec_black_cols++;
				if (consec_black_cols >= AUTOAL_BLACK_COLS)
					black_strip_edge = x;
			} else {
				consec_black_cols = 0;
				consec_white_cols++;
				if (consec_white_cols >= AUTOAL_WHITE_COLS && black_strip_edge)
					goto found;
			}
		}
	}
	return FALSE;

found:

	for (x = first_x[i], cols = 0; cols < strip_width; x += dx_dcol[i], cols++) {
		pix = origin + x * dpix_dx;
		for (y = 0; y < ly; y++) {
			pix->r = pix->g = pix->b = 255;
			pix += dpix_dy;
		}
	}
	delta_x = target[i] - black_strip_edge;
	delta_pix = delta_x * dpix_dx;
	if (delta_x > 0) {
		for (x = lx - 1 - delta_x; x >= 0; x--) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				(pix + delta_pix)->r = pix->r;
				(pix + delta_pix)->g = pix->g;
				(pix + delta_pix)->b = pix->b;
				pix += dpix_dy;
			}
		}
		for (x = lx - delta_x; x < lx; x++) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				pix->r = pix->g = pix->b = 255;
				pix += dpix_dy;
			}
		}
	} else if (delta_x < 0) {
		for (x = -delta_x; x < lx; x++) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				(pix + delta_pix)->r = pix->r;
				(pix + delta_pix)->g = pix->g;
				(pix + delta_pix)->b = pix->b;
				pix += dpix_dy;
			}
		}
		for (x = 0; x < -delta_x; x++) {
			pix = origin + x * dpix_dx;
			for (y = 0; y < ly; y++) {
				pix->r = pix->g = pix->b = 255;
				pix += dpix_dy;
			}
		}
	}
	return TRUE;
}

/*---------------------------------------------------------------------------*/

//static void make_bitcount (int b[256], int count_zeros)
//{
//int i, j, xorValue;

//xorValue = count_zeros ? 0xff : 0;
//for (i = 0; i < 256; i++)
//  {
//  b[i] = 0;
//  for (j = i ^ xorValue; j; j &= j - 1)
//    b[i]++;
//  }
//}

/*---------------------------------------------------------------------------*/

//static int autoalign_bw (UCHAR *buffer_bw, bool isWB /*true se WB, false se BW*/,
//                         int wrap, int lx, int ly, int pix_origin,
//			 int dpix_dx, int dpix_dy, int strip_width)
//{
/* SOLTANTO PER MAIN SCAN VERTICALE */
/* LA PARTE DOPO found FUNZIONA SOLO PER ly MULTIPLO DI 8 */
/* LA PARTE PRIMA BUTTA VIA I BYTE FRAZIONARI */
/*
int first_x[2], dx_dcol[2], target[2];
int i, x, y, cols;
int col_value, threshold;
int consec_black_cols, consec_white_cols, black_strip_edge;
UCHAR *byte, *origin, white;
int delta_x, delta_bytes;
int ly_bytes, dbytes_dx, dbytes_dybytes;
int bitcount[256];

make_bitcount (bitcount, isWB);

ly_bytes = ly / 8;
dbytes_dx = dpix_dx / 8;
dbytes_dybytes = dpix_dy;

if (dpix_dy > 0 && (pix_origin & 7) != 0)
  pix_origin = (pix_origin | 7) + 1;
if (dpix_dy < 0 && (pix_origin & 7) != 7)
  pix_origin = (pix_origin & ~7) - 1;

origin = buffer_bw + (pix_origin + 7) / 8;

first_x[0] =      0; dx_dcol[0] =  1; target[0] =          strip_width / 2;
first_x[1] = lx - 1; dx_dcol[1] = -1; target[1] = lx - 1 - strip_width / 2;

threshold = ly / 2;

for (i = 0; i < 2; i++)
  {
  consec_black_cols = 0;
  consec_white_cols = 0;
  black_strip_edge  = 0;
  for (x = first_x[i], cols = 0; cols < strip_width; x += dx_dcol[i], cols++)
    {
    col_value = 0;
    byte = origin + x * dbytes_dx;
    for (y = 0; y < ly_bytes; y++)
      {
      col_value += bitcount[*byte];
      byte += dbytes_dybytes;
      }
    if (col_value < threshold)
      {
      consec_white_cols = 0;
      consec_black_cols++;
      if (consec_black_cols >= AUTOAL_BLACK_COLS)
	black_strip_edge = x;
      }
    else
      {
      consec_black_cols = 0;
      consec_white_cols++;
      if (consec_white_cols >= AUTOAL_WHITE_COLS && black_strip_edge)
	goto found;
      }
    }
  }
return FALSE;

found:

white = isWB ? 0 : 255;
for (x = first_x[i], cols = 0; cols < strip_width; x += dx_dcol[i], cols++)
  {
  byte = origin + x * dbytes_dx;
  for (y = 0; y < ly_bytes; y++)
    {
    *byte = white;
    byte += dbytes_dybytes;
    }
  }
delta_x = target[i] - black_strip_edge;
delta_bytes = delta_x * dbytes_dx;
if (delta_x > 0)
  {
  for (x = lx - 1 - delta_x; x >= 0; x--)
    {
    byte = origin + x * dbytes_dx;
    for (y = 0; y < ly_bytes; y++)
      {
      *(byte + delta_bytes) = *byte;
      byte += dbytes_dybytes;
      }
    }
  for (x = lx - delta_x; x < lx; x++)
    {
    byte = origin + x * dbytes_dx;
    for (y = 0; y < ly_bytes; y++)
      {
      *byte = white;
      byte += dbytes_dybytes;
      }
    }
  }
else if (delta_x < 0)
  {
  for (x = -delta_x; x < lx; x++)
    {
    byte = origin + x * dbytes_dx;
    for (y = 0; y < ly_bytes; y++)
      {
      *(byte + delta_bytes) = *byte;
      byte += dbytes_dybytes;
      }
    }
  for (x = 0; x < -delta_x; x++)
    {
    byte = origin + x * dbytes_dx;
    for (y = 0; y < ly_bytes; y++)
      {
      *byte = white;
      byte += dbytes_dybytes;
      }
    }
  }
return TRUE;
}
*/

/*---------------------------------------------------------------------------*/

int do_autoalign(const TRasterImageP &image)
{
	int wrap, lx, ly, mx, my;
	int pix_origin, dpix_dx, dpix_dy;
	int strip_width;

	/*
Non viene presa in considerazione una eventuale savebox
*/
	/*
Per adesso non scrivo l'algo per wb con primary scan orizzontale, quindi:

assert (image->orientation == TOR_LEFTBOT  ||
        image->orientation == TOR_RIGHTBOT ||
        image->orientation == TOR_LEFTTOP  ||
        image->orientation == TOR_RIGHTTOP    );
*/
	/* DAFARE
if (    image->orientation != TOR_LEFTBOT  &&
        image->orientation != TOR_RIGHTBOT &&
        image->orientation != TOR_LEFTTOP  &&
        image->orientation != TOR_RIGHTTOP    )
 {
  tmsg_error(" autoalign error: bad image orientation");
  return FALSE;
 }
*/
	// assumo che sia sempre orientata nel modo corretto

	TRasterP ras = image->getRaster();
	wrap = ras->getWrap();
	assert(TRaster32P(ras) || TRasterGR8P(ras)); //per ricordare di gestire le img bw!

	//assumo TOR_BOTLEFT:__OR TOR_BOTRIGHT:__OR TOR_TOPLEFT:__OR TOR_TOPRIGHT:
	double dpix, dpiy;
	image->getDpi(dpix, dpiy);
	strip_width = (int)mmToPixel(5.0, dpix);
	lx = ras->getLx();
	ly = ras->getLy();

	mx = lx - 1;
	my = ly - 1;

	//assumo  CASE TOR_BOTLEFT:
	pix_origin = 0;
	dpix_dx = 1;
	dpix_dy = wrap;

	TRasterGR8P ras8(ras);
	TRaster32P ras32(ras);
	ras->lock();
	int ret = FALSE;

	if (ras8)
		ret = autoalign_gr8(ras8->getRawData(), wrap, lx, ly, pix_origin,
							dpix_dx, dpix_dy, strip_width);

	else if (ras32)
		ret = autoalign_rgb(ras32->pixels(), wrap, lx, ly, pix_origin,
							dpix_dx, dpix_dy, strip_width);
	else
		assert(!"Unsupported pixel type");

	ras->unlock();

	return FALSE;
}

/*===========================================================================*/
/*

     AUTOCENTERING


*/
/*
 * Calcoli in millimetri per questa funzione che alla fine restituisce un 
 * valore per la striscia di ricerca direttamente in pixel
 */

int compute_strip_pixel(FDG_INFO *fdg, double dpi)
{
	int i, strip_size_pix;
	double half_size, max_half_size, strip_size_mm;

	max_half_size = -1.0;
	for (i = 0; i < (int)fdg->dots.size(); i++) {
		half_size = (double)fdg->dots[i].lx * 0.5;
		if (max_half_size < half_size)
			max_half_size = half_size;
	}
	strip_size_mm = fdg->dist_ctr_hole_to_edge +
					max_half_size +
					SECURITY_MARGIN_MM;

	strip_size_pix = (int)mmToPixel(strip_size_mm, dpi);

	if (Debug_flag)
		printf("Controllo una striscia larga %g mm e %d pixels\n",
			   strip_size_mm, strip_size_pix);

	return strip_size_pix;
}

/*---------------------------------------------------------------------------*/

#define SQMM_TO_SQPIXEL(area, x_res, y_res) \
	((double)((x_res) * (y_res)) * (double)(area) * ((1.0 / 25.4) * (1.0 / 25.4)))

/*---------------------------------------------------------------------------*/
void convert_dots_mm_to_pixel(DOT *dots, int nd, double x_res, double y_res)
{
	int i;

	for (i = 0; i < nd; i++) {
		dots[i].x1 = troundp(mmToPixel(dots[i].x1, x_res));
		dots[i].y1 = troundp(mmToPixel(dots[i].y1, y_res));
		dots[i].x2 = troundp(mmToPixel(dots[i].x2, x_res));
		dots[i].y2 = troundp(mmToPixel(dots[i].y2, y_res));
		dots[i].x = (float)mmToPixel(dots[i].x, x_res);
		dots[i].y = (float)mmToPixel(dots[i].y, y_res);
		dots[i].lx = troundp(mmToPixel(dots[i].lx, x_res));
		dots[i].ly = troundp(mmToPixel(dots[i].ly, y_res));
		dots[i].area = troundp(SQMM_TO_SQPIXEL(dots[i].area, x_res, y_res));
	}
	return;
}

/*---------------------------------------------------------------------------*/

static char *Done = 0;
static int Done_rowsize = 0;
static int Done_colsize = 0;
#define DONE_MASK(I, J) (1 << (((I) + (J)*Done_rowsize) & 7))
#define DONE_BYTE(I, J) (((I) + (J)*Done_rowsize) >> 3)
#define SET_DONE(I, J) (Done[DONE_BYTE(I, J)] |= DONE_MASK(I, J))
#define NOT_DONE(I, J) (!(Done[DONE_BYTE(I, J)] & DONE_MASK(I, J)))

static int Pix_ystep = 0;

typedef struct big {
	unsigned lo, hi;
} BIG;
#define CLEARBIG(B) ((B).lo = 0, (B).hi = 0, (B))
#define ADDBIG(B, X) ((B).lo += (unsigned)(X), \
					  (B).hi += (B).lo >> 30, (B).lo &= 0x3fffffff, (B))
#define BIG_TO_DOUBLE(B) ((double)(B).hi * (double)0x40000000 + (double)(B).lo)

#define IS_BLACK_GR8(PIX) (*(PIX) < 110)
#define IS_VERY_BLACK_GR8(PIX) (*(PIX) < 30)
#define BLACK_WEIGHT_GR8(PIX) (256 - *(PIX))

#define RGBR(PIX) ((PIX)->r << 1)
#define RGBG(PIX) ((PIX)->g << 2)
#define RGBB(PIX) ((PIX)->b)
#define RGBVAL(PIX) (RGBR(PIX) + RGBG(PIX) + RGBB(PIX))

#define IS_BLACK_RGB(PIX) (RGBVAL(PIX) < 110 * 7)
#define IS_VERY_BLACK_RGB(PIX) (RGBVAL(PIX) < 30 * 7)
#define BLACK_WEIGHT_RGB(PIX) ((256 * 7 - RGBVAL(PIX)) >> 3)

static BIG Xsum, Ysum, Weightsum;
static int Xmin, Xmax, Ymin, Ymax, Npix;
#ifdef RECURSIVE_VERSION
static int Level, Max_level;
#endif
static int Very_black_found;

#ifdef DAFARE
#ifdef RECURSIVE_VERSION
static int Black_pixel = 0;
#endif
#endif

#ifdef DAFARE
static int find_dots_bw(const TRasterP &img, int strip_width, PEGS_SIDE pegs_side,
						DOT dotarray[], int dotarray_size, int max_area);
#endif
static int find_dots_gr8(const TRasterGR8P &img, int strip_width, PEGS_SIDE pegs_side,
						 DOT dotarray[], int dotarray_size, int max_area);
static int find_dots_rgb(const TRaster32P &img, int strip_width, PEGS_SIDE pegs_side,
						 DOT dotarray[], int dotarray_size, int max_area);
static void
#ifdef DAFARE
visit_bw(int i, int j, int x, int y, int bit, UCHAR *byte),
#endif
	visit_gr8(int i, int j, int x, int y, UCHAR *pix),
	visit_rgb(int i, int j, int x, int y, TPixel32 *pix),
	stampa_dot(DOT *dot);

static int
compare_dots(DOT dots[], int *ndots, DOT reference[], int ref_dot);

#define REVERSE(byte, bit)  \
	{                       \
		unsigned char mask; \
		mask = 1 << (bit);  \
		*(byte) ^= mask;    \
	}

/*---------------------------------------------------------------------------*/

typedef struct
	{
	short ret, bit;
	int x, y, i, j;
	void *ptr;
} STACK_INFO;

static STACK_INFO *Stack = 0;
static int Stack_alloc_size = 0;
static int Stack_size = 0;

#define CREATE_STACK                                                         \
	{                                                                        \
		assert(!Stack);                                                      \
		Stack_alloc_size = 65500;                                            \
		Stack_size = 0;                                                      \
		Stack = (STACK_INFO *)malloc(Stack_alloc_size * sizeof(STACK_INFO)); \
		if (!Stack)                                                          \
			return FALSE;                                                    \
	}

#define DESTROY_STACK         \
	{                         \
		Stack_alloc_size = 0; \
		Stack_size = 0;       \
		free(Stack);          \
		Stack = 0;            \
	}

#define STACK_IS_EMPTY (!Stack_size)

#define PUSH_ONTO_STACK(RET, X, Y, I, J, BIT, PTR)                                       \
	{                                                                                    \
		if (Stack_size >= Stack_alloc_size) {                                            \
			Stack_alloc_size += 65500;                                                   \
			Stack = (STACK_INFO *)realloc(Stack, Stack_alloc_size * sizeof(STACK_INFO)); \
			if (!Stack)                                                                  \
				return;                                                                  \
		}                                                                                \
		Stack[Stack_size].ret = (RET);                                                   \
		Stack[Stack_size].x = (X);                                                       \
		Stack[Stack_size].y = (Y);                                                       \
		Stack[Stack_size].i = (I);                                                       \
		Stack[Stack_size].j = (J);                                                       \
		Stack[Stack_size].bit = (BIT);                                                   \
		Stack[Stack_size].ptr = (PTR);                                                   \
		Stack_size++;                                                                    \
	}

#define POP_FROM_STACK_U(RET, X, Y, I, J, BIT, PTR) \
	{                                               \
		Stack_size--;                               \
		(RET) = Stack[Stack_size].ret;              \
		(X) = Stack[Stack_size].x;                  \
		(Y) = Stack[Stack_size].y;                  \
		(I) = Stack[Stack_size].i;                  \
		(J) = Stack[Stack_size].j;                  \
		(BIT) = Stack[Stack_size].bit;              \
		(PTR) = (UCHAR *)Stack[Stack_size].ptr;     \
	}

#define POP_FROM_STACK_TPIXEL32(RET, X, Y, I, J, BIT, PTR) \
	{                                                      \
		Stack_size--;                                      \
		(RET) = Stack[Stack_size].ret;                     \
		(X) = Stack[Stack_size].x;                         \
		(Y) = Stack[Stack_size].y;                         \
		(I) = Stack[Stack_size].i;                         \
		(J) = Stack[Stack_size].j;                         \
		(BIT) = Stack[Stack_size].bit;                     \
		(PTR) = (TPixel32 *)Stack[Stack_size].ptr;         \
	}

/*---------------------------------------------------------------------------*/

static int find_dots(const TRasterP &img, int strip_width, PEGS_SIDE pegs_side,
					 DOT dotarray[], int dotarray_size, int max_area)
{
	TRaster32P ras32(img);
	if (ras32)
		return find_dots_rgb(ras32, strip_width, pegs_side, dotarray, dotarray_size,
							 max_area);
	TRasterGR8P ras8(img);
	if (ras8)
		return find_dots_gr8(ras8, strip_width, pegs_side, dotarray, dotarray_size,
							 max_area);
	assert(!"Unsupported pixel type");

	return 0;
}

/*---------------------------------------------------------------------------*/
#ifdef DAFARE
static int find_dots_bw(const TRasterP &img, int strip_width, PEGS_SIDE pegs_side,
						DOT dotarray[], int dotarray_size, int max_area)
{
	int n_dots, ins, shift;
	int x, y; // coords in img coord system
	int i, j; // coords in done coord system
	int x0, y0, xsize, ysize, xlast, ylast, bit;
	UCHAR *byte, *buffer;
	int dot_lx, dot_ly;
	float dot_x, dot_y;
	int vertical;

	if (img->type == RAS_WB)
		Black_pixel = 1;
	else if (img->type == RAS_BW)
		Black_pixel = 0;
	else {
		TERROR("find dots error: bad image type");
		return 0;
	}

	switch (pegs_side) {
	case PEGS_BOTTOM:
	case PEGS_TOP:
		x0 = 0;
		y0 = pegs_side == PEGS_BOTTOM ? 0 : img->ly - strip_width;
		xsize = img->lx;
		ysize = strip_width;
		vertical = FALSE;
		break;
		
	case PEGS_LEFT:
	case PEGS_RIGHT:
		x0 = pegs_side == PEGS_LEFT ? 0 : img->lx - strip_width;
		y0 = 0;
		xsize = strip_width;
		ysize = img->ly;
		vertical = TRUE;
		break;

	default: {
		ostrstream os;
		os << "find dots internal error: pegs_side = " << std::hex << pegs_side << '\0';
		os.freeze(false);
		throw TCleanupException(os.str());
		x0 = y0 = xsize = ysize = vertical = 0;
	}
	}
	xlast = x0 + xsize - 1;
	ylast = y0 + ysize - 1;
	n_dots = 0;
	Done_rowsize = xsize + 2;
	Done_colsize = ysize + 2;
	Done = (char *)calloc((size_t)((Done_rowsize * Done_colsize + 7) >> 3), sizeof(char));
	if (!Done) {
		throw TCleanupException("find_dots: out of memory");
	}
	for (i = 0; i < Done_rowsize; i++) {
		SET_DONE(i, 0);
		SET_DONE(i, Done_colsize - 1);
	}
	for (j = 0; j < Done_colsize; j++) {
		SET_DONE(0, j);
		SET_DONE(Done_rowsize - 1, j);
	}
	buffer = (UCHAR *)img->buffer;
	Pix_ystep = (img->wrap + 7) >> 3;

	if (Debug_flag) {
		printf("Zona di scansione: (%d,%d) -- (%d,%d)\n",
			   x0, y0, xlast, ylast);
		printf("wrap: %d\n", img->wrap);
	}

#ifdef RECURSIVE_VERSION
	Max_level = max_area * 6 / 5;
#endif

	CREATE_STACK
	for (j = 1, y = y0; y <= ylast; j++, y++) {
		bit = 7 - (x0 & 7);
		byte = buffer + (x0 >> 3) + y * Pix_ystep;
		for (i = 1, x = x0; x <= xlast; i++, x++) {
			if (NOT_DONE(i, j) && ((*byte >> bit) & 1) == Black_pixel) {
				CLEARBIG(Xsum);
				CLEARBIG(Ysum);
				CLEARBIG(Weightsum);
				Xmin = Xmax = x;
				Ymin = Ymax = y;
				Npix = 0;
#ifdef RECURSIVE_VERSION
				Level = 0;
#endif
				visit_bw(i, j, x, y, bit, byte);
				dot_lx = Xmax - Xmin + 1;
				dot_ly = Ymax - Ymin + 1;
				if (Npix < max_area * 3 / 2 &&
					dot_lx > 3 && dot_lx < (xsize >> 1) &&
					dot_ly > 3 && dot_ly < (ysize >> 1) &&
					Xmin > x0 && Xmax < xlast &&
					Ymin > y0 && Ymax < ylast) {
					dot_x = BIG_TO_DOUBLE(Xsum) / BIG_TO_DOUBLE(Weightsum);
					dot_y = BIG_TO_DOUBLE(Ysum) / BIG_TO_DOUBLE(Weightsum);
					if (vertical) {
						for (ins = 0; ins < n_dots; ins++)
							if (dotarray[ins].y > dot_y)
								break;
					} else {
						for (ins = 0; ins < n_dots; ins++)
							if (dotarray[ins].x > dot_x)
								break;
					}
					for (shift = n_dots - 1; shift >= ins; shift--)
						dotarray[shift + 1] = dotarray[shift];
					n_dots++;
					dotarray[ins].x1 = Xmin;
					dotarray[ins].x2 = Xmax;
					dotarray[ins].y1 = Ymin;
					dotarray[ins].y2 = Ymax;
					dotarray[ins].lx = dot_lx;
					dotarray[ins].ly = dot_ly;
					dotarray[ins].area = Npix;
					dotarray[ins].x = dot_x;
					dotarray[ins].y = dot_y;
					if (n_dots >= dotarray_size)
						goto end_loop;
				}
			}
			if (bit == 0) {
				bit = 7;
				byte++;
			} else
				bit--;
		}
	}
end_loop:
	DESTROY_STACK
	free(Done);
	Done = NIL;
	return n_dots;
}
#endif
/*---------------------------------------------------------------------------*/

static int find_dots_gr8(const TRasterGR8P &img, int strip_width, PEGS_SIDE pegs_side,
						 DOT dotarray[], int dotarray_size, int max_area)
{
	int n_dots, ins, shift;
	int x, y; /* coords in img coord system */
	int i, j; /* coords in done coord system */
	int x0, y0, xsize, ysize, xlast, ylast;
	UCHAR *pix, *buffer;
	int dot_lx, dot_ly;
	float dot_x, dot_y;
	int vertical;

	switch (pegs_side) {
	case PEGS_BOTTOM:
	case PEGS_TOP:
		x0 = 0;
		y0 = pegs_side == PEGS_BOTTOM ? 0 : img->getLy() - strip_width;
		xsize = img->getLx();
		ysize = strip_width;
		vertical = FALSE;
		break;
	case PEGS_LEFT:
	case PEGS_RIGHT:
		x0 = pegs_side == PEGS_LEFT ? 0 : img->getLx() - strip_width;
		y0 = 0;
		xsize = strip_width;
		ysize = img->getLy();
		vertical = TRUE;
		break;
	default: {
		std::ostrstream os;
		os << "find dots internal error: pegs_side = " << std::hex << pegs_side << '\0';
		os.freeze(false);
		throw TCleanupException(os.str());
		x0 = y0 = xsize = ysize = vertical = 0;
	}
	}

	xlast = x0 + xsize - 1;
	ylast = y0 + ysize - 1;
	n_dots = 0;
	Done_rowsize = xsize + 2;
	Done_colsize = ysize + 2;
	Done = (char *)calloc((size_t)((Done_rowsize * Done_colsize + 7) >> 3), sizeof(char));
	if (!Done) {
		throw TCleanupException("find_dots: out of memory");
	}
	for (i = 0; i < Done_rowsize; i++) {
		SET_DONE(i, 0);
		SET_DONE(i, Done_colsize - 1);
	}
	for (j = 0; j < Done_colsize; j++) {
		SET_DONE(0, j);
		SET_DONE(Done_rowsize - 1, j);
	}

	Pix_ystep = img->getWrap();
	if (Debug_flag) {
		printf("Zona di scansione: (%d,%d) -- (%d,%d)\n",
			   x0, y0, xlast, ylast);
		printf("wrap: %d\n", img->getWrap());
	}
#ifdef RECURSIVE_VERSION
	Max_level = max_area * 6 / 5;
#endif

	img->lock();

	buffer = (UCHAR *)img->getRawData();
	CREATE_STACK
	for (j = 1, y = y0; y <= ylast; j++, y++)
		for (i = 1, x = x0, pix = buffer + x0 + y * Pix_ystep; x <= xlast; i++, x++, pix++)
			if (NOT_DONE(i, j) && IS_BLACK_GR8(pix)) {
				CLEARBIG(Xsum);
				CLEARBIG(Ysum);
				CLEARBIG(Weightsum);
				Xmin = Xmax = x;
				Ymin = Ymax = y;
				Npix = 0;
#ifdef RECURSIVE_VERSION
				Level = 0;
#endif
				visit_gr8(i, j, x, y, pix);
				dot_lx = Xmax - Xmin + 1;
				dot_ly = Ymax - Ymin + 1;
				if (Npix < max_area * 3 / 2 &&
					dot_lx > 3 && dot_lx < (xsize >> 1) &&
					dot_ly > 3 && dot_ly < (ysize >> 1) &&
					Xmin > x0 && Xmax < xlast &&
					Ymin > y0 && Ymax < ylast) {
					dot_x = (float)(BIG_TO_DOUBLE(Xsum) / BIG_TO_DOUBLE(Weightsum));
					dot_y = (float)(BIG_TO_DOUBLE(Ysum) / BIG_TO_DOUBLE(Weightsum));
					if (vertical) {
						for (ins = 0; ins < n_dots; ins++)
							if (dotarray[ins].y > dot_y)
								break;
					} else {
						for (ins = 0; ins < n_dots; ins++)
							if (dotarray[ins].x > dot_x)
								break;
					}
					for (shift = n_dots - 1; shift >= ins; shift--)
						dotarray[shift + 1] = dotarray[shift];
					n_dots++;
					dotarray[ins].x1 = Xmin;
					dotarray[ins].x2 = Xmax;
					dotarray[ins].y1 = Ymin;
					dotarray[ins].y2 = Ymax;
					dotarray[ins].lx = dot_lx;
					dotarray[ins].ly = dot_ly;
					dotarray[ins].area = Npix;
					dotarray[ins].x = dot_x;
					dotarray[ins].y = dot_y;
					if (n_dots >= dotarray_size)
						goto end_loop;
				}
			}
end_loop:
	DESTROY_STACK

	free(Done);
	Done = 0;
	img->unlock();
	return n_dots;
}

/*---------------------------------------------------------------------------*/

static int find_dots_rgb(const TRaster32P &img, int strip_width, PEGS_SIDE pegs_side,
						 DOT dotarray[], int dotarray_size, int max_area)
{
	int n_dots, ins, shift;
	int x, y; /* coords in img coord system */
	int i, j; /* coords in done coord system */
	int x0, y0, xsize, ysize, xlast, ylast;
	TPixel32 *pix, *buffer;
	int dot_lx, dot_ly;
	float dot_x, dot_y;
	int vertical;

	assert(img->getPixelSize() == 4); /*questo e' per ricordare che l'algo e' per RGB*/
	switch (pegs_side) {
	case PEGS_BOTTOM:
	case PEGS_TOP:
		x0 = 0;
		y0 = pegs_side == PEGS_BOTTOM ? 0 : img->getLy() - strip_width;
		xsize = img->getLx();
		ysize = strip_width;
		vertical = FALSE;
		break;
	case PEGS_LEFT:
	case PEGS_RIGHT:
		x0 = pegs_side == PEGS_LEFT ? 0 : img->getLx() - strip_width;
		y0 = 0;
		xsize = strip_width;
		ysize = img->getLy();
		vertical = TRUE;
		break;
	default: {
		std::ostrstream os;
		os << "find dots internal error: pegs_side = " << std::hex << pegs_side << '\0';
		os.freeze(false);
		throw TCleanupException(os.str());
		x0 = y0 = xsize = ysize = vertical = 0;
		break;
	}
	}
	xlast = x0 + xsize - 1;
	ylast = y0 + ysize - 1;
	n_dots = 0;
	Done_rowsize = xsize + 2;
	Done_colsize = ysize + 2;
	Done = (char *)calloc((size_t)((Done_rowsize * Done_colsize + 7) >> 3), sizeof(char));
	if (!Done) {
		throw TCleanupException("find_dots: out of memory");
	}
	for (i = 0; i < Done_rowsize; i++) {
		SET_DONE(i, 0);
		SET_DONE(i, Done_colsize - 1);
	}
	for (j = 0; j < Done_colsize; j++) {
		SET_DONE(0, j);
		SET_DONE(Done_rowsize - 1, j);
	}
	buffer = img->pixels();
	Pix_ystep = img->getWrap();
	if (Debug_flag) {
		printf("Zona di scansione: (%d,%d) -- (%d,%d)\n",
			   x0, y0, xlast, ylast);
		printf("wrap: %d\n", img->getWrap());
	}
#ifdef RECURSIVE_VERSION
	Max_level = max_area * 6 / 5;
#endif

	CREATE_STACK
	for (j = 1, y = y0; y <= ylast; j++, y++)
		for (i = 1, x = x0, pix = buffer + x0 + y * Pix_ystep; x <= xlast; i++, x++, pix++)
			if (NOT_DONE(i, j) && IS_BLACK_RGB(pix)) {
				CLEARBIG(Xsum);
				CLEARBIG(Ysum);
				CLEARBIG(Weightsum);
				Xmin = Xmax = x;
				Ymin = Ymax = y;
				Npix = 0;
#ifdef RECURSIVE_VERSION
				Level = 0;
#endif
				visit_rgb(i, j, x, y, pix);
				dot_lx = Xmax - Xmin + 1;
				dot_ly = Ymax - Ymin + 1;
				if (Npix < max_area * 3 / 2 &&
					dot_lx > 3 && dot_lx < (xsize >> 1) &&
					dot_ly > 3 && dot_ly < (ysize >> 1) &&
					Xmin > x0 && Xmax < xlast &&
					Ymin > y0 && Ymax < ylast) {
					dot_x = (float)(BIG_TO_DOUBLE(Xsum) / BIG_TO_DOUBLE(Weightsum));
					dot_y = (float)(BIG_TO_DOUBLE(Ysum) / BIG_TO_DOUBLE(Weightsum));
					if (vertical) {
						for (ins = 0; ins < n_dots; ins++)
							if (dotarray[ins].y > dot_y)
								break;
					} else {
						for (ins = 0; ins < n_dots; ins++)
							if (dotarray[ins].x > dot_x)
								break;
					}
					for (shift = n_dots - 1; shift >= ins; shift--)
						dotarray[shift + 1] = dotarray[shift];
					n_dots++;
					dotarray[ins].x1 = Xmin;
					dotarray[ins].x2 = Xmax;
					dotarray[ins].y1 = Ymin;
					dotarray[ins].y2 = Ymax;
					dotarray[ins].lx = dot_lx;
					dotarray[ins].ly = dot_ly;
					dotarray[ins].area = Npix;
					dotarray[ins].x = dot_x;
					dotarray[ins].y = dot_y;
					if (n_dots >= dotarray_size)
						goto end_loop;
				}
			}
end_loop:
	DESTROY_STACK
	free(Done);
	Done = 0;
	return n_dots;
}

/*---------------------------------------------------------------------------*/
#ifdef DAFARE
static void visit_bw(int i, int j, int x, int y, int bit, UCHAR *byte)
{
	int ret, next_bit, prev_bit;
	UCHAR *next_byte, *prev_byte;

start:
	ADDBIG(Xsum, x);
	ADDBIG(Ysum, y);
	ADDBIG(Weightsum, 1);
	if (x < Xmin)
		Xmin = x;
	if (x > Xmax)
		Xmax = x;
	if (y < Ymin)
		Ymin = y;
	if (y > Ymax)
		Ymax = y;
	Npix++;
	SET_DONE(i, j);

	next_bit = bit - 1;
	if (next_bit < 0) {
		next_bit = 7;
		next_byte = byte + 1;
	} else
		next_byte = byte;
	if (NOT_DONE(i + 1, j) && ((*next_byte >> next_bit) & 1) == Black_pixel) {
		PUSH_ONTO_STACK(1, x, y, i, j, bit, byte)
		i++;
		x++;
		bit = next_bit;
		byte = next_byte;
		goto start;
	return_1:;
	}
	prev_bit = bit + 1;
	if (prev_bit > 7) {
		prev_bit = 0;
		prev_byte = byte - 1;
	} else
		prev_byte = byte;
	if (NOT_DONE(i - 1, j) && ((*prev_byte >> prev_bit) & 1) == Black_pixel) {
		PUSH_ONTO_STACK(2, x, y, i, j, bit, byte)
		i--;
		x--;
		bit = prev_bit;
		byte = prev_byte;
		goto start;
	return_2:;
	}
	if (NOT_DONE(i, j + 1) && ((*(byte + Pix_ystep) >> bit) & 1) == Black_pixel) {
		PUSH_ONTO_STACK(3, x, y, i, j, bit, byte)
		j++;
		y++;
		byte += Pix_ystep;
		goto start;
	return_3:;
	}
	if (NOT_DONE(i, j - 1) && ((*(byte - Pix_ystep) >> bit) & 1) == Black_pixel) {
		PUSH_ONTO_STACK(4, x, y, i, j, bit, byte)
		j--;
		y--;
		byte -= Pix_ystep;
		goto start;
	return_4:;
	}
	if (!STACK_IS_EMPTY) {
		POP_FROM_STACK_U(ret, x, y, i, j, bit, byte);
		switch (ret) {
		case 1 : goto return_1;
		case 2 : goto return_2;
		case 3 : goto return_3;
		case 4 : goto return_4;
		default:
			abort();
		}
	}
}
#endif
/*---------------------------------------------------------------------------*/

#ifdef RECURSIVE_VERSION

static void visit_bw(int i, int j, int x, int y, int bit, UCHAR *byte)
{
	int next_bit, prev_bit;
	UCHAR *next_byte, *prev_byte;

	if (Level >= Max_level)
		return;
	else
		Level++;

	ADDBIG(Xsum, x);
	ADDBIG(Ysum, y);
	ADDBIG(Weightsum, 1);

	if (x < Xmin)
		Xmin = x;
	if (x > Xmax)
		Xmax = x;
	if (y < Ymin)
		Ymin = y;
	if (y > Ymax)
		Ymax = y;
	Npix++;
	SET_DONE(i, j);

	next_bit = bit - 1;
	if (next_bit < 0) {
		next_byte = byte + 1;
		next_bit = 7;
	} else
		next_byte = byte;

	prev_bit = bit + 1;
	if (prev_bit > 7) {
		prev_byte = byte - 1;
		prev_bit = 0;
	} else
		prev_byte = byte;

	if (NOT_DONE(i + 1, j) && ((*next_byte >> next_bit) & 1) == Black_pixel)
		visit_bw(i + 1, j, x + 1, y, next_bit, next_byte);

	if (NOT_DONE(i - 1, j) && ((*prev_byte >> prev_bit) & 1) == Black_pixel)
		visit_bw(i - 1, j, x - 1, y, prev_bit, prev_byte);

	if (NOT_DONE(i, j + 1) && ((*(byte + Pix_ystep) >> bit) & 1) == Black_pixel)
		visit_bw(i, j + 1, x, y + 1, bit, byte + Pix_ystep);

	if (NOT_DONE(i, j - 1) && ((*(byte - Pix_ystep) >> bit) & 1) == Black_pixel)
		visit_bw(i, j - 1, x, y - 1, bit, byte - Pix_ystep);

	Level--;
}

#endif

/*---------------------------------------------------------------------------*/

static void visit_gr8(int i, int j, int x, int y, UCHAR *pix)
{
	int weight, ret, dummy;

start:
	weight = BLACK_WEIGHT_GR8(pix);
	ADDBIG(Xsum, x * weight);
	ADDBIG(Ysum, y * weight);
	ADDBIG(Weightsum, weight);
	if (IS_VERY_BLACK_GR8(pix))
		Very_black_found = TRUE;
	if (x < Xmin)
		Xmin = x;
	if (x > Xmax)
		Xmax = x;
	if (y < Ymin)
		Ymin = y;
	if (y > Ymax)
		Ymax = y;
	Npix++;
	SET_DONE(i, j);

	if (NOT_DONE(i + 1, j) && IS_BLACK_GR8(pix + 1)) {
		PUSH_ONTO_STACK(1, x, y, i, j, 0, pix)
		i++;
		x++;
		pix++;
		goto start;
	return_1:;
	}
	if (NOT_DONE(i - 1, j) && IS_BLACK_GR8(pix - 1)) {
		PUSH_ONTO_STACK(2, x, y, i, j, 0, pix)
		i--;
		x--;
		pix--;
		goto start;
	return_2:;
	}
	if (NOT_DONE(i, j + 1) && IS_BLACK_GR8(pix + Pix_ystep)) {
		PUSH_ONTO_STACK(3, x, y, i, j, 0, pix)
		j++;
		y++;
		pix += Pix_ystep;
		goto start;
	return_3:;
	}
	if (NOT_DONE(i, j - 1) && IS_BLACK_GR8(pix - Pix_ystep)) {
		PUSH_ONTO_STACK(4, x, y, i, j, 0, pix)
		j--;
		y--;
		pix -= Pix_ystep;
		goto start;
	return_4:;
	}
	if (!STACK_IS_EMPTY) {
		POP_FROM_STACK_U(ret, x, y, i, j, dummy, pix);
		switch (ret) {
		case 1 : goto return_1;
		case 2 : goto return_2;
		case 3 : goto return_3;
		case 4 : goto return_4;
		default:
			abort();
		}
	}
}

/*---------------------------------------------------------------------------*/

#ifdef RECURSIVE_VERSION

static void visit_gr8(int i, int j, int x, int y, UCHAR *pix)
{
	int weight;

	if (Level >= Max_level)
		return;
	else
		Level++;

	weight = BLACK_WEIGHT_GR8(pix);
	ADDBIG(Xsum, x * weight);
	ADDBIG(Ysum, y * weight);
	ADDBIG(Weightsum, weight);
	if (IS_VERY_BLACK_GR8(pix))
		Very_black_found = TRUE;
	if (x < Xmin)
		Xmin = x;
	if (x > Xmax)
		Xmax = x;
	if (y < Ymin)
		Ymin = y;
	if (y > Ymax)
		Ymax = y;
	Npix++;
	SET_DONE(i, j);

	if (NOT_DONE(i + 1, j) && IS_BLACK_GR8(pix + 1))
		visit_gr8(i + 1, j, x + 1, y, pix + 1);
	if (NOT_DONE(i - 1, j) && IS_BLACK_GR8(pix - 1))
		visit_gr8(i - 1, j, x - 1, y, pix - 1);
	if (NOT_DONE(i, j + 1) && IS_BLACK_GR8(pix + Pix_ystep))
		visit_gr8(i, j + 1, x, y + 1, pix + Pix_ystep);
	if (NOT_DONE(i, j - 1) && IS_BLACK_GR8(pix - Pix_ystep))
		visit_gr8(i, j - 1, x, y - 1, pix - Pix_ystep);

	Level--;
}

#endif

/*---------------------------------------------------------------------------*/

static void visit_rgb(int i, int j, int x, int y, TPixel32 *pix)
{
	int weight, ret, dummy;

start:
	weight = BLACK_WEIGHT_RGB(pix);
	ADDBIG(Xsum, x * weight);
	ADDBIG(Ysum, y * weight);
	ADDBIG(Weightsum, weight);
	if (IS_VERY_BLACK_RGB(pix))
		Very_black_found = TRUE;
	if (x < Xmin)
		Xmin = x;
	if (x > Xmax)
		Xmax = x;
	if (y < Ymin)
		Ymin = y;
	if (y > Ymax)
		Ymax = y;
	Npix++;
	SET_DONE(i, j);

	if (NOT_DONE(i + 1, j) && IS_BLACK_RGB(pix + 1)) {
		PUSH_ONTO_STACK(1, x, y, i, j, 0, pix)
		i++;
		x++;
		pix += 1;
		goto start;
	return_1:;
	}
	if (NOT_DONE(i - 1, j) && IS_BLACK_RGB(pix - 1)) {
		PUSH_ONTO_STACK(2, x, y, i, j, 0, pix)
		i--;
		x--;
		pix -= 1;
		goto start;
	return_2:;
	}
	if (NOT_DONE(i, j + 1) && IS_BLACK_RGB(pix + Pix_ystep)) {
		PUSH_ONTO_STACK(3, x, y, i, j, 0, pix)
		j++;
		y++;
		pix += Pix_ystep;
		goto start;
	return_3:;
	}
	if (NOT_DONE(i, j - 1) && IS_BLACK_RGB(pix - Pix_ystep)) {
		PUSH_ONTO_STACK(4, x, y, i, j, 0, pix)
		j--;
		y--;
		pix -= Pix_ystep;
		goto start;
	return_4:;
	}
	if (!STACK_IS_EMPTY) {
		POP_FROM_STACK_TPIXEL32(ret, x, y, i, j, dummy, pix);
		switch (ret) {
		case 1 : goto return_1;
		case 2 : goto return_2;
		case 3 : goto return_3;
		case 4 : goto return_4;
		default:
			abort();
		}
	}
}

/*---------------------------------------------------------------------------*/

#ifdef RECURSIVE_VERSION

static void visit_rgb(int i, int j, int x, int y, TPixel32 *pix)
{
	int weight;

	if (Level >= Max_level)
		return;
	else
		Level++;

	weight = BLACK_WEIGHT_RGB(pix);
	ADDBIG(Xsum, x * weight);
	ADDBIG(Ysum, y * weight);
	ADDBIG(Weightsum, weight);
	if (IS_VERY_BLACK_RGB(pix))
		Very_black_found = TRUE;
	if (x < Xmin)
		Xmin = x;
	if (x > Xmax)
		Xmax = x;
	if (y < Ymin)
		Ymin = y;
	if (y > Ymax)
		Ymax = y;
	Npix++;
	SET_DONE(i, j);

	if (NOT_DONE(i + 1, j) && IS_BLACK_RGB(pix + 1))
		visit_rgb(i + 1, j, x + 1, y, pix + 1);
	if (NOT_DONE(i - 1, j) && IS_BLACK_RGB(pix - 1))
		visit_rgb(i - 1, j, x - 1, y, pix - 1);
	if (NOT_DONE(i, j + 1) && IS_BLACK_RGB(pix + Pix_ystep))
		visit_rgb(i, j + 1, x, y + 1, pix + Pix_ystep);
	if (NOT_DONE(i, j - 1) && IS_BLACK_RGB(pix - Pix_ystep))
		visit_rgb(i, j - 1, x, y - 1, pix - Pix_ystep);

	Level--;
}

#endif

/*---------------------------------------------------------------------------*/
/*
 * Attenzione: tutti i controlli e i calcoli vengono fatti in pixel.
 * Quindi bisogna convertire tutti i valori in pixel prima di arrivare a
 * questo livello.
 * Inoltre: la pegs_side si riferisce alle coordinate di raster.
 */
int get_image_rotation_and_center(const TRasterP &img, int strip_width,
								  PEGS_SIDE pegs_side,
								  double *p_ang, double *cx, double *cy,
								  DOT ref[], int ref_dot)
{
	double angle;
	int found, i;
	float dx, dy;
	DOT _dotarray[MAX_DOT];
	DOT *dotarray = _dotarray;
	int ndot, central;
	int max_area;

	*p_ang = 0.0;

	if (Debug_flag) {
		for (i = 0; i < ref_dot; i++) {
			printf("Reference dot <%d>\n", i);
			stampa_dot(ref + i);
		}
	}

	max_area = 0;
	for (i = 0; i < ref_dot; i++)
		if (ref[i].area > max_area)
			max_area = ref[i].area;

	ndot = find_dots(img, strip_width, pegs_side, dotarray, MAX_DOT, max_area);
	if (Debug_flag)
		printf(">>>> %d dots found\n", ndot);

	i = 0;
	while (i < ndot) //elimino i dots troppo piccoli
	{
		if (dotarray[i].area < 500) {
			for (int j = i; j < ndot - 1; j++)
				dotarray[j] = dotarray[j + 1];
			ndot--;
		} else
			i++;
	}

	/* controllo il pattern delle perforazioni  */
	if (ndot <= 1) {
		return FALSE;
	}

	found = compare_dots(dotarray, &ndot, ref, ref_dot);

	if (Debug_flag)
		for (i = 0; i < ndot; i++) {
			printf("**** Dot[%d]\n", i);
			stampa_dot(dotarray + i);
		}

	if (!found)
		return FALSE;

	central = ndot / 2;

	angle = 0;
	for (i = 0; i < ndot - 1; i++) {
		dx = dotarray[i + 1].x - dotarray[i].x;
		dy = dotarray[i + 1].y - dotarray[i].y;
		switch (pegs_side) {
		case PEGS_LEFT:
		case PEGS_RIGHT:
			angle += dy == 0.0 ? TConsts::pi_2 : atan(dx / dy);
			break;
		default:
			angle -= dx == 0.0 ? TConsts::pi_2 : atan(dy / dx);
			break;
		}
	}

	*p_ang = angle / (ndot - 1);
	*cx = dotarray[central].x;
	*cy = dotarray[central].y;

	if (Debug_flag) {
		printf("\nang: %g\ncx : %g\ncy : %g\n\n", *p_ang, *cx, *cy);
	}

	return TRUE;
}

/*---------------------------------------------------------------------------*/
#define PERCENT (40.0 / 100.0)
#define MIN_V 100.0

static int compare_dots(DOT dots[], int *ndots,
						DOT reference[], int ref_dot)
{
	int found;
	int toll, i_ok = 0, j_ok = 0, k_ok = 0;
	float tolld;
	int i, j, k;
	short *dot_ok = 0;
	float *ref_dis = 0, dx, dy;
	float vmin, v, dist_i_j, dist_i_k, dist_j_k, del1, del2;
	float ref_dis_0_1, ref_dis_1_2;

	/* questa funz e' indipendente da posizione e orientamento dei dots */

	if (*ndots < 1 || ref_dot < 1) {
		goto error;
	}

	/* controllo quanti dots sono realmente buoni per il confronto */
	dot_ok = (short *)calloc(*ndots, sizeof(short));
	found = 0;

	for (i = 0; i < *ndots; i++)
		for (j = 0; j < ref_dot; j++) {
			toll = (int)((float)reference[j].area * PERCENT);
			if (abs(dots[i].area - reference[j].area) < toll) {
				dot_ok[found] = i;
				found++;
				break;
			}
		}

	if (!found) {
		goto error;
	}

	if (found < *ndots) {
		for (i = 0; i < found; i++) {
			if (dot_ok[i] != i)
				*(dots + i) = *(dots + dot_ok[i]);
		}
		*ndots = found;
	}

	ref_dis = (float *)calloc(ref_dot, sizeof(float));

	/* calcolo le distanze di riferimento e la tolleranza stessa */

	tolld = (float)reference[0].lx;
	if (tolld < reference[0].ly)
		tolld = (float)reference[0].ly;
	for (i = 1; i < ref_dot; i++) {
		dx = reference[0].x - reference[i].x;
		dy = reference[0].y - reference[i].y;
		ref_dis[i - 1] = sqrtf((dx * dx) + (dy * dy));
		if (tolld < reference[i].lx)
			tolld = (float)reference[i].lx;
		if (tolld < reference[i].ly)
			tolld = (float)reference[i].ly;
	}

	// I suspect that the following expects symmetry in the holes layout...
	// Besides, if the layout is not symmetric, the peg is supposed to be rotated OR translated
	// switching from, say, top to bottom? (Daniele)

	i_ok = -1;
	v = vmin = 10000000.0;
	for (i = 0; i < *ndots - 2; i++)
		for (j = i + 1; j < *ndots - 1; j++)
			for (k = j + 1; k < *ndots; k++) {
				// Build square discrepancies from the reference relative hole distances
				dx = dots[i].x - dots[j].x;
				dy = dots[i].y - dots[j].y;
				dist_i_j = sqrtf((dx * dx) + (dy * dy));
				dx = dots[i].x - dots[k].x;
				dy = dots[i].y - dots[k].y;
				dist_i_k = sqrtf((dx * dx) + (dy * dy));
				del1 = (dist_i_j - ref_dis[0]);
				del2 = (dist_i_k - ref_dis[1]);
				v = ((del1 * del1) + (del2 * del2));

				//Furthermore, add discrepancies from the reference hole areas
				v += abs(dots[i].area - reference[0].area); //fabs since areas are already squared
				v += abs(dots[j].area - reference[1].area);
				v += abs(dots[k].area - reference[2].area);

				if (v < vmin) {
					i_ok = i;
					j_ok = j;
					k_ok = k;
					vmin = v;
				}
			}

	if (Debug_flag) {
		printf("Ho trovato v = %f su %f per %d %d %d \n",
			   v, vmin, i_ok, j_ok, k_ok);
		printf("----  Dot <%d>  ----\n", i_ok);
		stampa_dot(dots + i_ok);
		printf("----  Dot <%d>  ----\n", j_ok);
		stampa_dot(dots + j_ok);
		printf("----  Dot <%d>  ----\n", k_ok);
		stampa_dot(dots + k_ok);
	}

	if (i_ok < 0)
		goto error;
	else {
		dx = dots[i_ok].x - dots[j_ok].x;
		dy = dots[i_ok].y - dots[j_ok].y;
		dist_i_j = sqrtf((dx * dx) + (dy * dy));

		dx = dots[k_ok].x - dots[j_ok].x;
		dy = dots[k_ok].y - dots[j_ok].y;
		dist_j_k = sqrtf((dx * dx) + (dy * dy));

		ref_dis_0_1 = ref_dis[0];

		dx = reference[1].x - reference[2].x;
		dy = reference[1].y - reference[2].y;
		ref_dis_1_2 = sqrtf((dx * dx) + (dy * dy));

		if (fabsf(dist_i_j - ref_dis_0_1) < tolld &&
			fabsf(dist_j_k - ref_dis_1_2) < tolld) {
			*ndots = 3;
			*(dots) = *(dots + i_ok);
			*(dots + 1) = *(dots + j_ok);
			*(dots + 2) = *(dots + k_ok);
		}
	}

	if (ref_dis)
		free(ref_dis);
	if (dot_ok)
		free(dot_ok);

	return TRUE;

error:
	if (ref_dis)
		free(ref_dis);
	if (dot_ok)
		free(dot_ok);
	return FALSE;
}
/*---------------------------------------------------------------------------*/

static void stampa_dot(DOT *dot)
{
	printf("Dimensioni: %d,\t%d\n", dot->lx, dot->ly);
	printf("Start     : %d,\t%d\n", dot->x1, dot->y1);
	printf("End       : %d,\t%d\n", dot->x2, dot->y2);
	printf("Baricentro: %5.3f,\t%5.3f\n", dot->x, dot->y);
	printf("Area      : %d\n", dot->area);
}