| SUBROUTINE DSPR2F( UPLO, N, ALPHA, X, INCX, Y, INCY, AP ) |
| * .. Scalar Arguments .. |
| DOUBLE PRECISION ALPHA |
| INTEGER INCX, INCY, N |
| CHARACTER*1 UPLO |
| * .. Array Arguments .. |
| DOUBLE PRECISION AP( * ), X( * ), Y( * ) |
| * .. |
| * |
| * Purpose |
| * ======= |
| * |
| * DSPR2 performs the symmetric rank 2 operation |
| * |
| * A := alpha*x*y' + alpha*y*x' + A, |
| * |
| * where alpha is a scalar, x and y are n element vectors and A is an |
| * n by n symmetric matrix, supplied in packed form. |
| * |
| * Parameters |
| * ========== |
| * |
| * UPLO - CHARACTER*1. |
| * On entry, UPLO specifies whether the upper or lower |
| * triangular part of the matrix A is supplied in the packed |
| * array AP as follows: |
| * |
| * UPLO = 'U' or 'u' The upper triangular part of A is |
| * supplied in AP. |
| * |
| * UPLO = 'L' or 'l' The lower triangular part of A is |
| * supplied in AP. |
| * |
| * Unchanged on exit. |
| * |
| * N - INTEGER. |
| * On entry, N specifies the order of the matrix A. |
| * N must be at least zero. |
| * Unchanged on exit. |
| * |
| * ALPHA - DOUBLE PRECISION. |
| * On entry, ALPHA specifies the scalar alpha. |
| * Unchanged on exit. |
| * |
| * X - DOUBLE PRECISION array of dimension at least |
| * ( 1 + ( n - 1 )*abs( INCX ) ). |
| * Before entry, the incremented array X must contain the n |
| * element vector x. |
| * Unchanged on exit. |
| * |
| * INCX - INTEGER. |
| * On entry, INCX specifies the increment for the elements of |
| * X. INCX must not be zero. |
| * Unchanged on exit. |
| * |
| * Y - DOUBLE PRECISION array of dimension at least |
| * ( 1 + ( n - 1 )*abs( INCY ) ). |
| * Before entry, the incremented array Y must contain the n |
| * element vector y. |
| * Unchanged on exit. |
| * |
| * INCY - INTEGER. |
| * On entry, INCY specifies the increment for the elements of |
| * Y. INCY must not be zero. |
| * Unchanged on exit. |
| * |
| * AP - DOUBLE PRECISION array of DIMENSION at least |
| * ( ( n*( n + 1 ) )/2 ). |
| * Before entry with UPLO = 'U' or 'u', the array AP must |
| * contain the upper triangular part of the symmetric matrix |
| * packed sequentially, column by column, so that AP( 1 ) |
| * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) |
| * and a( 2, 2 ) respectively, and so on. On exit, the array |
| * AP is overwritten by the upper triangular part of the |
| * updated matrix. |
| * Before entry with UPLO = 'L' or 'l', the array AP must |
| * contain the lower triangular part of the symmetric matrix |
| * packed sequentially, column by column, so that AP( 1 ) |
| * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) |
| * and a( 3, 1 ) respectively, and so on. On exit, the array |
| * AP is overwritten by the lower triangular part of the |
| * updated matrix. |
| * |
| * |
| * Level 2 Blas routine. |
| * |
| * -- Written on 22-October-1986. |
| * Jack Dongarra, Argonne National Lab. |
| * Jeremy Du Croz, Nag Central Office. |
| * Sven Hammarling, Nag Central Office. |
| * Richard Hanson, Sandia National Labs. |
| * |
| * |
| * .. Parameters .. |
| DOUBLE PRECISION ZERO |
| PARAMETER ( ZERO = 0.0D+0 ) |
| * .. Local Scalars .. |
| DOUBLE PRECISION TEMP1, TEMP2 |
| INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY |
| * .. External Functions .. |
| LOGICAL LSAME |
| EXTERNAL LSAME |
| * .. External Subroutines .. |
| EXTERNAL XERBLA |
| * .. |
| * .. Executable Statements .. |
| * |
| * Test the input parameters. |
| * |
| INFO = 0 |
| IF ( .NOT.LSAME( UPLO, 'U' ).AND. |
| $ .NOT.LSAME( UPLO, 'L' ) )THEN |
| INFO = 1 |
| ELSE IF( N.LT.0 )THEN |
| INFO = 2 |
| ELSE IF( INCX.EQ.0 )THEN |
| INFO = 5 |
| ELSE IF( INCY.EQ.0 )THEN |
| INFO = 7 |
| END IF |
| IF( INFO.NE.0 )THEN |
| CALL XERBLA( 'DSPR2 ', INFO ) |
| RETURN |
| END IF |
| * |
| * Quick return if possible. |
| * |
| IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) ) |
| $ RETURN |
| * |
| * Set up the start points in X and Y if the increments are not both |
| * unity. |
| * |
| IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN |
| IF( INCX.GT.0 )THEN |
| KX = 1 |
| ELSE |
| KX = 1 - ( N - 1 )*INCX |
| END IF |
| IF( INCY.GT.0 )THEN |
| KY = 1 |
| ELSE |
| KY = 1 - ( N - 1 )*INCY |
| END IF |
| JX = KX |
| JY = KY |
| END IF |
| * |
| * Start the operations. In this version the elements of the array AP |
| * are accessed sequentially with one pass through AP. |
| * |
| KK = 1 |
| IF( LSAME( UPLO, 'U' ) )THEN |
| * |
| * Form A when upper triangle is stored in AP. |
| * |
| IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN |
| DO 20, J = 1, N |
| IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN |
| TEMP1 = ALPHA*Y( J ) |
| TEMP2 = ALPHA*X( J ) |
| K = KK |
| DO 10, I = 1, J |
| AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2 |
| K = K + 1 |
| 10 CONTINUE |
| END IF |
| KK = KK + J |
| 20 CONTINUE |
| ELSE |
| DO 40, J = 1, N |
| IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN |
| TEMP1 = ALPHA*Y( JY ) |
| TEMP2 = ALPHA*X( JX ) |
| IX = KX |
| IY = KY |
| DO 30, K = KK, KK + J - 1 |
| AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2 |
| IX = IX + INCX |
| IY = IY + INCY |
| 30 CONTINUE |
| END IF |
| JX = JX + INCX |
| JY = JY + INCY |
| KK = KK + J |
| 40 CONTINUE |
| END IF |
| ELSE |
| * |
| * Form A when lower triangle is stored in AP. |
| * |
| IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN |
| DO 60, J = 1, N |
| IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN |
| TEMP1 = ALPHA*Y( J ) |
| TEMP2 = ALPHA*X( J ) |
| K = KK |
| DO 50, I = J, N |
| AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2 |
| K = K + 1 |
| 50 CONTINUE |
| END IF |
| KK = KK + N - J + 1 |
| 60 CONTINUE |
| ELSE |
| DO 80, J = 1, N |
| IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN |
| TEMP1 = ALPHA*Y( JY ) |
| TEMP2 = ALPHA*X( JX ) |
| IX = JX |
| IY = JY |
| DO 70, K = KK, KK + N - J |
| AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2 |
| IX = IX + INCX |
| IY = IY + INCY |
| 70 CONTINUE |
| END IF |
| JX = JX + INCX |
| JY = JY + INCY |
| KK = KK + N - J + 1 |
| 80 CONTINUE |
| END IF |
| END IF |
| * |
| RETURN |
| * |
| * End of DSPR2 . |
| * |
| END |