Blob Blame Raw


#include "trop.h"
#include "tfxparam.h"
#include "tofflinegl.h"
//#include "tstroke.h"
//#include "drawutil.h"
#include "tstopwatch.h"
//#include "tpalette.h"
//#include "tvectorrenderdata.h"
#include "tsystem.h"
#include "timagecache.h"
#include "tconvert.h"

#include "trasterimage.h"

#include "timage_io.h"

#include "tcolorfunctions.h"
#include "toonz/tcolumnfx.h"

#include "particlesmanager.h"

#include "particlesengine.h"

#include "trenderer.h"

#include <sstream>

#include <QPointF>
#include <QMatrix4x4>

/*-----------------------------------------------------------------*/

Particles_Engine::Particles_Engine(ParticlesFx *parent, double frame)
    : m_parent(parent), m_frame(frame) {}

static void printTime(TStopWatch &sw, std::string name) {
  std::stringstream ss;
  ss << name << " : ";
  sw.print(ss);
  ss << '\n' << '\0';
  TSystem::outputDebug(ss.str());
}
/*-----------------------------------------------------------------*/
/*
void Particles_Engine::scramble_particles(std::list <Particle*> &myParticles)
{
double size=myParticles.size()
for(i=0; i<myParticles.size();i++)
 {
  j=(int)((size)*tnz_random_float());
  k=(int)((size)*tnz_random_float());

 }
}
*/
/*-----------------------------------------------------------------*/

void Particles_Engine::fill_value_struct(struct particles_values &myvalues,
                                         double frame) {
  myvalues.source_ctrl_val  = m_parent->source_ctrl_val->getValue();
  myvalues.bright_thres_val = m_parent->bright_thres_val->getValue();
  myvalues.multi_source_val = m_parent->multi_source_val->getValue();
  myvalues.x_pos_val        = m_parent->center_val->getValue(frame).x;
  myvalues.y_pos_val        = m_parent->center_val->getValue(frame).y;
  //  myvalues.unit_val=m_parent->unit_val->getValue(frame);
  myvalues.length_val          = m_parent->length_val->getValue(frame);
  myvalues.height_val          = m_parent->height_val->getValue(frame);
  myvalues.maxnum_val          = m_parent->maxnum_val->getValue(frame);
  myvalues.lifetime_val        = m_parent->lifetime_val->getValue(frame);
  myvalues.lifetime_ctrl_val   = m_parent->lifetime_ctrl_val->getValue();
  myvalues.column_lifetime_val = m_parent->column_lifetime_val->getValue();
  myvalues.startpos_val        = m_parent->startpos_val->getValue();
  myvalues.randseed_val        = m_parent->randseed_val->getValue();
  myvalues.gravity_val         = m_parent->gravity_val->getValue(frame);
  myvalues.g_angle_val         = m_parent->g_angle_val->getValue(frame);
  myvalues.gravity_ctrl_val    = m_parent->gravity_ctrl_val->getValue();
  myvalues.friction_val        = m_parent->friction_val->getValue(frame);
  myvalues.friction_ctrl_val   = m_parent->friction_ctrl_val->getValue();
  myvalues.windint_val         = m_parent->windint_val->getValue(frame);
  myvalues.windangle_val       = m_parent->windangle_val->getValue(frame);
  myvalues.swingmode_val       = m_parent->swingmode_val->getValue();
  myvalues.randomx_val         = m_parent->randomx_val->getValue(frame);
  myvalues.randomy_val         = m_parent->randomy_val->getValue(frame);
  myvalues.randomx_ctrl_val    = m_parent->randomx_ctrl_val->getValue();
  myvalues.randomy_ctrl_val    = m_parent->randomy_ctrl_val->getValue();
  myvalues.swing_val           = m_parent->swing_val->getValue(frame);
  myvalues.speed_val           = m_parent->speed_val->getValue(frame);
  myvalues.speed_ctrl_val      = m_parent->speed_ctrl_val->getValue();
  myvalues.speeda_val          = m_parent->speeda_val->getValue(frame);
  myvalues.speeda_ctrl_val     = m_parent->speeda_ctrl_val->getValue();
  myvalues.speeda_use_gradient_val =
      m_parent->speeda_use_gradient_val->getValue();
  myvalues.speedscale_val     = m_parent->speedscale_val->getValue();
  myvalues.toplayer_val       = m_parent->toplayer_val->getValue();
  myvalues.mass_val           = m_parent->mass_val->getValue(frame);
  myvalues.scale_val          = m_parent->scale_val->getValue(frame);
  myvalues.scale_ctrl_val     = m_parent->scale_ctrl_val->getValue();
  myvalues.scale_ctrl_all_val = m_parent->scale_ctrl_all_val->getValue();
  myvalues.rot_val            = m_parent->rot_val->getValue(frame);
  myvalues.rot_ctrl_val       = m_parent->rot_ctrl_val->getValue();
  myvalues.trail_val          = m_parent->trail_val->getValue(frame);
  myvalues.trailstep_val      = m_parent->trailstep_val->getValue(frame);
  myvalues.rotswingmode_val   = m_parent->rotswingmode_val->getValue();
  myvalues.rotspeed_val       = m_parent->rotspeed_val->getValue(frame);
  myvalues.rotsca_val         = m_parent->rotsca_val->getValue(frame);
  myvalues.rotswing_val       = m_parent->rotswing_val->getValue(frame);
  myvalues.pathaim_val        = m_parent->pathaim_val->getValue();
  myvalues.opacity_val        = m_parent->opacity_val->getValue(frame);
  myvalues.opacity_ctrl_val   = m_parent->opacity_ctrl_val->getValue();
  myvalues.trailopacity_val   = m_parent->trailopacity_val->getValue(frame);
  //  myvalues.mblur_val=m_parent->mblur_val->getValue(frame);
  myvalues.scalestep_val      = m_parent->scalestep_val->getValue(frame);
  myvalues.scalestep_ctrl_val = m_parent->scalestep_ctrl_val->getValue();
  myvalues.fadein_val         = m_parent->fadein_val->getValue(frame);
  myvalues.fadeout_val        = m_parent->fadeout_val->getValue(frame);
  myvalues.animation_val      = m_parent->animation_val->getValue();
  myvalues.step_val           = m_parent->step_val->getValue();

  myvalues.gencol_val         = m_parent->gencol_val->getValue(frame);
  myvalues.gencol_ctrl_val    = m_parent->gencol_ctrl_val->getValue();
  myvalues.gencol_spread_val  = m_parent->gencol_spread_val->getValue(frame);
  myvalues.genfadecol_val     = m_parent->genfadecol_val->getValue(frame);
  myvalues.fincol_val         = m_parent->fincol_val->getValue(frame);
  myvalues.fincol_ctrl_val    = m_parent->fincol_ctrl_val->getValue();
  myvalues.fincol_spread_val  = m_parent->fincol_spread_val->getValue(frame);
  myvalues.finrangecol_val    = m_parent->finrangecol_val->getValue(frame);
  myvalues.finfadecol_val     = m_parent->finfadecol_val->getValue(frame);
  myvalues.foutcol_val        = m_parent->foutcol_val->getValue(frame);
  myvalues.foutcol_ctrl_val   = m_parent->foutcol_ctrl_val->getValue();
  myvalues.foutcol_spread_val = m_parent->foutcol_spread_val->getValue(frame);
  myvalues.foutrangecol_val   = m_parent->foutrangecol_val->getValue(frame);
  myvalues.foutfadecol_val    = m_parent->foutfadecol_val->getValue(frame);

  myvalues.source_gradation_val = m_parent->source_gradation_val->getValue();
  myvalues.pick_color_for_every_frame_val =
      m_parent->pick_color_for_every_frame_val->getValue();
  myvalues.perspective_distribution_val =
      m_parent->perspective_distribution_val->getValue();
  myvalues.motion_blur_val = m_parent->motion_blur_val->getValue();
  myvalues.motion_blur_gamma_val =
      m_parent->motion_blur_gamma_val->getValue(frame);
}

/*-----------------------------------------------------------------*/

void Particles_Engine::fill_range_struct(struct particles_values &values,
                                         struct particles_ranges &ranges) {
  ranges.swing_range = values.swing_val.second - values.swing_val.first;
  ranges.rotswing_range =
      values.rotswing_val.second - values.rotswing_val.first;
  ranges.randomx_range = values.randomx_val.second - values.randomx_val.first;
  ranges.randomy_range = values.randomy_val.second - values.randomy_val.first;
  ranges.rotsca_range  = values.rotsca_val.second - values.rotsca_val.first;
  ranges.rot_range     = values.rot_val.second - values.rot_val.first;
  ranges.speed_range   = values.speed_val.second - values.speed_val.first;
  ranges.speeda_range  = values.speeda_val.second - values.speeda_val.first;
  ranges.mass_range    = values.mass_val.second - values.mass_val.first;
  ranges.scale_range   = values.scale_val.second - values.scale_val.first;
  ranges.lifetime_range =
      values.lifetime_val.second - values.lifetime_val.first;
  ranges.scalestep_range =
      values.scalestep_val.second - values.scalestep_val.first;
  ranges.trail_range = (int)(values.trail_val.second - values.trail_val.first);
}

bool Particles_Engine::port_is_used(int i, struct particles_values &values) {
  return port_is_used_for_value(i, values) ||
         port_is_used_for_gradient(i, values);
}

// Returns true if the pixel value of control image is used.
// Such image will be computed in 8bpc.
bool Particles_Engine::port_is_used_for_value(int i,
                                              struct particles_values &values) {
  return values.fincol_ctrl_val == i || values.foutcol_ctrl_val == i ||
         values.friction_ctrl_val == i || values.gencol_ctrl_val == i ||
         values.opacity_ctrl_val == i || values.rot_ctrl_val == i ||
         values.scale_ctrl_val == i || values.scalestep_ctrl_val == i ||
         values.source_ctrl_val == i || values.speed_ctrl_val == i ||
         (values.speeda_ctrl_val == i && !values.speeda_use_gradient_val) ||
         values.lifetime_ctrl_val == i || values.randomx_ctrl_val == i ||
         values.randomy_ctrl_val == i;
}

// Returns true if the gradient of control image is used.
// Such image will be computed in 16bpc to get smooth result.
bool Particles_Engine::port_is_used_for_gradient(
    int i, struct particles_values &values) {
  return values.gravity_ctrl_val == i ||
         (values.speeda_ctrl_val == i && values.speeda_use_gradient_val);
}
/*-----------------------------------------------------------------*/
/*-- Startフレームからカレントフレームまで順番に回す関数 --*/
void Particles_Engine::roll_particles(
    TTile *tile, std::map<int, TTile *> porttiles, const TRenderSettings &ri,
    std::list<Particle> &myParticles, struct particles_values &values, float cx,
    float cy, int frame, int curr_frame, int level_n, bool *random_level,
    float dpi, std::vector<int> lastframe, int &totalparticles) {
  particles_ranges ranges;
  int i, newparticles;
  float xgravity, ygravity, windx, windy;
  /*-- 風の強さ/重力の強さをX,Y成分に分ける --*/
  windx    = values.windint_val * sin(values.windangle_val);
  windy    = values.windint_val * cos(values.windangle_val);
  xgravity = values.gravity_val * sin(values.g_angle_val);
  ygravity = values.gravity_val * cos(values.g_angle_val);

  fill_range_struct(values, ranges);

  std::vector<std::vector<TPointD>> myregions;

  /*-- [1〜255]
   * そのIndexに対応するアルファ値を持つピクセルのインデックス値を保存。 [0]
   * 使用せず --*/
  std::vector<std::vector<int>> myHistogram;
  /*--
   * アルファ値255から下がっていき、ピクセル数×重み又はアルファ値を次々足した値を格納
   * --*/
  std::vector<float> myWeight;

  std::map<int, TTile *>::iterator it = porttiles.find(values.source_ctrl_val);
  /*-- Perspective
   * DistributionがONのとき、Sizeに刺さったControlImageが粒子の発生分布を決める
   * --*/
  std::map<int, TTile *>::iterator sizeIt =
      porttiles.find(values.scale_ctrl_val);
  if (values.perspective_distribution_val && (sizeIt != porttiles.end())) {
    /*-- ソース画像にコントロールが付いていた場合、そのアルファ値をマスクに使う
     * --*/
    if (values.source_ctrl_val && (it != porttiles.end()))
      fill_regions_with_size_map(myregions, myHistogram, sizeIt->second,
                                 it->second, values.bright_thres_val);
    else
      fill_regions_with_size_map(myregions, myHistogram, sizeIt->second, 0,
                                 values.bright_thres_val);
    /*- パーティクルを作る前に myregion内の候補数を合計する--*/
    if ((int)myHistogram.size() == 256) {
      for (int m = 255; m >= 0; m--) {
        /*-- 明度からサイズ サイズから重みを出す --*/
        float scale =
            values.scale_val.first + ranges.scale_range * (float)m / 255.0f;
        float weight = 1.0f / (scale * scale);

        float tmpSum = weight * (float)myHistogram[m].size();
        int index    = 255 - m;
        if (index > 0) /*-- これまでの合計に追加する --*/
          tmpSum += myWeight[index - 1];
        myWeight.push_back(tmpSum);
      }
    }
  } else {
    /*- ソース画像にコントロールが付いていた場合 -*/
    if (values.source_ctrl_val && (it != porttiles.end()))
      /*-- 入力画像のアルファ値に比例して発生濃度を変える --*/
      fill_regions(1, myregions, it->second, values.multi_source_val,
                   values.bright_thres_val, values.source_gradation_val,
                   myHistogram);

    /*- パーティクルを作る前に myregion内の候補数を合計する--*/
    /*-- myWeight
     * の中には、アルファ255から0まで、各アルファ値×ポイント数を足しこんでいったものが格納される。--*/
    if ((int)myHistogram.size() == 256) {
      for (int m = 255; m > 0; m--) {
        float tmpSum = (float)(m * (int)myHistogram[m].size());
        int index    = 255 - m;
        if (index > 0) tmpSum += myWeight[index - 1];
        myWeight.push_back(tmpSum);
      }
    }
  }

  /*- birth rate を格納 -*/
  newparticles = (int)values.maxnum_val;
  if (myParticles.empty() && newparticles)  // Initial creation
  {
    /*- 新たに作るパーティクルの数だけ繰り返す -*/
    for (i = 0; i < newparticles; i++) {
      int seed  = (int)((std::numeric_limits<int>::max)() *
                       values.random_val->getFloat());
      int level = (int)(values.random_val->getFloat() * level_n);

      int lifetime = 0;
      if (values.column_lifetime_val)
        lifetime = lastframe[level];
      else
        lifetime = (int)(values.lifetime_val.first +
                         ranges.lifetime_range * values.random_val->getFloat());
      if (lifetime > curr_frame - frame)
        myParticles.push_back(Particle(
            lifetime, seed, porttiles, values, ranges, myregions,
            totalparticles, 0, level, lastframe[level], myHistogram, myWeight));

      totalparticles++;
    }
  } else {
    std::list<Particle>::iterator it;
    for (it = myParticles.begin(); it != myParticles.end();) {
      std::list<Particle>::iterator current = it;
      ++it;

      Particle &part = (*current);
      if (part.lifetime <= 0)        // Note: This is in line with the above
                                     // "lifetime>curr_frame-frame"
        myParticles.erase(current);  // insertion counterpart
      else
        part.move(porttiles, values, ranges, windx, windy, xgravity, ygravity,
                  dpi, lastframe[part.level]);
    }

    int oldparticles = myParticles.size();
    switch (values.toplayer_val) {
    case ParticlesFx::TOP_YOUNGER:
      for (i = 0; i < newparticles; i++) {
        int seed  = (int)((std::numeric_limits<int>::max)() *
                         values.random_val->getFloat());
        int level = (int)(values.random_val->getFloat() * level_n);

        int lifetime = 0;
        if (values.column_lifetime_val)
          lifetime = lastframe[level];
        else
          lifetime =
              (int)(values.lifetime_val.first +
                    ranges.lifetime_range * values.random_val->getFloat());

        if (lifetime > curr_frame - frame)
          myParticles.push_front(Particle(lifetime, seed, porttiles, values,
                                          ranges, myregions, totalparticles, 0,
                                          level, lastframe[level], myHistogram,
                                          myWeight));

        totalparticles++;
      }
      break;

    case ParticlesFx::TOP_RANDOM:
      for (i = 0; i < newparticles; i++) {
        double tmp = values.random_val->getFloat() * myParticles.size();
        std::list<Particle>::iterator it = myParticles.begin();
        for (int j = 0; j < tmp; j++, it++)
          ;
        {
          int seed     = (int)((std::numeric_limits<int>::max)() *
                           values.random_val->getFloat());
          int level    = (int)(values.random_val->getFloat() * level_n);
          int lifetime = 0;

          if (values.column_lifetime_val)
            lifetime = lastframe[level];
          else
            lifetime =
                (int)(values.lifetime_val.first +
                      ranges.lifetime_range * values.random_val->getFloat());
          if (lifetime > curr_frame - frame)
            myParticles.insert(
                it, Particle(lifetime, seed, porttiles, values, ranges,
                             myregions, totalparticles, 0, level,
                             lastframe[level], myHistogram, myWeight));

          totalparticles++;
        }
      }
      break;

    default:
      for (i = 0; i < newparticles; i++) {
        int seed     = (int)((std::numeric_limits<int>::max)() *
                         values.random_val->getFloat());
        int level    = (int)(values.random_val->getFloat() * level_n);
        int lifetime = 0;

        if (values.column_lifetime_val)
          lifetime = lastframe[level];
        else
          lifetime =
              (int)(values.lifetime_val.first +
                    ranges.lifetime_range * values.random_val->getFloat());
        if (lifetime > curr_frame - frame)
          myParticles.push_back(Particle(lifetime, seed, porttiles, values,
                                         ranges, myregions, totalparticles, 0,
                                         level, lastframe[level], myHistogram,
                                         myWeight));

        totalparticles++;
      }
      break;
    }
  }
}

/*-----------------------------------------------------------------*/

void Particles_Engine::normalize_values(struct particles_values &values,
                                        const TRenderSettings &ri) {
  double dpicorr = 1;
  TPointD pos(values.x_pos_val, values.y_pos_val);

  (values.x_pos_val)               = pos.x;
  (values.y_pos_val)               = pos.y;
  (values.length_val)              = (values.length_val) * dpicorr;
  (values.height_val)              = (values.height_val) * dpicorr;
  (values.gravity_val)             = (values.gravity_val) * dpicorr * 0.1;
  (values.windint_val)             = (values.windint_val) * dpicorr;
  (values.speed_val.first)         = (values.speed_val.first) * dpicorr;
  (values.speed_val.second)        = (values.speed_val.second) * dpicorr;
  (values.randomx_val.first)       = (values.randomx_val.first) * dpicorr;
  (values.randomx_val.second)      = (values.randomx_val.second) * dpicorr;
  (values.randomy_val.first)       = (values.randomy_val.first) * dpicorr;
  (values.randomy_val.second)      = (values.randomy_val.second) * dpicorr;
  (values.scale_val.first)         = (values.scale_val.first) * 0.01;
  (values.scale_val.second)        = (values.scale_val.second) * 0.01;
  (values.scalestep_val.first)     = (values.scalestep_val.first) * 0.01;
  (values.scalestep_val.second)    = (values.scalestep_val.second) * 0.01;
  (values.opacity_val.first)       = (values.opacity_val.first) * 0.01;
  (values.opacity_val.second)      = (values.opacity_val.second) * 0.01;
  (values.trailopacity_val.first)  = (values.trailopacity_val.first) * 0.01;
  (values.trailopacity_val.second) = (values.trailopacity_val.second) * 0.01;
  (values.friction_val)            = -(values.friction_val) * 0.01;
  (values.windangle_val)           = (values.windangle_val) * M_PI_180;
  (values.g_angle_val)             = (values.g_angle_val + 180) * M_PI_180;
  (values.speeda_val.first)        = (values.speeda_val.first) * M_PI_180;
  (values.speeda_val.second)       = (values.speeda_val.second) * M_PI_180;
  if (values.step_val < 1) values.step_val = 1;
  values.genfadecol_val  = (values.genfadecol_val) * 0.01;
  values.finfadecol_val  = (values.finfadecol_val) * 0.01;
  values.foutfadecol_val = (values.foutfadecol_val) * 0.01;
}

/*-----------------------------------------------------------------*/

void Particles_Engine::render_particles(
    TTile *tile, std::vector<TRasterFxPort *> part_ports,
    const TRenderSettings &ri, TDimension &p_size, TPointD &p_offset,
    std::map<int, TRasterFxPort *> ctrl_ports, std::vector<TLevelP> partLevel,
    float dpi, int curr_frame, int shrink, double startx, double starty,
    double endx, double endy, std::vector<int> last_frame, unsigned long fxId) {
  int frame, startframe, intpart = 0, level_n = 0;
  struct particles_values values;
  double dpicorr = dpi * 0.01, fractpart = 0, dpicorr_shrinked = 0,
         opacity_range = 0;
  bool random_level    = false;
  level_n              = part_ports.size();

  bool isPrecomputingEnabled = false;
  {
    TRenderer renderer(TRenderer::instance());
    isPrecomputingEnabled =
        (renderer && renderer.isPrecomputingEnabled()) ? true : false;
  }

  memset(&values, 0, sizeof(values));
  /*- 現在のフレームでの各種パラメータを得る -*/
  fill_value_struct(values, m_frame);
  /*- 不透明度の範囲(透明〜不透明を 0〜1 に正規化)-*/
  opacity_range = (values.opacity_val.second - values.opacity_val.first) * 0.01;
  /*- 開始フレーム -*/
  startframe = (int)values.startpos_val;
  if (values.unit_val == ParticlesFx::UNIT_SMALL_INCH)
    dpicorr_shrinked = dpicorr / shrink;
  else
    dpicorr_shrinked = dpi / shrink;

  std::map<std::pair<int, int>, double> partScales;
  curr_frame = curr_frame / values.step_val;

  ParticlesManager *pc = ParticlesManager::instance();

  // Retrieve the last rolled frame
  ParticlesManager::FrameData *particlesData = pc->data(fxId);

  std::list<Particle> myParticles;
  TRandom myRandom;
  values.random_val  = &myRandom;
  myRandom           = m_parent->randseed_val->getValue();
  int totalparticles = 0;

  int pcFrame = particlesData->m_frame;
  if (pcFrame > curr_frame) {
    // Clear stored particlesData
    particlesData->clear();
    pcFrame = particlesData->m_frame;
  } else if (pcFrame >= startframe - 1) {
    myParticles    = particlesData->m_particles;
    myRandom       = particlesData->m_random;
    totalparticles = particlesData->m_totalParticles;
  }
  /*- スタートからカレントフレームまでループ -*/
  for (frame = startframe - 1; frame <= curr_frame; ++frame) {
    int dist_frame = curr_frame - frame;
    /*-
     * ループ内の現在のフレームでのパラメータを取得。スタートが負ならフレーム=0のときの値を格納
     * -*/
    fill_value_struct(values, frame < 0 ? 0 : frame * values.step_val);
    /*- パラメータの正規化 -*/
    normalize_values(values, ri);
    /*- maxnum_valは"birth_rate"のパラメータ -*/
    intpart = (int)values.maxnum_val;
    /*-
     * /birth_rateが小数だったとき、各フレームの小数部分を足しこんだ結果の整数部分をintpartに渡す。
     * -*/
    fractpart = fractpart + values.maxnum_val - intpart;
    if ((int)fractpart) {
      values.maxnum_val += (int)fractpart;
      fractpart = fractpart - (int)fractpart;
    }

    std::map<int, TTile *> porttiles;

    // Perform the roll
    /*- RenderSettingsを複製して現在のフレームの計算用にする -*/
    TRenderSettings riAux(ri);
    riAux.m_affine = TAffine();
    riAux.m_bpp    = 32;
    // control image using its gradient is computed in 64bpp
    TRenderSettings riAux64(riAux);
    riAux64.m_bpp = 64;

    int r_frame;  // Useful in case of negative roll frames
    if (frame < 0)
      r_frame = 0;
    else
      r_frame = frame;
    /*- 出力画像のバウンディングボックス -*/
    TRectD outTileBBox(tile->m_pos, TDimensionD(tile->getRaster()->getLx(),
                                                tile->getRaster()->getLy()));

    // enlarge bounding box for control images with infinite bbox in case the
    // source region is larger than output tile
    TRectD bboxForInifiniteSource = ri.m_affine.inv() * outTileBBox;
    TRectD sourceBbox;
    if (values.source_ctrl_val &&
        ctrl_ports.at(values.source_ctrl_val)->isConnected()) {
      (*(ctrl_ports.at(values.source_ctrl_val)))
          ->getBBox(r_frame, sourceBbox, riAux);
    }
    if (sourceBbox.isEmpty() || sourceBbox == TConsts::infiniteRectD) {
      sourceBbox = TRectD(values.x_pos_val - values.length_val * 0.5,
                          values.y_pos_val - values.height_val * 0.5,
                          values.x_pos_val + values.length_val * 0.5,
                          values.y_pos_val + values.height_val * 0.5);
    }
    bboxForInifiniteSource += sourceBbox;

    /*- Controlに刺さっている各ポートについて -*/
    for (std::map<int, TRasterFxPort *>::iterator it = ctrl_ports.begin();
         it != ctrl_ports.end(); ++it) {
      TTile *tmp;
      /*- ポートが接続されていて、Fx内で実際に使用されていたら -*/
      if ((it->second)->isConnected() && port_is_used(it->first, values)) {
        TRectD bbox;
        (*(it->second))->getBBox(r_frame, bbox, riAux);
        /*- 素材が存在する場合、portTilesにコントロール画像タイルを格納 -*/
        if (!bbox.isEmpty()) {
          if (bbox == TConsts::infiniteRectD)  // There could be an infinite
                                               // bbox - deal with it
            bbox = bboxForInifiniteSource;

          if (frame <= pcFrame) {
            // This frame will not actually be rolled. However, it was
            // dryComputed - so, declare the same here.
            (*it->second)->dryCompute(bbox, r_frame, riAux);
          } else {
            // control image is used its gradient
            if (port_is_used_for_gradient(it->first, values)) {
              tmp = new TTile;

              if (isPrecomputingEnabled)
                (*it->second)
                    ->allocateAndCompute(*tmp, bbox.getP00(),
                                         convert(bbox).getSize(), 0, r_frame,
                                         riAux64);
              else {
                std::string alias =
                    "CTRL64: " + (*(it->second))->getAlias(r_frame, riAux64);
                TRasterImageP rimg = TImageCache::instance()->get(alias, false);

                if (rimg) {
                  tmp->m_pos = bbox.getP00();
                  tmp->setRaster(rimg->getRaster());
                } else {
                  (*it->second)
                      ->allocateAndCompute(*tmp, bbox.getP00(),
                                           convert(bbox).getSize(), 0, r_frame,
                                           riAux64);

                  addRenderCache(alias, TRasterImageP(tmp->getRaster()));
                }
              }

              porttiles[it->first + Ctrl_64_Offset] = tmp;

              // in case the control image is also used for non-gradient
              if (port_is_used_for_value(it->first, values)) {
                TRaster32P tileRas(tmp->getRaster()->getSize());
                TRop::convert(tileRas, tmp->getRaster());
                tmp        = new TTile;
                tmp->m_pos = bbox.getP00();
                tmp->setRaster(tileRas);
                porttiles[it->first] = tmp;
              }
            }
            // control images used only for non-gradient
            else {
              tmp = new TTile;

              if (isPrecomputingEnabled)
                (*it->second)
                    ->allocateAndCompute(*tmp, bbox.getP00(),
                                         convert(bbox).getSize(), 0, r_frame,
                                         riAux);
              else {
                std::string alias =
                    "CTRL: " + (*(it->second))->getAlias(r_frame, riAux);
                TRasterImageP rimg = TImageCache::instance()->get(alias, false);

                if (rimg) {
                  tmp->m_pos = bbox.getP00();
                  tmp->setRaster(rimg->getRaster());
                } else {
                  (*it->second)
                      ->allocateAndCompute(*tmp, bbox.getP00(),
                                           convert(bbox).getSize(), 0, r_frame,
                                           riAux);

                  addRenderCache(alias, TRasterImageP(tmp->getRaster()));
                }
              }

              porttiles[it->first] = tmp;
            }
          }
        }
      }
    }

    if (frame > pcFrame) {
      // Invoke the actual rolling procedure
      roll_particles(tile, porttiles, riAux, myParticles, values, 0, 0, frame,
                     curr_frame, level_n, &random_level, 1, last_frame,
                     totalparticles);

      // Store the rolled data in the particles manager
      if (!particlesData->m_calculated ||
          particlesData->m_frame + particlesData->m_maxTrail < frame) {
        particlesData->m_frame     = frame;
        particlesData->m_particles = myParticles;
        particlesData->m_random    = myRandom;
        particlesData->buildMaxTrail();
        particlesData->m_calculated     = true;
        particlesData->m_totalParticles = totalparticles;
      }
    }

    // Render the particles if the distance from current frame is a trail
    // multiple
    if (frame >= startframe - 1 &&
        !(dist_frame %
          (values.trailstep_val > 1.0 ? (int)values.trailstep_val : 1))) {
      // Store the maximum particle size before the do_render cycle
      std::list<Particle>::iterator pt;
      for (pt = myParticles.begin(); pt != myParticles.end(); ++pt) {
        Particle &part = *pt;
        int ndx        = part.frame % last_frame[part.level];
        std::pair<int, int> ndxPair(part.level, ndx);

        std::map<std::pair<int, int>, double>::iterator it =
            partScales.find(ndxPair);

        if (it != partScales.end())
          it->second = std::max(part.scale, it->second);
        else
          partScales[ndxPair] = part.scale;
      }

      if (values.toplayer_val == ParticlesFx::TOP_SMALLER ||
          values.toplayer_val == ParticlesFx::TOP_BIGGER)
        myParticles.sort(ComparebySize());

      if (values.toplayer_val == ParticlesFx::TOP_SMALLER) {
        std::list<Particle>::iterator pt;
        for (pt = myParticles.begin(); pt != myParticles.end(); ++pt) {
          Particle &part = *pt;
          if (dist_frame <= part.trail && part.scale && part.lifetime > 0 &&
              part.lifetime <=
                  part.genlifetime)  // This last... shouldn't always be?
          {
            do_render(&part, tile, part_ports, porttiles, ri, p_size, p_offset,
                      last_frame[part.level], partLevel, values, opacity_range,
                      dist_frame, partScales);
          }
        }
      } else {
        std::list<Particle>::reverse_iterator pt;
        for (pt = myParticles.rbegin(); pt != myParticles.rend(); ++pt) {
          Particle &part = *pt;
          if (dist_frame <= part.trail && part.scale && part.lifetime > 0 &&
              part.lifetime <= part.genlifetime)  // Same here..?
          {
            do_render(&part, tile, part_ports, porttiles, ri, p_size, p_offset,
                      last_frame[part.level], partLevel, values, opacity_range,
                      dist_frame, partScales);
          }
        }
      }
    }

    std::map<int, TTile *>::iterator it;
    for (it = porttiles.begin(); it != porttiles.end(); ++it) delete it->second;
  }
}

//-----------------------------------------------------------------
/*- render_particles から呼ばれる。粒子の数だけ繰り返し -*/
void Particles_Engine::do_render(
    Particle *part, TTile *tile, std::vector<TRasterFxPort *> part_ports,
    std::map<int, TTile *> porttiles, const TRenderSettings &ri,
    TDimension &p_size, TPointD &p_offset, int lastframe,
    std::vector<TLevelP> partLevel, struct particles_values &values,
    double opacity_range, int dist_frame,
    std::map<std::pair<int, int>, double> &partScales) {
  // Retrieve the particle frame - that is, the *column frame* from which we are
  // picking
  // the particle to be rendered.
  int ndx = part->frame % lastframe;

  TRasterP tileRas(tile->getRaster());

  std::string levelid;
  double aim_angle = 0;
  if (values.pathaim_val) {
    double arctan = atan2(part->vy, part->vx);
    aim_angle     = arctan * M_180_PI;
  }

  // Calculate the rotational and scale components we have to apply on the
  // particle
  TRotation rotM(part->angle + aim_angle);
  TScale scaleM(part->scale);
  TAffine M(rotM * scaleM);

  // Particles deal with dpi affines on their own
  TAffine scaleAff(m_parent->handledAffine(ri, m_frame));
  double partScale =
      scaleAff.a11 * partScales[std::pair<int, int>(part->level, ndx)];
  TDimensionD partResolution(0, 0);
  TRenderSettings riNew(ri);

  // Retrieve the bounding box in the standard reference
  TRectD bbox(-5.0, -5.0, 5.0, 5.0), standardRefBBox;
  if (part->level <
          (int)part_ports.size() &&  // Not the default levelless cases
      part_ports[part->level]->isConnected()) {
    TRenderSettings riIdentity(ri);
    riIdentity.m_affine = TAffine();

    (*part_ports[part->level])->getBBox(ndx, bbox, riIdentity);

    // Now sources with infinite bounding box are retrieved with the output tile
    // size. This is especially for levels deformed by plastic mesh which must
    // have some finite bbox but return infinite bbox because "it's hard work to
    // calculate". (see PlasticDeformerFx::doGetBBox() and the issue
    // opentoonz#1330) NOTE: No fx returns half-planes or similar (ie if any
    // coordinate is either (std::numeric_limits<double>::max)() or its
    // opposite, then the rect IS THE infiniteRectD)
    if (bbox.isEmpty())
      return;
    else if (bbox == TConsts::infiniteRectD)
      bbox *= TRectD(tile->m_pos, TDimensionD(tile->getRaster()->getLx(),
                                              tile->getRaster()->getLy()));
  }

  // Now, these are the particle rendering specifications
  bbox            = bbox.enlarge(3);
  standardRefBBox = bbox;
  riNew.m_affine  = TScale(partScale);
  bbox            = riNew.m_affine * bbox;
  /*- 縮小済みのParticleのサイズ -*/
  partResolution = TDimensionD(tceil(bbox.getLx()), tceil(bbox.getLy()));

  TRasterP ras;

  std::string alias;
  TRasterImageP rimg;
  rimg = partLevel[part->level]->frame(ndx);
  if (rimg) {
    ras = rimg->getRaster();
  } else {
    alias = "PART: " + (*part_ports[part->level])->getAlias(ndx, riNew);
    rimg  = TImageCache::instance()->get(alias, false);
    if (rimg) {
      ras = rimg->getRaster();

      // Check that the raster resolution is sufficient for our purposes
      if (ras->getLx() < partResolution.lx || ras->getLy() < partResolution.ly)
        ras = 0;
      else
        partResolution = TDimensionD(ras->getLx(), ras->getLy());
    }
  }

  // We are interested in making the relation between scale and (integer)
  // resolution
  // bijective - since we shall cache by using resolution as a partial
  // identification parameter.
  // Therefore, we find the current bbox Lx and take a unique scale out of it.
  partScale      = partResolution.lx / standardRefBBox.getLx();
  riNew.m_affine = TScale(partScale);
  bbox           = riNew.m_affine * standardRefBBox;

  // If no image was retrieved from the cache (or it was not scaled enough),
  // calculate it
  if (!ras) {
    TTile auxTile;
    (*part_ports[part->level])
        ->allocateAndCompute(auxTile, bbox.getP00(),
                             TDimension(partResolution.lx, partResolution.ly),
                             tile->getRaster(), ndx, riNew);
    ras = auxTile.getRaster();

    // For now, we'll just use 32 bit particles
    TRaster32P rcachepart;
    rcachepart = ras;
    if (!rcachepart) {
      rcachepart = TRaster32P(ras->getSize());
      TRop::convert(rcachepart, ras);
    }
    ras = rcachepart;

    // Finally, cache the particle
    addRenderCache(alias, TRasterImageP(ras));
  }

  if (!ras) return;  // At this point, it should never happen anyway...

  // Deal with particle colors/opacity
  TRaster32P rfinalpart;
  double curr_opacity =
      part->set_Opacity(porttiles, values, opacity_range, dist_frame);
  if (curr_opacity != 1.0 || part->gencol.fadecol || part->fincol.fadecol ||
      part->foutcol.fadecol) {
    /*- 毎フレーム現在位置のピクセル色を参照 -*/
    if (values.pick_color_for_every_frame_val && values.gencol_ctrl_val &&
        (porttiles.find(values.gencol_ctrl_val) != porttiles.end()))
      part->get_image_reference(porttiles[values.gencol_ctrl_val], values,
                                part->gencol.col);

    rfinalpart = ras->clone();
    part->modify_colors_and_opacity(values, curr_opacity, dist_frame,
                                    rfinalpart);
  } else
    rfinalpart = ras;

  // Now, let's build the particle transform before it is overed on the output
  // tile

  // First, complete the transform by adding the rotational and scale
  // components from
  // Particles parameters
  M = ri.m_affine * M * TScale(1.0 / partScale);

  // render with motion blur
  if (values.motion_blur_val) {
    if (do_render_motion_blur(part, tile, tileRas, rfinalpart, M, bbox,
                              values.trailopacity_val,
                              values.motion_blur_gamma_val, ri))
      return;
  }

  // Then, retrieve the particle position in current reference.
  TPointD pos(part->x, part->y);
  pos = ri.m_affine * pos;

  // Finally, add the translational component to the particle
  // NOTE: p_offset is added to account for the particle relative position
  // inside its level's bbox
  M = TTranslation(pos - tile->m_pos) * M * TTranslation(bbox.getP00());

  if (TRaster32P myras32 = tile->getRaster())
    TRop::over(tileRas, rfinalpart, M);
  else if (TRaster64P myras64 = tile->getRaster())
    TRop::over(tileRas, rfinalpart, M);
  else
    throw TException("ParticlesFx: unsupported Pixel Type");
}

/*-----------------------------------------------------------------*/

bool Particles_Engine::do_render_motion_blur(
    Particle *part, TTile *tile, TRasterP tileRas, TRaster32P rfinalpart,
    TAffine &M, const TRectD &bbox, const DoublePair &trailOpacity,
    const double gamma, const TRenderSettings &ri) {
  QList<TPointD> points;
  QList<double> lengths;

  // do not render new-born particles as it has no trace
  if (part->genlifetime - part->lifetime == 0) return true;

  TRectD partBBoxD =
      M * TTranslation(bbox.getP00()) * convert(rfinalpart->getBounds());
  partBBoxD = partBBoxD.enlarge(1.0);

  TRect partBBox = convert(partBBoxD);

  TRaster32P partRas(partBBox.getSize());
  TRop::over(
      partRas, rfinalpart,
      TTranslation(-partBBoxD.getP00()) * M * TTranslation(bbox.getP00()));

  // create trace vertices list
  // render straight trace in the first 4 frames
  if (part->genlifetime - part->lifetime < 3) {
    TPointD p0(part->x, part->y);
    TPointD p1(part->oldx[0], part->oldy[0]);
    p0 = ri.m_affine * p0;
    p1 = ri.m_affine * p1;
    points.append(TPointD(0, 0));
    points.append(p1 - p0);
  }
  // Cubic spline interpolation
  else {
    // divide into 8 lines (= 9 segments)
    int pointAmount = 9;
    TPointD keyP[4] = {TPointD(part->x, part->y),
                       TPointD(part->oldx[0], part->oldy[0]),
                       TPointD(part->oldx[1], part->oldy[1]),
                       TPointD(part->oldx[2], part->oldy[2])};
    for (int i = 0; i < 4; i++) {
      keyP[i] = ri.m_affine * keyP[i];
      if (i > 0) {
        keyP[i] -= keyP[0];
      }
    }
    keyP[0] = TPointD(0, 0);

    double u[4];
    u[0] = 0.;
    u[1] = u[0] + norm(keyP[1] - keyP[0]);
    u[2] = u[1] + norm(keyP[2] - keyP[1]);
    u[3] = u[2] + norm(keyP[3] - keyP[2]);

    QMatrix4x4 mat(u[0] * u[0] * u[0], u[0] * u[0], u[0], 1.,
                   u[1] * u[1] * u[1], u[1] * u[1], u[1], 1.,
                   u[2] * u[2] * u[2], u[2] * u[2], u[2], 1.,
                   u[3] * u[3] * u[3], u[3] * u[3], u[3], 1.);

    bool ok;
    mat = mat.inverted(&ok);
    if (!ok) return false;

    QPointF coeff[4];
    for (int i = 0; i < 4; i++) {
      coeff[i] = mat(i, 0) * QPointF(keyP[0].x, keyP[0].y) +
                 mat(i, 1) * QPointF(keyP[1].x, keyP[1].y) +
                 mat(i, 2) * QPointF(keyP[2].x, keyP[2].y) +
                 mat(i, 3) * QPointF(keyP[3].x, keyP[3].y);
    }

    for (int p = 0; p <= pointAmount; p++) {
      double ratio = (double)p / (double)pointAmount;
      double cur_u = u[0] * ratio + u[1] * (1 - ratio);

      points.append(TPointD(
          cur_u * cur_u * cur_u * coeff[0].x() + cur_u * cur_u * coeff[1].x() +
              cur_u * coeff[2].x() + coeff[3].x(),
          cur_u * cur_u * cur_u * coeff[0].y() + cur_u * cur_u * coeff[1].y() +
              cur_u * coeff[2].y() + coeff[3].y()));
    }
  }

  // compute lengths
  for (int p = 0; p < points.size() - 1; p++) {
    TPointD vec = points[p + 1] - points[p];
    lengths.append(norm(vec));
  }

  /* Get upper, lower, left and right margin */
  double minX = 0.0;
  double maxX = 0.0;
  double minY = 0.0;
  double maxY = 0.0;
  for (int p = 0; p < points.size(); p++) {
    if (points.at(p).x > maxX) maxX = points.at(p).x;
    if (points.at(p).x < minX) minX = points.at(p).x;
    if (points.at(p).y > maxY) maxY = points.at(p).y;
    if (points.at(p).y < minY) minY = points.at(p).y;
  }
  int marginLeft   = (int)std::ceil(std::abs(minX));
  int marginRight  = (int)std::ceil(std::abs(maxX));
  int marginTop    = (int)std::ceil(std::abs(maxY));
  int marginBottom = (int)std::ceil(std::abs(minY));
  if (marginLeft == 0 && marginRight == 0 && marginTop == 0 &&
      marginBottom == 0)
    return false;

  // end opacity is computed so that the trace will be connected smoothly in the
  // trail
  float end_opacity =
      trailOpacity.second +
      (trailOpacity.first - trailOpacity.second) / std::max(1, part->trail);

  // create the blur filter
  TDimensionI filterDim(marginLeft + marginRight + 1,
                        marginTop + marginBottom + 1);
  TRasterGR8P filter_ras(sizeof(float) * filterDim.lx, filterDim.ly);
  filter_ras->lock();
  float *filter_p = (float *)filter_ras->getRawData();
  /* Variable for adding filter value*/
  float fil_val_sum = 0.0f;
  /* The current filter position to be looped in the 'for' statement */
  float *current_fil_p = filter_p;
  /* For each coordinate in the filter */
  for (int fily = 0; fily < filterDim.ly; fily++) {
    for (int filx = 0; filx < filterDim.lx; filx++, current_fil_p++) {
      /* Get filter coordinates */
      TPointD pos(static_cast<float>(filx - marginLeft),
                  static_cast<float>(fily - marginBottom));
      /* Value to be updated */
      float nearestDist2         = 100.0f;
      int nearestIndex           = -1;
      float nearestFramePosRatio = 0.0f;

      /* Find the nearest point for each pair of sample points */
      for (int v = 0; v < points.count() - 1; v++) {
        TPointD p0 = points[v];
        TPointD p1 = points[v + 1];

        /* If it is not within the range, continue */
        if (pos.x < std::min(p0.x, p1.x) - 1.0f ||
            pos.x > std::max(p0.x, p1.x) + 1.0f ||
            pos.y < std::min(p0.y, p1.y) - 1.0f ||
            pos.y > std::max(p0.y, p1.y) + 1.0f)
          continue;

        /* Since it is within the range, obtain the distance between the line
         * segment and the point. */
        /* Calculate the inner product of 'p0'->sampling point and 'p0'->'p1' */
        TPointD vec_p0_sample(static_cast<float>(pos.x - p0.x),
                              static_cast<float>(pos.y - p0.y));
        TPointD vec_p0_p1(static_cast<float>(p1.x - p0.x),
                          static_cast<float>(p1.y - p0.y));
        float dot =
            vec_p0_sample.x * vec_p0_p1.x + vec_p0_sample.y * vec_p0_p1.y;
        /* Calculate the square of distance */
        float dist2;
        float framePosRatio;
        /* If it is before 'p0' */
        if (dot <= 0.0f) {
          dist2 = vec_p0_sample.x * vec_p0_sample.x +
                  vec_p0_sample.y * vec_p0_sample.y;
          framePosRatio = 0.0f;
        } else {
          /* Calculate the square of the length of the trajectory vector */
          float length2 = lengths[v] * lengths[v];

          /* If it is between 'p0' and 'p1'
           * If the trajectory at p is a point,
           * 'length2' becomes 0, so it will never fall into this condition.
           * So, there should not be worry of becoming ZeroDivide. */
          if (dot < length2) {
            float p0_sample_dist2 = vec_p0_sample.x * vec_p0_sample.x +
                                    vec_p0_sample.y * vec_p0_sample.y;
            dist2         = p0_sample_dist2 - dot * dot / length2;
            framePosRatio = dot / length2;
          }
          /* If it is before 'p1' */
          else {
            TPointD vec_p1_sample = pos - p1;
            dist2                 = vec_p1_sample.x * vec_p1_sample.x +
                    vec_p1_sample.y * vec_p1_sample.y;
            framePosRatio = 1.0f;
          }
        }
        /* If the distance is farther than (√ 2 + 1) / 2, continue
         * Because it is a comparison with dist2, the value is squared */
        if (dist2 > 1.4571f) continue;

        /* Update if distance is closer */
        if (dist2 < nearestDist2) {
          nearestDist2         = dist2;
          nearestIndex         = v;
          nearestFramePosRatio = framePosRatio;
        }
      }

      /* If neighborhood vector of the current pixel can not be found,
       * set the filter value to 0 and return */
      if (nearestIndex == -1) {
        *current_fil_p = 0.0f;
        continue;
      }

      /* Count how many subpixels (16 * 16) of the current pixel
       * are in the range 0.5 from the neighborhood vector.
       */
      int count   = 0;
      TPointD np0 = points[nearestIndex];
      TPointD np1 = points[nearestIndex + 1];
      for (int yy = 0; yy < 16; yy++) {
        /* Y coordinate of the subpixel */
        float subPosY = pos.y + ((float)yy - 7.5f) / 16.0f;
        for (int xx = 0; xx < 16; xx++) {
          /* X coordinate of the subpixel */
          float subPosX = pos.x + ((float)xx - 7.5f) / 16.0f;

          TPointD vec_np0_sub = TPointD(subPosX, subPosY) - np0;
          TPointD vec_np0_np1 = np1 - np0;
          float dot =
              vec_np0_sub.x * vec_np0_np1.x + vec_np0_sub.y * vec_np0_np1.y;
          /* Calculate the square of the distance */
          float dist2;
          /* If it is before 'p0' */
          if (dot <= 0.0f)
            dist2 =
                vec_np0_sub.x * vec_np0_sub.x + vec_np0_sub.y * vec_np0_sub.y;
          else {
            /* Compute the square of the length of the trajectory vector */
            float length2 = lengths[nearestIndex] * lengths[nearestIndex];
            /* If it is between 'p0' and 'p1' */
            if (dot < length2) {
              float np0_sub_dist2 =
                  vec_np0_sub.x * vec_np0_sub.x + vec_np0_sub.y * vec_np0_sub.y;
              dist2 = np0_sub_dist2 - dot * dot / length2;
            }
            /* if it is before 'p1' */
            else {
              TPointD vec_np1_sub = TPointD(subPosX, subPosY) - np1;
              dist2 =
                  vec_np1_sub.x * vec_np1_sub.x + vec_np1_sub.y * vec_np1_sub.y;
            }
          }
          /* Increment count if squared distance is less than 0.25 */
          if (dist2 <= 0.25f) count++;
        }
      }
      /* 'safeguard' - If the count is 0, set the field value to 0 and return.
       */
      if (count == 0) {
        *current_fil_p = 0.0f;
        continue;
      }

      /* Count is 256 at a maximum */
      float countRatio = (float)count / 256.0f;

      /* The brightness of the filter value is inversely proportional
       * to the area of ​​the line of width 1 made by the vector.
       *
       * Since there are semicircular caps with radius 0.5
       * before and after the vector, it will never be 0-divide
       * even if the length of vector is 0.
       */

      /* Area of the neighborhood vector when width = 1 */
      float vecMenseki = 0.25f * 3.14159265f + lengths[nearestIndex];

      float opacity = 1.0f;
      if (end_opacity < 1.0f) {
        float ratio = ((float)nearestIndex + nearestFramePosRatio) /
                      (float)(points.size() - 1);
        opacity = ratio + end_opacity * (1.f - ratio);
      }
      /* Store field value */
      *current_fil_p = opacity * countRatio / vecMenseki;
      fil_val_sum += *current_fil_p;
    }
  }

  /* Normalization */
  current_fil_p = filter_p;
  for (int f = 0; f < filterDim.lx * filterDim.ly; f++, current_fil_p++) {
    *current_fil_p /= fil_val_sum;
  }

  // apply the filter
  TDimension blurredSize =
      partRas->getSize() +
      TDimension(marginLeft + marginRight, marginTop + marginBottom);
  float4 *blurred_p;
  TRasterGR8P blurred_ras(sizeof(float4) * blurredSize.lx, blurredSize.ly);
  blurred_ras->lock();
  blurred_ras->clear();
  blurred_p = (float4 *)blurred_ras->getRawData();
  // for each texture pixels,
  // distribute to all pixels in the filter
  for (int ty = 0; ty < partRas->getLy(); ty++) {
    TPixel32 *t_p = partRas->pixels(ty);
    for (int tx = 0; tx < partRas->getLx(); tx++, t_p++) {
      if (t_p->m == 0) continue;

      float4 tex = {(float)t_p->r / (float)(TPixel32::maxChannelValue),
                    (float)t_p->g / (float)(TPixel32::maxChannelValue),
                    (float)t_p->b / (float)(TPixel32::maxChannelValue),
                    (float)t_p->m / (float)(TPixel32::maxChannelValue)};
      if (gamma > 1.f) {
        tex.x = std::pow(tex.x / tex.w, gamma) * tex.w;
        tex.y = std::pow(tex.y / tex.w, gamma) * tex.w;
        tex.z = std::pow(tex.z / tex.w, gamma) * tex.w;
      }

      current_fil_p = filter_p;
      for (int outy = ty; outy < ty + filterDim.ly; outy++) {
        for (int outx = tx; outx < tx + filterDim.lx; outx++, current_fil_p++) {
          if (*current_fil_p == 0.f) continue;
          int outIndex = outy * blurredSize.lx + outx;
          blurred_p[outIndex].x += *current_fil_p * tex.x;
          blurred_p[outIndex].y += *current_fil_p * tex.y;
          blurred_p[outIndex].z += *current_fil_p * tex.z;
          blurred_p[outIndex].w += *current_fil_p * tex.w;
        }
      }
    }
  }

  filter_ras->unlock();

  float4 *b_p = blurred_p;
  TRaster32P blurred(blurredSize);
  for (int by = 0; by < blurredSize.ly; by++) {
    TPixel32 *b_ras_p = blurred->pixels(by);
    for (int bx = 0; bx < blurredSize.lx; bx++, b_ras_p++, b_p++) {
      if (gamma > 1.f && (*b_p).w > 0.f) {
        (*b_p).x = std::pow((*b_p).x / (*b_p).w, 1.f / gamma) * (*b_p).w;
        (*b_p).y = std::pow((*b_p).y / (*b_p).w, 1.f / gamma) * (*b_p).w;
        (*b_p).z = std::pow((*b_p).z / (*b_p).w, 1.f / gamma) * (*b_p).w;
      }

      b_ras_p->r = (TPixel32::Channel)std::round(
          (*b_p).x * (float)(TPixel32::maxChannelValue));
      b_ras_p->g = (TPixel32::Channel)std::round(
          (*b_p).y * (float)(TPixel32::maxChannelValue));
      b_ras_p->b = (TPixel32::Channel)std::round(
          (*b_p).z * (float)(TPixel32::maxChannelValue));
      b_ras_p->m = (TPixel32::Channel)std::round(
          (*b_p).w * (float)(TPixel32::maxChannelValue));
    }
  }

  blurred_ras->unlock();

  // composite particle
  TPointD pos(part->x, part->y);
  pos = ri.m_affine * pos;
  M   = TTranslation(pos - tile->m_pos) *
      TTranslation(-TPointD(marginLeft, marginBottom) + partBBoxD.getP00());

  if (TRaster32P myras32 = tileRas)
    TRop::over(tileRas, blurred, M);
  else if (TRaster64P myras64 = tileRas)
    TRop::over(tileRas, blurred, M);
  else
    throw TException("ParticlesFx: unsupported Pixel Type");

  return true;
}

/*-----------------------------------------------------------------*/

void Particles_Engine::fill_array(TTile *ctrl1, int &regioncount,
                                  std::vector<int> &myarray,
                                  std::vector<int> &lista,
                                  std::vector<int> &listb, int threshold) {
  int pr = 0;
  int i, j;
  int lx, ly;
  lx = ctrl1->getRaster()->getLx();
  ly = ctrl1->getRaster()->getLy();

  /*prima riga*/
  TRaster32P raster32 = ctrl1->getRaster();
  raster32->lock();
  TPixel32 *pix = raster32->pixels(0);
  for (i = 0; i < lx; i++) {
    if (pix->m > threshold) {
      pr++;
      if (!i) {
        (regioncount)++;
        myarray[i] = (regioncount);
      } else {
        if (myarray[i - 1]) myarray[i] = myarray[i - 1];
      }
    }
    pix++;
  }

  for (j = 1; j < ly; j++) {
    for (i = 0, pix = raster32->pixels(j); i < lx; i++, pix++) {
      /*TMSG_INFO("j=%d i=%d\n", j, i);*/
      if (pix->m > threshold) {
        std::vector<int> mask(4);
        pr++;
        /* l,ul,u,ur;*/
        if (i) {
          mask[0] = myarray[i - 1 + lx * j];
          mask[1] = myarray[i - 1 + lx * (j - 1)];
        }
        if (i != lx - 1) mask[3] = myarray[i + 1 + lx * (j - 1)];
        mask[2] = myarray[i + lx * (j - 1)];
        if (!mask[0] && !mask[1] && !mask[2] && !mask[3]) {
          (regioncount)++;
          myarray[i + lx * j] = (regioncount);
        } else {
          int mc, firsttime = 1;
          for (mc = 0; mc < 4; mc++) {
            if (mask[mc]) {
              if (firsttime) {
                myarray[i + lx * j] = mask[mc];
                firsttime           = 0;
              } else {
                if (myarray[i + lx * j] != mask[mc]) {
                  lista.push_back(myarray[i + lx * j]);
                  listb.push_back(mask[mc]);

                  /*TMSG_INFO("j=%d i=%d mc=%d, mask=%d\n", j, i, mc,
                   * mask[mc]);*/
                }
              }
            }
          }
        }
      }
    }
  }
  raster32->unlock();
}

/*-----------------------------------------------------------------*/

void Particles_Engine::normalize_array(
    std::vector<std::vector<TPointD>> &myregions, TPointD pos, int lx, int ly,
    int regioncounter, std::vector<int> &myarray, std::vector<int> &lista,
    std::vector<int> &listb, std::vector<int> &final) {
  int i, j, k, l;

  std::vector<int> tmp;
  int maxregioncounter = 0;
  int listsize         = (int)lista.size();
  // TMSG_INFO("regioncounter %d, eqcount=%d\n", regioncounter, eqcount);
  for (k = 1; k <= regioncounter; k++) final[k] = k;

  for (l = 0; l < listsize; l++) {
    j = lista[l];
    /*TMSG_INFO("j vale %d\n", j);*/
    while (final[j] != j) j = final[j];
    k = listb[l];
    /*TMSG_INFO("k vale %d\n", k);*/
    while (final[k] != k) k = final[k];
    if (j != k) final[j] = k;
  }
  // TMSG_INFO("esco dal for\n");
  for (j = 1; j <= regioncounter; j++)
    while (final[j] != final[final[j]]) final[j] = final[final[j]];

  /*conto quante cavolo di regioni sono*/

  tmp.push_back(final[1]);
  maxregioncounter = 1;
  for (i = 2; i <= regioncounter; i++) {
    int diff = 1;
    for (j = 0; j < maxregioncounter; j++) {
      if (tmp[j] == final[i]) {
        diff = 0;
        break;
      }
    }
    if (diff) {
      tmp.push_back(final[i]);
      maxregioncounter++;
    }
  }

  myregions.resize(maxregioncounter);
  for (j = 0; j < ly; j++) {
    for (i = 0; i < lx; i++) {
      int tmpindex;
      if (myarray[i + lx * j]) {
        tmpindex = final[myarray[i + lx * j]];
        /*TMSG_INFO("tmpindex=%d\n", tmpindex);*/
        for (k = 0; k < maxregioncounter; k++) {
          if (tmp[k] == tmpindex) break;
        }
        /*TMSG_INFO("k=%d\n", k);*/
        TPointD tmppoint;
        tmppoint.x = i;
        tmppoint.y = j;
        tmppoint += pos;
        myregions[k].push_back(tmppoint);
      }
    }
  }
}

/*-----------------------------------------------------------------*/
/*- multiがONのときのSource画像(ctrl1)の領域を分析 -*/
void Particles_Engine::fill_subregions(
    int cont_index, std::vector<std::vector<TPointD>> &myregions, TTile *ctrl1,
    int thres) {
  int regioncounter = 0;

  int lx = ctrl1->getRaster()->getLx();
  int ly = ctrl1->getRaster()->getLy();

  std::vector<int> myarray(lx * ly);
  std::vector<int> lista;
  std::vector<int> listb;

  fill_array(ctrl1, regioncounter, myarray, lista, listb, thres);

  if (regioncounter) {
    std::vector<int> final(regioncounter + 1);
    normalize_array(myregions, ctrl1->m_pos, lx, ly, regioncounter, myarray,
                    lista, listb, final);
  }
}

/*-----------------------------------------------------------------*/
/*- 入力画像のアルファ値に比例して発生濃度を変える。各Pointにウェイトを持たせる
 * -*/
void Particles_Engine::fill_single_region(
    std::vector<std::vector<TPointD>> &myregions, TTile *ctrl1, int threshold,
    bool do_source_gradation, std::vector<std::vector<int>> &myHistogram) {
  TRaster32P raster32 = ctrl1->getRaster();
  assert(raster32);  // per ora gestisco solo i Raster32
                     //  int lx=raster32->getLx();
                     //  int ly=raster32->getLy();
  int j;
  myregions.resize(1);
  myregions[0].clear();
  int cc  = 0;
  int icc = 0;
  raster32->lock();

  if (!do_source_gradation) /*- 2階調の場合 -*/
  {
    for (j = 0; j < raster32->getLy(); j++) {
      TPixel32 *pix    = raster32->pixels(j);
      TPixel32 *endPix = pix + raster32->getLx();
      int i            = 0;
      while (pix < endPix) {
        cc++;
        if (pix->m > threshold) {
          icc++;
          TPointD tmp;
          tmp.y = j;
          tmp.x = i;
          tmp += ctrl1->m_pos;
          myregions[0].push_back(tmp);
          /*TMSG_INFO("total=%d\n", Region[0].total);*/

        } else {
          //           int a=0;
        }
        i++;
        pix++;
      }
    }
  } else {
    for (int i = 0; i < 256; i++) myHistogram.push_back(std::vector<int>());

    TRandom rand = TRandom(1);
    for (j = 0; j < raster32->getLy(); j++) {
      TPixel32 *pix    = raster32->pixels(j);
      TPixel32 *endPix = pix + raster32->getLx();
      int i            = 0;
      while (pix < endPix) {
        cc++;
        /*-- アルファの濃度に比例してパーティクルを発生させるための、
                シンプルな方法。そのピクセルのアルファ値の数だけ「立候補」させる。
        --*/
        if (pix->m > 0) {
          icc++;
          TPointD tmp;
          tmp.y = j;
          tmp.x = i;
          tmp += ctrl1->m_pos;

          /*- Histogramの登録 -*/
          myHistogram[(int)pix->m].push_back((int)myregions[0].size());
          /*-  各Pointにウェイトを持たせる -*/
          myregions[0].push_back(tmp);
        } else {
        }
        i++;
        pix++;
      }
    }
  }
  if (myregions[0].size() == 0) myregions.resize(0);
  raster32->unlock();
}

/*-----------------------------------------------------------------*/
/*-
 * 入力画像のアルファ値に比例して発生濃度を変える。Histogramを格納しながら領域を登録
 * -*/
void Particles_Engine::fill_regions(
    int frame, std::vector<std::vector<TPointD>> &myregions, TTile *ctrl1,
    bool multi, int thres, bool do_source_gradation,
    std::vector<std::vector<int>> &myHistogram) {
  TRaster32P ctrl1ras = ctrl1->getRaster();
  if (!ctrl1ras) return;
  int i;
  if (frame <= 0)
    i = 0;
  else
    i = frame;

  if (multi) {
    fill_subregions(i, myregions, ctrl1, thres);
  } else {
    fill_single_region(myregions, ctrl1, thres, do_source_gradation,
                       myHistogram);
  }
}

//----------------------------------------------------------------
/*-- Perspective
DistributionがONのとき、Sizeに刺さったControlImageが粒子の発生分布を決める。
        そのとき、SourceのControlが刺さっている場合は、マスクとして用いられる
--*/

void Particles_Engine::fill_regions_with_size_map(
    std::vector<std::vector<TPointD>> &myregions,
    std::vector<std::vector<int>> &myHistogram, TTile *sizeTile,
    TTile *sourceTile, int thres) {
  TRaster32P sizeRas = sizeTile->getRaster();
  if (!sizeRas) return;

  TRaster32P sourceRas;
  if (sourceTile) sourceRas = sourceTile->getRaster();

  sizeRas->lock();
  if (sourceRas) sourceRas->lock();

  myregions.resize(1);
  myregions[0].clear();
  for (int i = 0; i < 256; i++) myHistogram.push_back(std::vector<int>());

  for (int j = 0; j < sizeRas->getLy(); j++) {
    TPixel32 *pix    = sizeRas->pixels(j);
    TPixel32 *endPix = pix + sizeRas->getLx();

    TPixel32 *sourcePixHead = 0;
    if (sourceRas) {
      int sourceYPos = troundp(j + sizeTile->m_pos.y - sourceTile->m_pos.y);
      if (sourceYPos >= 0 && sourceYPos < sourceRas->getLy())
        sourcePixHead = sourceRas->pixels(sourceYPos);
    }

    int i               = 0;
    TPixel32 *sourcePix = 0;
    while (pix < endPix) {
      if (sourceRas) {
        int sourceXPos = (int)(i + sizeTile->m_pos.x - sourceTile->m_pos.x);
        if (sourcePixHead && sourceXPos >= 0 && sourceXPos < sourceRas->getLx())
          sourcePix = sourcePixHead + sourceXPos;
        else
          sourcePix = 0;
      } else
        sourcePix = 0;

      /*-
       * Source画像があって、ピクセルがバウンディング外またはアルファが0なら抜かす。
       * -*/
      if (sourceRas && (!sourcePix || sourcePix->m <= thres)) {
      }
      /*-
         明度に比例してパーティクルを発生させる。そのピクセルのアルファ値の数だけ「立候補」させる。-*/
      else {
        TPointD tmp;
        tmp.y = j;
        tmp.x = i;
        tmp += sizeTile->m_pos;

        int val = (int)TPixelGR8::from(*pix).value;

        /*- Histogramの登録 -*/
        myHistogram[val].push_back((int)myregions[0].size());

        /*- 各Pointにウェイトを持たせる -*/
        myregions[0].push_back(tmp);
      }

      i++;
      pix++;
    }
  }

  if (myregions[0].size() == 0) myregions.resize(0);

  sizeRas->unlock();
  if (sourceRas) sourceRas->unlock();
}