SUBROUTINE ZHEMMF ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
$ BETA, C, LDC )
* .. Scalar Arguments ..
CHARACTER*1 SIDE, UPLO
INTEGER M, N, LDA, LDB, LDC
COMPLEX*16 ALPHA, BETA
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* ZHEMM performs one of the matrix-matrix operations
*
* C := alpha*A*B + beta*C,
*
* or
*
* C := alpha*B*A + beta*C,
*
* where alpha and beta are scalars, A is an hermitian matrix and B and
* C are m by n matrices.
*
* Parameters
* ==========
*
* SIDE - CHARACTER*1.
* On entry, SIDE specifies whether the hermitian matrix A
* appears on the left or right in the operation as follows:
*
* SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
*
* SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
*
* Unchanged on exit.
*
* UPLO - CHARACTER*1.
* On entry, UPLO specifies whether the upper or lower
* triangular part of the hermitian matrix A is to be
* referenced as follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of the
* hermitian matrix is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of the
* hermitian matrix is to be referenced.
*
* Unchanged on exit.
*
* M - INTEGER.
* On entry, M specifies the number of rows of the matrix C.
* M must be at least zero.
* Unchanged on exit.
*
* N - INTEGER.
* On entry, N specifies the number of columns of the matrix C.
* N must be at least zero.
* Unchanged on exit.
*
* ALPHA - COMPLEX*16 .
* On entry, ALPHA specifies the scalar alpha.
* Unchanged on exit.
*
* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
* m when SIDE = 'L' or 'l' and is n otherwise.
* Before entry with SIDE = 'L' or 'l', the m by m part of
* the array A must contain the hermitian matrix, such that
* when UPLO = 'U' or 'u', the leading m by m upper triangular
* part of the array A must contain the upper triangular part
* of the hermitian matrix and the strictly lower triangular
* part of A is not referenced, and when UPLO = 'L' or 'l',
* the leading m by m lower triangular part of the array A
* must contain the lower triangular part of the hermitian
* matrix and the strictly upper triangular part of A is not
* referenced.
* Before entry with SIDE = 'R' or 'r', the n by n part of
* the array A must contain the hermitian matrix, such that
* when UPLO = 'U' or 'u', the leading n by n upper triangular
* part of the array A must contain the upper triangular part
* of the hermitian matrix and the strictly lower triangular
* part of A is not referenced, and when UPLO = 'L' or 'l',
* the leading n by n lower triangular part of the array A
* must contain the lower triangular part of the hermitian
* matrix and the strictly upper triangular part of A is not
* referenced.
* Note that the imaginary parts of the diagonal elements need
* not be set, they are assumed to be zero.
* Unchanged on exit.
*
* LDA - INTEGER.
* On entry, LDA specifies the first dimension of A as declared
* in the calling (sub) program. When SIDE = 'L' or 'l' then
* LDA must be at least max( 1, m ), otherwise LDA must be at
* least max( 1, n ).
* Unchanged on exit.
*
* B - COMPLEX*16 array of DIMENSION ( LDB, n ).
* Before entry, the leading m by n part of the array B must
* contain the matrix B.
* Unchanged on exit.
*
* LDB - INTEGER.
* On entry, LDB specifies the first dimension of B as declared
* in the calling (sub) program. LDB must be at least
* max( 1, m ).
* Unchanged on exit.
*
* BETA - COMPLEX*16 .
* On entry, BETA specifies the scalar beta. When BETA is
* supplied as zero then C need not be set on input.
* Unchanged on exit.
*
* C - COMPLEX*16 array of DIMENSION ( LDC, n ).
* Before entry, the leading m by n part of the array C must
* contain the matrix C, except when beta is zero, in which
* case C need not be set on entry.
* On exit, the array C is overwritten by the m by n updated
* matrix.
*
* LDC - INTEGER.
* On entry, LDC specifies the first dimension of C as declared
* in the calling (sub) program. LDC must be at least
* max( 1, m ).
* Unchanged on exit.
*
*
* Level 3 Blas routine.
*
* -- Written on 8-February-1989.
* Jack Dongarra, Argonne National Laboratory.
* Iain Duff, AERE Harwell.
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
* Sven Hammarling, Numerical Algorithms Group Ltd.
*
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL XERBLA
* .. Intrinsic Functions ..
INTRINSIC DCONJG, MAX, DBLE
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, INFO, J, K, NROWA
COMPLEX*16 TEMP1, TEMP2
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
COMPLEX*16 ZERO
PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Executable Statements ..
*
* Set NROWA as the number of rows of A.
*
IF( LSAME( SIDE, 'L' ) )THEN
NROWA = M
ELSE
NROWA = N
END IF
UPPER = LSAME( UPLO, 'U' )
*
* Test the input parameters.
*
INFO = 0
IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
$ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
INFO = 1
ELSE IF( ( .NOT.UPPER ).AND.
$ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
INFO = 2
ELSE IF( M .LT.0 )THEN
INFO = 3
ELSE IF( N .LT.0 )THEN
INFO = 4
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
INFO = 7
ELSE IF( LDB.LT.MAX( 1, M ) )THEN
INFO = 9
ELSE IF( LDC.LT.MAX( 1, M ) )THEN
INFO = 12
END IF
IF( INFO.NE.0 )THEN
CALL XERBLA( 'ZHEMM3M', INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
$ RETURN
*
* And when alpha.eq.zero.
*
IF( ALPHA.EQ.ZERO )THEN
IF( BETA.EQ.ZERO )THEN
DO 20, J = 1, N
DO 10, I = 1, M
C( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40, J = 1, N
DO 30, I = 1, M
C( I, J ) = BETA*C( I, J )
30 CONTINUE
40 CONTINUE
END IF
RETURN
END IF
*
* Start the operations.
*
IF( LSAME( SIDE, 'L' ) )THEN
*
* Form C := alpha*A*B + beta*C.
*
IF( UPPER )THEN
DO 70, J = 1, N
DO 60, I = 1, M
TEMP1 = ALPHA*B( I, J )
TEMP2 = ZERO
DO 50, K = 1, I - 1
C( K, J ) = C( K, J ) + TEMP1*A( K, I )
TEMP2 = TEMP2 +
$ B( K, J )*DCONJG( A( K, I ) )
50 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = TEMP1*DBLE( A( I, I ) ) +
$ ALPHA*TEMP2
ELSE
C( I, J ) = BETA *C( I, J ) +
$ TEMP1*DBLE( A( I, I ) ) +
$ ALPHA*TEMP2
END IF
60 CONTINUE
70 CONTINUE
ELSE
DO 100, J = 1, N
DO 90, I = M, 1, -1
TEMP1 = ALPHA*B( I, J )
TEMP2 = ZERO
DO 80, K = I + 1, M
C( K, J ) = C( K, J ) + TEMP1*A( K, I )
TEMP2 = TEMP2 +
$ B( K, J )*DCONJG( A( K, I ) )
80 CONTINUE
IF( BETA.EQ.ZERO )THEN
C( I, J ) = TEMP1*DBLE( A( I, I ) ) +
$ ALPHA*TEMP2
ELSE
C( I, J ) = BETA *C( I, J ) +
$ TEMP1*DBLE( A( I, I ) ) +
$ ALPHA*TEMP2
END IF
90 CONTINUE
100 CONTINUE
END IF
ELSE
*
* Form C := alpha*B*A + beta*C.
*
DO 170, J = 1, N
TEMP1 = ALPHA*DBLE( A( J, J ) )
IF( BETA.EQ.ZERO )THEN
DO 110, I = 1, M
C( I, J ) = TEMP1*B( I, J )
110 CONTINUE
ELSE
DO 120, I = 1, M
C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
120 CONTINUE
END IF
DO 140, K = 1, J - 1
IF( UPPER )THEN
TEMP1 = ALPHA*A( K, J )
ELSE
TEMP1 = ALPHA*DCONJG( A( J, K ) )
END IF
DO 130, I = 1, M
C( I, J ) = C( I, J ) + TEMP1*B( I, K )
130 CONTINUE
140 CONTINUE
DO 160, K = J + 1, N
IF( UPPER )THEN
TEMP1 = ALPHA*DCONJG( A( J, K ) )
ELSE
TEMP1 = ALPHA*A( K, J )
END IF
DO 150, I = 1, M
C( I, J ) = C( I, J ) + TEMP1*B( I, K )
150 CONTINUE
160 CONTINUE
170 CONTINUE
END IF
*
RETURN
*
* End of ZHEMM .
*
END