/*
guardare DAFARE
write_lut_image ??? quando ?
*/
#include "autoadjust.h"
#include "cleanupcommon.h"
#define TO_ABS(x) \
{ \
if ((x) < 0) \
(x) = -(x); \
}
typedef struct big {
UINT lo, hi;
} BIG;
#define CLEAR_BIG(B) ((B).lo = 0, (B).hi = 0, (B))
#define ADD_BIG(B, X) ((B).lo += (UINT)(X), \
(B).hi += (B).lo >> 30, (B).lo &= 0x3fffffff, (B))
#define ADD_BIG_BIG(B1, B2) ((B1).lo += (B2).lo, (B1).hi += (B2).hi, \
(B1).hi += (B1).lo >> 30, (B1).lo &= 0x3fffffff, (B1))
#define BIG_TO_DOUBLE(B) ((double)(B).hi * (double)0x40000000 + (double)(B).lo)
static int Black = 0;
static int Ref_cum[256];
static int Ref_edgelen;
/*---------------------------------------------------------------------------*/
void autoadj_set_black_value(int black)
{
Black = black;
}
/*===========================================================================*/
static void smooth_func256(float func[256], int rad)
{
int i, j, k;
float smooth[256];
for (i = 0; i < 256; i++) {
k = i - rad;
notLessThan(0, k);
smooth[i] = func[k] / 2;
k = i + rad;
notMoreThan(255, k);
smooth[i] += func[k] / 2;
for (j = i - rad + 1; j <= i + rad - 1; j++) {
k = j;
notLessThan(0, k);
notMoreThan(255, k);
smooth[i] += func[k];
}
smooth[i] /= 2 * rad;
}
for (i = 0; i < 256; i++)
func[i] = smooth[i];
}
/*---------------------------------------------------------------------------*/
static void build_cum(int histo[256], int cum[256])
{
int i;
cum[0] = histo[0];
for (i = 1; i < 256; i++)
cum[i] = cum[i - 1] + histo[i];
}
/*===========================================================================*/
static int Window_x0, Window_y0, Window_x1, Window_y1;
void set_autoadjust_window(int x0, int y0, int x1, int y1)
{
Window_x0 = x0;
Window_y0 = y0;
Window_x1 = x1;
Window_y1 = y1;
if (Window_x0 > Window_x1)
tswap(Window_x0, Window_x1);
if (Window_y0 > Window_y1)
tswap(Window_y0, Window_y1);
}
/*---------------------------------------------------------------------------*/
static void get_virtual_buffer(const TRasterImageP &image,
int *p_lx, int *p_ly, int *p_wrap,
UCHAR **p_buffer)
{
int x0, y0, x1, y1;
int x_margin, y_margin;
int lx, ly, wrap;
UCHAR *buffer;
TRasterGR8P ras8(image->getRaster());
assert(ras8);
double xdpi, ydpi;
image->getDpi(xdpi, ydpi);
/* BORDO DI MEZZO CENTIMETRO */
x_margin = troundp(mmToPixel(5.0, xdpi));
y_margin = troundp(mmToPixel(5.0, ydpi));
x0 = Window_x0 + x_margin;
y0 = Window_y0 + y_margin;
x1 = Window_x1 - x_margin;
y1 = Window_y1 - y_margin;
notLessThan(x0 + 9, x1);
notLessThan(y0 + 9, y1);
notLessThan(0, x0);
notMoreThan(ras8->getLx() - 1, x0);
notLessThan(0, y0);
notMoreThan(ras8->getLy() - 1, y0);
notLessThan(0, x1);
notMoreThan(ras8->getLx() - 1, x1);
notLessThan(0, y1);
notMoreThan(ras8->getLy() - 1, y1);
lx = x1 - x0 + 1;
ly = y1 - y0 + 1;
wrap = ras8->getWrap();
buffer = (UCHAR *)ras8->getRawData() + x0 + y0 * wrap;
*p_lx = lx;
*p_ly = ly;
*p_wrap = wrap;
*p_buffer = buffer;
}
/*===========================================================================*/
void black_eq_algo(const TRasterImageP &image)
{
int lx, ly, wrap;
int x, y, grey /*, width*/;
int d_histo[256][256];
int d, dd, m;
UCHAR *buffer, *pix, *north, *south;
UCHAR prev, darkest;
long n;
float mean_d[256];
BIG s;
int max_d_grey;
float max_d;
float fac;
int val;
UCHAR lut[256];
image->getRaster()->lock();
get_virtual_buffer(image, &lx, &ly, &wrap, &buffer);
for (grey = 0; grey < 256; grey++) {
for (d = 0; d < 256; d++)
d_histo[grey][d] = 0;
}
for (y = 1; y < ly - 1; y++) {
pix = buffer + y * wrap + 1;
north = pix + wrap;
south = pix - wrap;
for (x = 1; x < lx - 1; x++, pix++, north++, south++) {
m = 2 * ((int)north[0] + (int)pix[-1] + 2 * (int)pix[0] + (int)pix[1] + (int)south[0]) + (int)north[-1] + (int)north[1] + (int)south[-1] + (int)south[1];
m = (m + 8) >> 4;
d = (int)north[-1] + (int)north[0] * 2 + (int)north[1] - (int)south[-1] - (int)south[0] * 2 - (int)south[1];
TO_ABS(d)
dd = (int)north[-1] + (int)pix[-1] * 2 + (int)south[-1] - (int)north[1] - (int)pix[1] * 2 - (int)south[1];
TO_ABS(dd)
if (dd > d)
d = dd;
dd = (int)pix[-1] + (int)north[-1] * 2 + (int)north[0] - (int)pix[1] - (int)south[1] * 2 - (int)south[0];
TO_ABS(dd)
if (dd > d)
d = dd;
dd = (int)pix[1] + (int)north[1] * 2 + (int)north[0] - (int)pix[-1] - (int)south[-1] * 2 - (int)south[0];
TO_ABS(dd)
if (dd > d)
d = dd;
d = (d + 2) >> 2;
d_histo[m][d]++;
}
}
for (grey = 0; grey < 256; grey++) {
n = 0;
CLEAR_BIG(s);
for (d = 0; d < 256; d++) {
ADD_BIG(s, d_histo[grey][d] * d);
n += d_histo[grey][d];
}
if (n)
mean_d[grey] = (float)(BIG_TO_DOUBLE(s) / n);
else
mean_d[grey] = 0;
}
smooth_func256(mean_d, 5);
max_d_grey = 0;
max_d = 0.0;
for (grey = 0; grey < 256; grey++) {
if (max_d < mean_d[grey]) {
max_d = mean_d[grey];
max_d_grey = grey;
}
}
n = 0;
CLEAR_BIG(s);
for (y = 0; y < ly; y++) {
pix = buffer + y * wrap;
prev = 255;
darkest = 255;
for (x = 0; x < lx; x++, pix++) {
if (*pix < max_d_grey) {
if (prev < max_d_grey)
notMoreThan(*pix, darkest);
else
darkest = *pix;
} else {
if (prev < max_d_grey) {
ADD_BIG(s, darkest);
n++;
}
}
prev = *pix;
}
}
darkest = troundp(BIG_TO_DOUBLE(s) / n);
/*
for (grey = 0; grey < darkest; grey++)
lut[grey] = 0;
fac = (float)255 / (float)(255 - darkest);
for (grey = darkest; grey < 256; grey++)
lut[grey] = 255 - troundp ((255 - grey) * fac);
*/
notLessThan(0, Black);
;
notMoreThan(255, Black);
fac = (float)(255 - Black) / (float)(255 - darkest);
for (grey = 0; grey < 256; grey++) {
val = 255 - troundp((255 - grey) * fac);
notLessThan(0, val);
notMoreThan(255, val);
lut[grey] = val;
}
apply_lut(image, lut);
image->getRaster()->unlock();
}
/*===========================================================================*/
#define MAX_WIDTH 100
/*---------------------------------------------------------------------------*/
void build_lw(const TRasterImageP &image, float lw[256])
{
int lx, ly, wrap;
int x, y, grey, width;
int d_histo[256][256];
int d, dd;
int lw_histo[256][MAX_WIDTH + 1];
int x_start[256];
static int *y_start[256];
static int y_start_alloc = 0;
UCHAR *buffer, *pix, *north, *south;
UCHAR cur_grey, x_prev_grey, x_next_grey, y_prev_grey, y_next_grey;
int x_grad, y_grad;
long n;
float mean_d[256];
BIG s;
int max_d_grey;
float max_d;
long max_d_n;
get_virtual_buffer(image, &lx, &ly, &wrap, &buffer);
if (y_start_alloc < lx) {
for (grey = 0; grey < 256; grey++) {
delete[] y_start[grey];
y_start[grey] = new int[lx];
//TREALLOC (y_start[grey], lx);
}
y_start_alloc = lx;
}
for (grey = 0; grey < 256; grey++) {
for (d = 0; d < 256; d++)
d_histo[grey][d] = 0;
for (x = 0; x < lx; x++)
y_start[grey][x] = -MAX_WIDTH - 1;
for (width = 0; width <= MAX_WIDTH; width++)
lw_histo[grey][width] = 0;
}
for (y = 1; y < ly - 1; y++) {
for (grey = 0; grey < 256; grey++)
x_start[grey] = -MAX_WIDTH - 1;
pix = buffer + y * wrap + 1;
north = pix + wrap;
south = pix - wrap;
for (x = 1; x < lx - 1; x++, pix++, north++, south++) {
d = (int)north[-1] + (int)north[0] * 2 + (int)north[1] - (int)south[-1] - (int)south[0] * 2 - (int)south[1];
TO_ABS(d)
dd = (int)north[-1] + (int)pix[-1] * 2 + (int)south[-1] - (int)north[1] - (int)pix[1] * 2 - (int)south[1];
TO_ABS(dd)
if (dd > d)
d = dd;
dd = (int)pix[-1] + (int)north[-1] * 2 + (int)north[0] - (int)pix[1] - (int)south[1] * 2 - (int)south[0];
TO_ABS(dd)
if (dd > d)
d = dd;
dd = (int)pix[1] + (int)north[1] * 2 + (int)north[0] - (int)pix[-1] - (int)south[-1] * 2 - (int)south[0];
TO_ABS(dd)
if (dd > d)
d = dd;
d >>= 3;
d_histo[*pix][d]++;
cur_grey = pix[0];
x_prev_grey = pix[-1];
x_next_grey = pix[1];
y_prev_grey = south[0];
y_next_grey = north[0];
x_grad = (int)x_next_grey - (int)x_prev_grey;
y_grad = (int)y_next_grey - (int)y_prev_grey;
if (cur_grey < x_prev_grey) {
if (x_grad < 0 && x_grad < y_grad && x_grad < -y_grad)
for (grey = cur_grey; grey < x_prev_grey; grey++)
x_start[grey] = x;
else
for (grey = cur_grey; grey < x_prev_grey; grey++)
x_start[grey] = -MAX_WIDTH - 1;
} else if (cur_grey > x_prev_grey) {
if (x_grad > 0 && x_grad > y_grad && x_grad > -y_grad)
for (grey = x_prev_grey; grey < cur_grey; grey++) {
width = x - x_start[grey];
if (width <= MAX_WIDTH)
lw_histo[grey][width]++;
}
}
if (cur_grey < y_prev_grey) {
if (y_grad < 0 && y_grad < x_grad && y_grad < -x_grad)
for (grey = cur_grey; grey < y_prev_grey; grey++)
y_start[grey][x] = y;
else
for (grey = cur_grey; grey < y_prev_grey; grey++)
y_start[grey][x] = -MAX_WIDTH - 1;
} else if (cur_grey > y_prev_grey) {
if (y_grad > 0 && y_grad > x_grad && y_grad > -x_grad)
for (grey = y_prev_grey; grey < cur_grey; grey++) {
width = y - y_start[grey][x];
if (width <= MAX_WIDTH)
lw_histo[grey][width]++;
}
}
}
}
for (grey = 0; grey < 256; grey++) {
n = 0;
CLEAR_BIG(s);
for (width = 0; width <= MAX_WIDTH; width++) {
ADD_BIG(s, lw_histo[grey][width] * width);
n += lw_histo[grey][width];
}
if (n)
lw[grey] = (float)(BIG_TO_DOUBLE(s) / n);
else
lw[grey] = 0.0;
}
max_d_grey = 0;
max_d = 0.0;
for (grey = 0; grey < 256; grey++) {
n = 0;
CLEAR_BIG(s);
for (d = 0; d < 256; d++) {
ADD_BIG(s, d_histo[grey][d] * d);
n += d_histo[grey][d];
}
if (n)
mean_d[grey] = (float)(BIG_TO_DOUBLE(s) / n);
else
mean_d[grey] = 0.0;
if (max_d < mean_d[grey]) {
max_d = mean_d[grey];
max_d_grey = grey;
}
}
max_d_n = 0;
for (width = 0; width <= MAX_WIDTH; width++)
max_d_n += lw_histo[max_d_grey][width];
for (grey = max_d_grey - 1; grey >= 0; grey--) {
if (!lw[grey])
break;
n = 0;
for (width = 0; width <= MAX_WIDTH; width++)
n += lw_histo[grey][width];
if (n < max_d_n / 10)
break;
}
for (; grey >= 0; grey--)
lw[grey] = 0.0;
for (grey = max_d_grey + 1; grey < 256; grey++) {
if (!lw[grey])
break;
if (255 - grey < (255 - max_d_grey) / 2)
break;
if (mean_d[grey] < max_d / 2.0)
break;
}
for (; grey < 256; grey++)
lw[grey] = 0.0;
}
/*---------------------------------------------------------------------------*/
void build_lw_lut(float ref_lw[256], float lw[256], UCHAR lut[256])
{
/* crea una lut tale che l'immagine con il profilo di linewidths lw
venga mappata in un'immagine con il profilo di riferimento ref_lw.
Le lw sono non decrescenti e delimitate da 0.0 li' dove non sono valide
*/
int i, j;
float bot_ref_lw, top_ref_lw, bot_lw, top_lw;
int bot_ref_gr, top_ref_gr, bot_gr, top_gr;
float min_lw, max_lw;
int min_ref_gr, max_ref_gr, min_gr, max_gr;
float fac;
for (i = 0; !ref_lw[i]; i++) {
}
bot_ref_lw = ref_lw[i];
bot_ref_gr = i;
for (i = 255; !ref_lw[i]; i--) {
}
top_ref_lw = ref_lw[i];
top_ref_gr = i;
for (i = 0; !lw[i]; i++) {
}
bot_lw = lw[i];
bot_gr = i;
for (i = 255; !lw[i]; i--) {
}
top_lw = lw[i];
top_gr = i;
min_lw = std::max(bot_ref_lw, bot_lw);
max_lw = std::min(top_ref_lw, top_lw);
if (min_lw >= max_lw) {
for (i = 0; i < 256; i++)
lut[i] = i;
return;
}
for (i = bot_ref_gr; ref_lw[i] < min_lw; i++) {
}
min_ref_gr = i;
for (i = top_ref_gr; ref_lw[i] > max_lw; i--) {
}
max_ref_gr = i;
for (i = bot_gr; lw[i] < min_lw; i++) {
}
min_gr = i;
for (i = top_gr; lw[i] > max_lw; i--) {
}
max_gr = i;
j = min_ref_gr;
for (i = min_gr; i <= max_gr; i++) {
while (ref_lw[j] < lw[i] && j < max_ref_gr)
j++;
lut[i] = j;
}
fac = (float)min_ref_gr / (float)min_gr;
for (i = 0; i < min_gr; i++)
lut[i] = troundp(i * fac);
fac = (float)(255 - max_ref_gr) / (float)(255 - max_gr);
for (i = 255; i > max_gr; i--)
lut[i] = 255 - troundp((255 - i) * fac);
/***
printf ("-----\n\lut:\n\n");
for (i = 255; i >= 0; i--)
printf ("%4d :%4u\n", i, lut[i]);
printf ("\n");
***/
}
/*===========================================================================*/
void build_gr_cum(const TRasterImageP &image, int cum[256])
{
int lx, ly, wrap, true_lx, true_ly;
int i, x, y;
UCHAR *pix, *buffer;
int histo[256], raster_is_savebox;
get_virtual_buffer(image, &lx, &ly, &wrap, &buffer);
for (i = 0; i < 256; i++)
histo[i] = 0;
for (y = 0; y < ly; y++) {
pix = buffer + y * wrap;
for (x = 0; x < lx; x++)
histo[*pix++]++;
}
raster_is_savebox = 1;
TRect saveBox = image->getSavebox();
if ((saveBox.getLx() > 0 && saveBox.getLx() < image->getRaster()->getLx()) ||
(saveBox.getLy() > 0 && saveBox.getLy() < image->getRaster()->getLy()))
raster_is_savebox = 0;
if (raster_is_savebox) {
true_lx = saveBox.getLx() ? saveBox.getLx() : image->getRaster()->getLx();
true_ly = saveBox.getLy() ? saveBox.getLy() : image->getRaster()->getLy();
} else {
true_lx = image->getRaster()->getLx();
true_ly = image->getRaster()->getLy();
}
histo[255] += true_lx * true_ly - lx * ly;
build_cum(histo, cum);
}
/*---------------------------------------------------------------------------*/
void build_gr_lut(int ref_cum[256], int cum[256], UCHAR lut[256])
{
/* crea una lut tale che l'immagine con la distribuzione cumulativa cum
venga mappata in un'immagine con la cumulativa di riferimento ref_cum
*/
int i, j, n;
j = 0;
for (i = 0; i < 256; i++) {
n = cum[i];
while (ref_cum[j] < n)
j++;
lut[i] = j;
}
}
/*===========================================================================*/
struct edge_config {
const char *str;
int val;
};
static struct edge_config Edge_base[] =
{
{" "
" X "
" ",
0},
{"X "
" X "
" ",
0},
{" X "
" X "
" ",
0},
{"X X "
" X "
" ",
5},
{"X X"
" X "
" ",
20},
{"X "
" X X"
" ",
24},
{"X "
" X "
" X",
28},
{" X "
" X X"
" ",
7},
{" X "
" X "
" X ",
20},
{"X X X"
" X "
" ",
10},
{"X X "
" X X"
" ",
12},
{"X X "
" X "
" X",
26},
{"X X "
" X "
" X ",
22},
{"X X "
" X "
"X ",
22},
{"X X "
"X X "
" ",
5},
{"X X"
" X "
" X",
34},
{"X X"
" X "
" X ",
34},
{"X "
" X X"
" X ",
24},
{" X "
" X X"
" X ",
10},
{"X X X"
" X X"
" ",
12},
{"X X X"
" X "
" X",
24},
{"X X X"
" X "
" X ",
24},
{"X X "
" X X"
" X",
14},
{"X X "
" X X"
" X ",
12},
{"X X "
" X X"
"X ",
22},
{"X X "
"X X X"
" ",
10},
{"X X "
" X "
" X X",
24},
{"X X "
" X "
"X X",
32},
{"X X "
"X X "
" X",
24},
{"X X "
" X "
"X X ",
20},
{"X X"
" X "
"X X",
40},
{" X "
"X X X"
" X ",
0},
{"X X X"
"X X X"
" ",
10},
{"X X X"
"X X "
" X",
22},
{"X X "
"X X X"
" X",
12},
{"X X"
"X X X"
" X",
22},
{" X X"
"X X X"
" X",
12},
{"X X X"
" X X"
" X",
14},
{"X X "
"X X X"
" X ",
0},
{"X X"
"X X X"
" X ",
10},
{"X X"
"X X "
" X X",
20},
{"X X"
"X X "
"X X",
30},
{"X X X"
"X X X"
" X",
12},
{"X X X"
"X X X"
" X ",
0},
{"X X X"
"X X "
" X X",
10},
{" X X"
"X X X"
"X X ",
0},
{"X X X"
"X X "
"X X",
20},
{"X X"
"X X X"
"X X",
20},
{"X X X"
"X X X"
" X X",
0},
{"X X X"
"X X X"
"X X",
10},
{"X X X"
"X X X"
"X X X",
0},
{0, 0},
};
static int Edge_value[256];
static int Edge_init_done = 0;
static int edge_int(const char x[8]);
static void edge_rotate(char x[8]);
static void edge_mirror(char x[8]);
/*---------------------------------------------------------------------------*/
static void edge_init(void)
{
int b;
const char *str;
int val;
char x[8];
for (b = 0; Edge_base[b].str; b++) {
str = Edge_base[b].str;
val = Edge_base[b].val;
x[0] = str[0];
x[1] = str[2];
x[2] = str[4];
x[3] = str[5];
x[4] = str[9];
x[5] = str[10];
x[6] = str[12];
x[7] = str[14];
Edge_value[edge_int(x)] = val;
edge_rotate(x);
Edge_value[edge_int(x)] = val;
edge_rotate(x);
Edge_value[edge_int(x)] = val;
edge_rotate(x);
Edge_value[edge_int(x)] = val;
edge_rotate(x);
edge_mirror(x);
Edge_value[edge_int(x)] = val;
edge_rotate(x);
Edge_value[edge_int(x)] = val;
edge_rotate(x);
Edge_value[edge_int(x)] = val;
edge_rotate(x);
Edge_value[edge_int(x)] = val;
}
Edge_init_done = 1;
}
/*---------------------------------------------------------------------------*/
static int edge_int(const char x[8])
{
return (x[0] != ' ') << 7 |
(x[1] != ' ') << 6 |
(x[2] != ' ') << 5 |
(x[3] != ' ') << 4 |
(x[4] != ' ') << 3 |
(x[5] != ' ') << 2 |
(x[6] != ' ') << 1 |
(x[7] != ' ');
}
/*---------------------------------------------------------------------------*/
static void edge_rotate(char x[8])
{
char tmp;
tmp = x[0];
x[0] = x[2];
x[2] = x[7];
x[7] = x[5];
x[5] = tmp;
tmp = x[1];
x[1] = x[4];
x[4] = x[6];
x[6] = x[3];
x[3] = tmp;
}
/*---------------------------------------------------------------------------*/
static void edge_mirror(char x[8])
{
char tmp;
tmp = x[0];
x[0] = x[2];
x[2] = tmp;
tmp = x[3];
x[3] = x[4];
x[4] = tmp;
tmp = x[5];
x[5] = x[7];
x[7] = tmp;
}
/*---------------------------------------------------------------------------*/
void histo_l_algo(const TRasterImageP &image, int reference)
{
int lx, ly, wrap;
int x, y, grey, ref_grey, m, d, dd;
UCHAR *buffer, *pix, *north, *south;
int g_histo[256];
int d_histo[256][256];
int cum[256];
long n;
BIG s;
float mean_d[256];
int max_d_grey;
float max_d;
int conf;
int edgelen;
float fac;
UCHAR lut[256];
if (!Edge_init_done)
edge_init();
get_virtual_buffer(image, &lx, &ly, &wrap, &buffer);
for (grey = 0; grey < 256; grey++) {
g_histo[grey] = 0;
for (d = 0; d < 256; d++)
d_histo[grey][d] = 0;
}
/* istogramma dei grigi e istogramma delle derivate */
for (y = 1; y < ly - 1; y++) {
pix = buffer + y * wrap + 1;
north = pix + wrap;
south = pix - wrap;
for (x = 1; x < lx - 1; x++, pix++, north++, south++) {
m = 2 * ((int)north[0] + (int)pix[-1] + 2 * (int)pix[0] + (int)pix[1] + (int)south[0]) + (int)north[-1] + (int)north[1] + (int)south[-1] + (int)south[1];
m = (m + 8) >> 4;
d = (int)north[-1] + (int)north[0] * 2 + (int)north[1] - (int)south[-1] - (int)south[0] * 2 - (int)south[1];
TO_ABS(d)
dd = (int)north[-1] + (int)pix[-1] * 2 + (int)south[-1] - (int)north[1] - (int)pix[1] * 2 - (int)south[1];
TO_ABS(dd)
if (dd > d)
d = dd;
dd = (int)pix[-1] + (int)north[-1] * 2 + (int)north[0] - (int)pix[1] - (int)south[1] * 2 - (int)south[0];
TO_ABS(dd)
if (dd > d)
d = dd;
dd = (int)pix[1] + (int)north[1] * 2 + (int)north[0] - (int)pix[-1] - (int)south[-1] * 2 - (int)south[0];
TO_ABS(dd)
if (dd > d)
d = dd;
d = (d + 2) >> 2;
d_histo[m][d]++;
g_histo[*pix]++;
}
}
build_cum(g_histo, cum);
/* costruzione pendenze medie */
for (grey = 0; grey < 256; grey++) {
n = 0;
CLEAR_BIG(s);
for (d = 0; d < 256; d++) {
ADD_BIG(s, d_histo[grey][d] * d);
n += d_histo[grey][d];
}
if (n)
mean_d[grey] = (float)(BIG_TO_DOUBLE(s) / n);
else
mean_d[grey] = 0.0;
}
smooth_func256(mean_d, 5);
/* determinazione grigio di massima pendenza */
max_d_grey = 0;
max_d = 0.0;
for (grey = 0; grey < 256; grey++) {
if (max_d < mean_d[grey]) {
max_d = mean_d[grey];
max_d_grey = grey;
}
}
/* stima della lunghezza dei bordi */
edgelen = 0;
for (y = 1; y < ly - 1; y++) {
pix = buffer + y * wrap + 1;
north = pix + wrap;
south = pix - wrap;
conf = -1;
for (x = 1; x < lx - 1; x++, pix++, north++, south++) {
if (pix[0] <= max_d_grey) {
if (conf >= 0) {
conf = ((conf << 1) & ((1 << 7) | (1 << 6) | (1 << 2) | (1 << 1))) |
((north[1] <= max_d_grey) << 5) |
((1) << 4) |
((pix[1] <= max_d_grey) << 3) |
((south[1] <= max_d_grey));
} else {
conf = ((north[-1] <= max_d_grey) << 7) |
((north[0] <= max_d_grey) << 6) |
((north[1] <= max_d_grey) << 5) |
((pix[-1] <= max_d_grey) << 4) |
((pix[1] <= max_d_grey) << 3) |
((south[-1] <= max_d_grey) << 2) |
((south[0] <= max_d_grey) << 1) |
((south[1] <= max_d_grey));
}
edgelen += Edge_value[conf];
} else
conf = -1;
}
}
if (reference) {
for (grey = 0; grey < 256; grey++)
Ref_cum[grey] = cum[grey];
Ref_edgelen = edgelen;
return;
}
/* normalizza la cumulativa per il numero di linee */
fac = (float)Ref_edgelen / edgelen;
/***
printf ("fac: %f\n", fac);
printf ("cum prima:\n");
for (grey = 0; grey < 256; grey++)
printf ("%9d\n", cum[grey]);
***/
for (grey = 0; grey < 255; grey++) {
cum[grey] = (int)(cum[grey] * fac);
notMoreThan(cum[255], cum[grey]);
}
/***
printf ("cum dopo:\n");
for (grey = 0; grey < 256; grey++)
printf ("%9d\n", cum[grey]);
printf ("Ref_cum:\n");
for (grey = 0; grey < 256; grey++)
printf ("%9d\n", Ref_cum[grey]);
***/
/* equalizza l'istogramma */
ref_grey = 0;
for (grey = 0; grey < 255; grey++) {
while (Ref_cum[ref_grey] < cum[grey])
ref_grey++;
lut[grey] = ref_grey;
}
lut[255] = 255;
/* DAFARE
if (Wl_flag)
write_lut_image (lut);
*/
apply_lut(image, lut);
}
/*===========================================================================*/
/*===========================================================================*/
#define MAX_N_CHAINS 100
#define MAX_WIDTH 100
#define MIN_COUNT 100
#define MAX_HGREY (244 >> 1)
/*---------------------------------------------------------------------------*/
#ifdef DAFARE
static int build_th_histo(const TRasterImageP &image, int histo[256 >> 1][MAX_WIDTH + 1])
{
int lx, ly, wrap, x, y, hgrey, width;
UCHAR *buffer, *cur, *x_prev, *y_prev, *x_next, *y_next;
UCHAR cur_hgrey, x_prev_hgrey, y_prev_hgrey, x_next_hgrey, y_next_hgrey;
int x_grad, y_grad;
int hgrey_histo[256 >> 1];
int x_start[256 >> 1];
static int *y_start[256 >> 1];
static int y_start_alloc = 0;
get_virtual_buffer(image, &lx, &ly, &wrap, &buffer);
if (y_start_alloc < lx) {
for (hgrey = 0; hgrey<256>> 1; hgrey++) {
delete[] y_start[hgrey];
y_start[hgrey] = new int[lx];
// TREALLOC (y_start[hgrey], lx);
}
y_start_alloc = lx;
}
for (hgrey = 0; hgrey<256>> 1; hgrey++) {
for (x = 0; x < lx; x++)
y_start[hgrey][x] = -MAX_WIDTH - 1;
for (width = 0; width <= MAX_WIDTH; width++)
histo[hgrey][width] = 0;
hgrey_histo[hgrey] = 0;
}
for (y = 1; y < ly - 1; y++) {
for (hgrey = 0; hgrey<256>> 1; hgrey++)
x_start[hgrey] = -MAX_WIDTH - 1;
cur = buffer + y * wrap + 1;
x_prev = cur - 1;
y_prev = cur - wrap;
x_next = cur + 1;
y_next = cur + wrap;
for (x = 1; x < lx - 1; x++, cur++, x_prev++, y_prev++, x_next++, y_next++) {
cur_hgrey = *cur >> 1;
x_prev_hgrey = *x_prev >> 1;
x_next_hgrey = *x_next >> 1;
y_prev_hgrey = *y_prev >> 1;
y_next_hgrey = *y_next >> 1;
hgrey_histo[cur_hgrey]++;
x_grad = (int)x_next_hgrey - (int)x_prev_hgrey;
y_grad = (int)y_next_hgrey - (int)y_prev_hgrey;
if (cur_hgrey < x_prev_hgrey) {
if (x_grad < 0 && x_grad < y_grad && x_grad < -y_grad)
for (hgrey = cur_hgrey; hgrey < x_prev_hgrey; hgrey++)
x_start[hgrey] = x;
else
for (hgrey = cur_hgrey; hgrey < x_prev_hgrey; hgrey++)
x_start[hgrey] = -MAX_WIDTH - 1;
} else if (cur_hgrey > x_prev_hgrey) {
if (x_grad > 0 && x_grad > y_grad && x_grad > -y_grad)
for (hgrey = x_prev_hgrey; hgrey < cur_hgrey; hgrey++) {
width = x - x_start[hgrey];
if (width <= MAX_WIDTH)
histo[hgrey][width]++;
}
}
if (cur_hgrey < y_prev_hgrey) {
if (y_grad < 0 && y_grad < x_grad && y_grad < -x_grad)
for (hgrey = cur_hgrey; hgrey < y_prev_hgrey; hgrey++)
y_start[hgrey][x] = y;
else
for (hgrey = cur_hgrey; hgrey < y_prev_hgrey; hgrey++)
y_start[hgrey][x] = -MAX_WIDTH - 1;
} else if (cur_hgrey > y_prev_hgrey) {
if (y_grad > 0 && y_grad > x_grad && y_grad > -x_grad)
for (hgrey = y_prev_hgrey; hgrey < cur_hgrey; hgrey++) {
width = y - y_start[hgrey][x];
if (width <= MAX_WIDTH)
histo[hgrey][width]++;
}
}
}
}
return 1;
}
#endif
/*---------------------------------------------------------------------------*/
#ifdef DAFARE
//SEMBRA NON ESSERE UTILIZZATO!
int eval_image_th(const TRasterImageP &image, int *threshold, float *linewidth)
{
#define MIN_COUNT 100
#define MAX_HGREY (244 >> 1)
int histo[256 >> 1][MAX_WIDTH + 1];
char is_max[256 >> 1][MAX_WIDTH + 1];
int chain_map[256 >> 1][MAX_WIDTH + 1];
int chain_n[MAX_N_CHAINS];
int n_chains;
int peak[256 >> 1];
float mean_width[256 >> 1];
int min_hgrey, max_hgrey, min_chain_hgrey, max_chain_hgrey;
int hgrey, width, chain, c, last;
long n, nx;
float delta, min_delta;
TRasterGR8P ras8(image->getRaster());
if (!ras8) {
TERROR("image is not RAS_GR8");
return 0;
}
if (!(*threshold != 0 && *linewidth == 0 ||
*threshold == 0 && *linewidth != 0))
return 0;
build_th_histo(image, histo);
if (*threshold != 0) {
min_hgrey = *threshold >> 1;
max_hgrey = *threshold >> 1;
notLessThan(0, min_hgrey);
notMoreThan<int>(MAX_HGREY, max_hgrey);
} else {
for (hgrey = 0; hgrey<256>> 1; hgrey++)
for (width = 1; width < MAX_WIDTH; width++)
if (histo[hgrey][width] >= MIN_COUNT)
goto endfor;
endfor:
if (hgrey == 256 >> 1)
return 0;
min_hgrey = hgrey;
max_hgrey = MAX_HGREY;
}
if (min_hgrey > max_hgrey)
return 0;
/* costruisci la matrice dai massimi */
for (hgrey = min_hgrey; hgrey <= max_hgrey; hgrey++) {
is_max[hgrey][0] = 0;
is_max[hgrey][MAX_WIDTH] = 0;
for (width = 1; width < MAX_WIDTH; width++) {
is_max[hgrey][width] = histo[hgrey][width] > histo[hgrey][width - 1] &&
histo[hgrey][width] > histo[hgrey][width + 1] &&
histo[hgrey][width] >= MIN_COUNT;
}
}
/* costruisci la matrice delle dorsali */
n_chains = 0;
for (width = 0; width <= MAX_WIDTH; width++) {
if (is_max[min_hgrey][width] && n_chains < MAX_N_CHAINS) {
chain_map[min_hgrey][width] = n_chains++;
chain_n[chain_map[min_hgrey][width]] = histo[min_hgrey][width];
} else {
chain_map[min_hgrey][width] = -1;
}
}
for (hgrey = min_hgrey + 1; hgrey <= max_hgrey; hgrey++) {
for (width = 0; width <= MAX_WIDTH; width++) {
if (is_max[hgrey][width]) {
if (chain_map[hgrey - 1][width] >= 0) {
chain_map[hgrey][width] = chain_map[hgrey - 1][width];
chain_n[chain_map[hgrey][width]] += histo[hgrey][width];
} else if (chain_map[hgrey - 1][width - 1] >= 0 &&
chain_map[hgrey - 1][width - 1] != chain_map[hgrey][width - 2]) {
chain_map[hgrey][width] = chain_map[hgrey - 1][width - 1];
chain_n[chain_map[hgrey][width]] += histo[hgrey][width];
} else if (chain_map[hgrey - 1][width + 1] >= 0) {
chain_map[hgrey][width] = chain_map[hgrey - 1][width + 1];
chain_n[chain_map[hgrey][width]] += histo[hgrey][width];
} else if (n_chains < MAX_N_CHAINS) {
chain_map[hgrey][width] = n_chains++;
chain_n[chain_map[hgrey][width]] = histo[hgrey][width];
} else {
chain_map[hgrey][width] = -1;
}
} else {
chain_map[hgrey][width] = -1;
}
}
}
if (!n_chains)
return 0;
/* scegli la dorsale principale */
chain = 0;
for (c = 1; c < n_chains; c++)
if (chain_n[c] > chain_n[chain])
chain = c;
/* costruisci il vettore dei massimi */
for (hgrey = min_hgrey; hgrey <= max_hgrey; hgrey++)
for (width = 1; width < MAX_WIDTH; width++)
if (chain_map[hgrey][width] == chain)
goto chain_start_found;
chain_start_found:
min_chain_hgrey = hgrey;
peak[min_chain_hgrey] = width;
for (hgrey = min_chain_hgrey + 1; hgrey <= max_hgrey; hgrey++) {
if (chain_map[hgrey][width] == chain) {
} else if (chain_map[hgrey][width + 1] == chain)
width++;
else if (chain_map[hgrey][width - 1] == chain)
width--;
else
break;
peak[hgrey] = width;
}
max_chain_hgrey = hgrey - 1;
/* costruisci il vettore delle medie */
for (hgrey = min_chain_hgrey; hgrey <= max_chain_hgrey; hgrey++) {
width = peak[hgrey];
n = histo[hgrey][width];
nx = n * width;
last = n;
for (width = peak[hgrey] - 1; width > 0; width--) {
if (histo[hgrey][width] > last)
break;
n += histo[hgrey][width];
nx += histo[hgrey][width] * width;
last = histo[hgrey][width];
}
last = histo[hgrey][peak[hgrey]];
for (width = peak[hgrey] + 1; width <= MAX_WIDTH; width++) {
if (width > peak[hgrey] * 5)
break;
if (histo[hgrey][width] > last)
break;
n += histo[hgrey][width];
nx += histo[hgrey][width] * width;
last = histo[hgrey][width];
}
mean_width[hgrey] = (float)nx / (float)n;
}
if (*threshold != 0) {
*linewidth = mean_width[*threshold >> 1];
} else {
min_delta = 123456789.0;
for (hgrey = min_chain_hgrey; hgrey <= max_chain_hgrey; hgrey++) {
delta = mean_width[hgrey] - *linewidth;
if (delta < 0)
delta = -delta;
if (delta < min_delta) {
min_delta = delta;
*threshold = hgrey << 1;
}
}
}
return 1;
}
#endif
/*---------------------------------------------------------------------------*/
#ifdef DAFARE
//capire che cosa fa !?? chi la usa ?
//sembra prendere una gr8, modificare il buffer e cambiare il tipo in BW
void thresh_image(const TRasterImageP &image, int threshold, int oversample_factor)
{
UCHAR *buffer, *cur, *xnext, *ynext, *xynext;
UCHAR *bigline, *out;
UCHAR tmp;
int lx, ly, wrap, outwrap_bytes, outwrap_pix;
int x, y, bit;
UINT thresh, thresh_2, thresh_4;
TRasterGR8P ras8(image->getRaster());
assert(ras8);
thresh = threshold;
thresh_2 = thresh * 2;
thresh_4 = thresh * 4;
buffer = ras8->getRawData();
lx = ras8->getLx();
ly = ras8->getLy();
wrap = ras8->getWrap();
outwrap_pix = lx * oversample_factor;
outwrap_bytes = (outwrap_pix + 7) / 8;
TMALLOC(bigline, outwrap_bytes * oversample_factor)
switch (oversample_factor) {
case 1:
for (y = 0; y < ly; y++)
{
cur = buffer + y * wrap;
out = y == 0 ? bigline : buffer + y * outwrap_bytes;
tmp = 0;
bit = 7;
for (x = 0; x < lx; x++, cur++) {
if (*cur <= thresh)
tmp |= 1 << bit;
bit--;
if (bit < 0) {
*out++ = tmp;
tmp = 0;
bit = 7;
}
}
if (bit != 7)
*out++ = tmp;
if (y == 0)
memcpy(buffer, bigline, outwrap_bytes);
}
break;
case 2:
for (y = 0; y < ly; y++)
{
cur = buffer + y * wrap;
xnext = cur + 1;
out = y == 0 ? bigline : buffer + y * 2 * outwrap_bytes;
tmp = 0;
bit = 7;
for (x = 0; x < lx; x++, cur++, xnext += x < lx - 1) {
if (*cur <= thresh)
tmp |= 1 << bit;
bit--;
if (*cur + *xnext <= thresh_2)
tmp |= 1 << bit;
bit--;
if (bit < 0) {
*out++ = tmp;
tmp = 0;
bit = 7;
}
}
if (bit != 7)
*out++ = tmp;
cur = buffer + y * wrap;
xnext = cur + 1;
ynext = y == ly - 1 ? cur : cur + wrap;
xynext = ynext + 1;
out = y == 0 ? bigline + outwrap_bytes : buffer + (y * 2 + 1) * outwrap_bytes;
tmp = 0;
bit = 7;
for (x = 0; x < lx; x++, cur++, xnext += x < lx - 1, ynext++, xynext += x < lx - 1) {
if (*cur + *ynext <= thresh_2)
tmp |= 1 << bit;
bit--;
if (*cur + *xnext + *ynext + *xynext <= thresh_4)
tmp |= 1 << bit;
bit--;
if (bit < 0) {
*out++ = tmp;
tmp = 0;
bit = 7;
}
}
if (bit != 7)
*out++ = tmp;
if (y == 0)
memcpy(buffer, bigline, outwrap_bytes * 2);
}
break;
default:
assert(0);
}
image->ras.type = RAS_WB;
image->ras.lx = lx * oversample_factor;
image->ras.ly = ly * oversample_factor;
image->ras.wrap = outwrap_pix;
image->x_dpi *= oversample_factor;
image->y_dpi *= oversample_factor;
image->sb_x0 *= oversample_factor;
image->sb_y0 *= oversample_factor;
image->sb_or_img_lx *= oversample_factor;
image->sb_or_img_ly *= oversample_factor;
TFREE(bigline)
}
#endif
/*===========================================================================*/
/*===========================================================================*/
void apply_lut(const TRasterImageP &image, UCHAR lut[256])
{
int x, y, lx, ly, wrap;
UCHAR *buffer, *pix;
TRasterGR8P ras8(image->getRaster());
assert(ras8);
lx = ras8->getLx();
ly = ras8->getLy();
wrap = ras8->getWrap();
ras8->lock();
buffer = (UCHAR *)ras8->getRawData();
for (y = 0; y < ly; y++) {
pix = buffer + y * wrap;
for (x = 0; x < lx; x++, pix++)
*pix = lut[*pix];
}
ras8->unlock();
}