Blob Blame Raw


#include "tcenterlinevectP.h"

//==========================================================================

//============================================
//      Sequence conversion into TStroke
//============================================

//Globals

namespace
{
const double Polyg_eps_max = 1;	//Sequence simplification max error
const double Polyg_eps_mul = 0.75; //Sequence simpl. thickness-multiplier error

const double Quad_eps_max = infinity; //As above, for sequence conversion into strokes
									  //const double Quad_eps_mul= 0.2;     //NOTE: Substituted by globals->currConfig->m_penalty
}

//--------------------------------------------------------------------------

//-------------------------------
//      Simplify Sequences
//-------------------------------

//EXPLANATION:  Before converting sequences in strokes, we simplify them
//by eliminating sequence of points which lie on the same straight line,
//leaving the extremities only.

class SequenceSimplifier
{
	const Sequence *m_s;
	const SkeletonGraph *m_graph;

private:
	class Length
	{
	public:
		int n;
		double l;
		UINT firstNode, secondNode;

		Length() : n(0), l(0) {}
		Length(int n_, double l_) : n(n_), l(l_) {}

		inline void infty(void)
		{
			n = infinity;
			l = infinity;
		}
		inline bool operator<(Length sl)
		{
			return n < sl.n ? 1 : n > sl.n ? 0 : l < sl.l ? 1 : 0;
		}
		inline Length operator+(Length sl)
		{
			return Length(n + sl.n, l + sl.l);
		}
	};

	Length lengthOf(UINT a, UINT aLink, UINT b);

public:
	//Methods
	SequenceSimplifier(const Sequence *s)
		: m_s(s), m_graph(m_s->m_graphHolder) {}

	void simplify(std::vector<unsigned int> &result);
};

//--------------------------------------------------------------------------

//Bellman algorithm for Sequences
//NOTE: Circular Sequences are dealt.
void SequenceSimplifier::simplify(std::vector<unsigned int> &result)
{
	//Initialize variables
	unsigned int n;
	unsigned int i, j, iLink, jLink;

	//NOTE: If s is circular, we have to protect

	i = m_s->m_head;
	iLink = m_s->m_headLink;
	//NOTE: If m_head==m_tail then we have to force the first step by "|| n==1"
	for (n = 1; i != m_s->m_tail || n == 1; ++n, m_s->next(i, iLink))
		;

	Length L_att, L_min, l_min, l_ji;
	unsigned int p_i, a, b;

	std::vector<Length> M(n);
	std::vector<Length> K(n);
	std::vector<unsigned int> P(n);

	//Search for minimal path
	i = m_s->m_head;
	iLink = m_s->m_headLink;
	for (a = 1; i != m_s->m_tail || a == 1; m_s->next(i, iLink), ++a) {
		L_min.infty();
		l_min.infty();
		p_i = 0;

		j = m_s->m_head;
		jLink = m_s->m_headLink;
		unsigned int iNext = m_graph->getNode(i).getLink(iLink).getNext();
		for (b = 0; j != iNext || b == 0; m_s->next(j, jLink), ++b) {
			if ((L_att = M[b] + (l_ji = lengthOf(j, jLink, iNext))) < L_min) {
				L_min = L_att;
				p_i = b;
				l_min = l_ji;
			}
		}
		M[a] = L_min;
		K[a] = l_min;
		P[a] = p_i;
	}

	//Copies minimal path found to the output reducedIndices vector
	//NOTE: size() is added due to circular sequences case handling
	unsigned int redSize = result.size();

	result.resize(redSize + M[n - 1].n + 1);

	result[redSize + M[n - 1].n] = K[n - 1].secondNode;
	for (b = n - 1, a = redSize + M[n - 1].n - 1; b > 0; b = P[b], --a)
		result[a] = K[b].firstNode;
}

//--------------------------------------------------------------------------

//Length between two sequence points
SequenceSimplifier::Length
SequenceSimplifier::lengthOf(UINT a, UINT aLink, UINT b)
{
	UINT curr, old;
	T3DPointD v;
	double d, vv;
	Length res;

	res.n = 1;
	res.firstNode = a;
	res.secondNode = b;

	v = *m_graph->getNode(b) - *m_graph->getNode(a);
	vv = norm(v);

	curr = m_graph->getNode(a).getLink(aLink).getNext();
	old = a;

	//If the distance between extremities is small, check if the same holds
	//for internal points; if so, ok - otherwise set infty().
	if (vv < 0.1) {
		for (; curr != b; m_s->advance(old, curr)) {
			d = tdistance(*m_graph->getNode(curr), *m_graph->getNode(a));
			if (d > 0.1)
				res.infty();
		}
		return res;
	}

	//Otherwise, check distances from line passing from a and b
	v = v * (1 / vv);

	for (; curr != b; m_s->advance(old, curr)) {
		d = tdistance2(*m_graph->getNode(curr), v, *m_graph->getNode(a));
		if (d > tmin(m_graph->getNode(curr)->z * Polyg_eps_mul, Polyg_eps_max)) {
			res.infty();
			return res;
		} else
			res.l += d;
	}

	return res;
}

//==========================================================================

//===============================
//      Sequence conversion
//===============================

//EXPLANATION: Sequences convert into TStrokes by applying a SequenceConverter
//  class. A graph minimal-path algorithm is run by using a lexicographic-ordered
//  (number of quadratics, error) length.

class SequenceConverter
{
	const Sequence *m_s;
	const SkeletonGraph *m_graph;

	double m_penalty;

public:
	//Length construction globals (see 'lengthOf' method)
	unsigned int middle;
	std::vector<double> pars;

	class Length
	{
	public:
		int n;
		double l;
		std::vector<T3DPointD> CPs;

		Length() : n(0), l(0) {}
		Length(int n_, double l_) : n(n_), l(l_) {}

		inline void infty(void)
		{
			n = infinity;
			l = infinity;
		}
		inline bool operator<(Length sl)
		{
			return n < sl.n ? 1 : n > sl.n ? 0 : l < sl.l ? 1 : 0;
		}
		inline Length operator+(Length sl)
		{
			return Length(n + sl.n, l + sl.l);
		}

		void set_CPs(const T3DPointD &a, const T3DPointD &b, const T3DPointD &c)
		{
			CPs.resize(3);
			CPs[0] = a;
			CPs[1] = b;
			CPs[2] = c;
		}
		void set_CPs(const T3DPointD &a, const T3DPointD &b, const T3DPointD &c,
					 const T3DPointD &d, const T3DPointD &e)
		{
			CPs.resize(5);
			CPs[0] = a;
			CPs[1] = b;
			CPs[2] = c;
			CPs[3] = d;
			CPs[4] = e;
		}
	};

	//Intermediate Sequence form
	std::vector<T3DPointD> middleAddedSequence;
	std::vector<unsigned int> *inputIndices;

	//Methods
	SequenceConverter(const Sequence *s, double penalty)
		: m_s(s), m_graph(m_s->m_graphHolder), m_penalty(penalty) {}

	Length lengthOf(unsigned int a, unsigned int b);
	void addMiddlePoints();
	TStroke *operator()(std::vector<unsigned int> *indices);

	//Length construction methods
	bool parametrize(unsigned int a, unsigned int b);
	void lengthOfTriplet(unsigned int i, Length &len);
	bool calculateCPs(unsigned int i, unsigned int j, Length &len);
	bool penalty(unsigned int a, unsigned int b, Length &len);
};

//--------------------------------------------------------------------------

//Changes in stroke thickness are considered more penalizating
inline double ellProd(const T3DPointD &a, const T3DPointD &b)
{
	return a.x * b.x + a.y * b.y + 5 * a.z * b.z;
}

//--------------------------------------------------------------------------

//EXPLANATION:  After simplification, we receive a vector<UINT> of indices
//corresponding to the vertices of the simplified current sequence.
//Before beginning conversion, we need to add middle points between the
//above vertex points.

inline void SequenceConverter::addMiddlePoints()
{
	unsigned int i, j, n;

	n = inputIndices->size();
	middleAddedSequence.clear();

	if (n == 2) {
		middleAddedSequence.resize(3);
		middleAddedSequence[0] = *m_graph->getNode((*inputIndices)[0]);
		middleAddedSequence[1] =
			(*m_graph->getNode((*inputIndices)[0]) +
			 *m_graph->getNode((*inputIndices)[1])) *
			0.5;
		middleAddedSequence[2] = *m_graph->getNode((*inputIndices)[1]);
	} else {
		middleAddedSequence.resize(2 * n - 3);
		middleAddedSequence[0] = *m_graph->getNode((*inputIndices)[0]);
		for (i = j = 1; i < n - 2; ++i, j += 2) {
			middleAddedSequence[j] = *m_graph->getNode((*inputIndices)[i]);
			middleAddedSequence[j + 1] =
				(*m_graph->getNode((*inputIndices)[i]) +
				 *m_graph->getNode((*inputIndices)[i + 1])) *
				0.5;
		}
		middleAddedSequence[j] = *m_graph->getNode((*inputIndices)[n - 2]);
		middleAddedSequence[j + 1] = *m_graph->getNode((*inputIndices)[n - 1]);
	}
}

//--------------------------------------------------------------------------

TStroke *SequenceConverter::operator()(std::vector<unsigned int> *indices)
{
	//Prepare Sequence
	inputIndices = indices;
	addMiddlePoints();

	//Initialize local variables
	unsigned int n = (middleAddedSequence.size() + 1) / 2; //Number of middle points
	//unsigned int i, j;
	unsigned int i;
	int j;

	Length L_att, L_min, l_min, l_ji;
	unsigned int p_i, a, b;

	std::vector<Length> M(n);
	std::vector<Length> K(n);
	std::vector<unsigned int> P(n);

	//Bellman algorithm
	for (i = 2, a = 1; i < middleAddedSequence.size(); i += 2, ++a) {
		L_min.infty();
		l_min.infty();
		p_i = 0;
		//for(j=0, b=0; j<i; j+=2, ++b)
		for (j = i - 2, b = j / 2; j >= 0; j -= 2, --b) {
			if ((L_att = M[b] + (l_ji = lengthOf(j, i))) < L_min) {
				L_min = L_att;
				p_i = b;
				l_min = l_ji;
			}
			//NOTE: The following else may be taken out to perform a deeper
			//search for optimal result. However, it prevents quadratic complexities
			//on large-scale images.
			else if (l_ji.n == infinity)
				break; //Stops searching for current i
		}
		M[a] = L_min;
		K[a] = l_min;
		P[a] = p_i;
	}

	//Read off the output
	std::vector<TThickPoint> controlPoints(2 * M[n - 1].n + 1);

	for (b = n - 1, a = 2 * M[n - 1].n; b > 0; b = P[b]) {
		for (i = K[b].CPs.size() - 1; i > 0; --i, --a)
			controlPoints[a] = K[b].CPs[i];
	}
	controlPoints[0] = middleAddedSequence[0];

	TStroke *res = new TStroke(controlPoints);

	return res;
}

//--------------------------------------------------------------------------

//--------------------------------------
//      Conversion Length build-up
//--------------------------------------

SequenceConverter::Length SequenceConverter::lengthOf(unsigned int a, unsigned int b)
{
	Length l;

	//If we have a triplet, apply a specific procedure
	if (b == a + 2) {
		lengthOfTriplet(a, l);
		return l;
	}
	//otherwise
	if (!parametrize(a, b) || !calculateCPs(a, b, l) || !penalty(a, b, l))
		l.infty();
	return l;
}

//--------------------------------------------------------------------------

void SequenceConverter::lengthOfTriplet(unsigned int i, Length &len)
{
	T3DPointD A = middleAddedSequence[i];
	T3DPointD B = middleAddedSequence[i + 1];
	T3DPointD C = middleAddedSequence[i + 2];

	//We assume that this convertion is faithful, avoiding length penalty
	len.l = 0;
	double d = tdistance(B, C - A, A);
	if (d <= 2) {
		len.n = 1;
		len.set_CPs(A, B, C);
	} else if (d <= 6) {
		len.n = 2;
		d = (d - 1) / d;
		T3DPointD U = A + d * (B - A), V = C + d * (B - C);
		len.set_CPs(A, U, (U + V) * 0.5, V, C);
	} else {
		len.n = 2;
		len.set_CPs(A, (A + B) * 0.5, B, (B + C) * 0.5, C);
	}
}

//--------------------------------------------------------------------------

bool SequenceConverter::parametrize(unsigned int a, unsigned int b)
{

	unsigned int curr, old;
	unsigned int i;
	double w, t;
	double den;

	pars.clear();
	pars.push_back(0);

	for (old = a, curr = a + 1, den = 0; curr < b; old = curr, curr += 2) {
		w = norm(middleAddedSequence[curr] - middleAddedSequence[old]);
		den += w;
		pars.push_back(w);
	}
	w = norm(middleAddedSequence[b] - middleAddedSequence[old]);
	den += w;
	pars.push_back(w);

	if (den < 0.1)
		return 0;

	for (i = 1, t = 0; i < pars.size(); ++i) {
		t += 2 * pars[i] / den;
		pars[i] = t;
	}

	//Seek the interval which holds 1 - the middle interval
	for (middle = 0; middle < pars.size() && pars[middle + 1] <= 1; ++middle)
		;

	return 1;
}

//==========================================================================

//------------------------
//    CP construcion
//------------------------

//NOTE: Check my thesis for variable meanings (int_ stands for 'integral').

//Some integrals (int_) for the CP linear system resolution

inline T3DPointD int_H(const T3DPointD &A, const T3DPointD &B, double t1, double t2)
{
	return -(0.375 * (pow(t2, 4) - pow(t1, 4))) * B + (pow(t2, 3) - pow(t1, 3)) * (B * 0.6667 - A * 0.5) + (pow(t2, 2) - pow(t1, 2)) * A;
}

//--------------------------------------------------------------------------

inline T3DPointD int_K(const T3DPointD &A, const T3DPointD &B, double t1, double t2)
{
	return (pow(t2, 4) - pow(t1, 4)) * (B * 0.125) + (pow(t2, 3) - pow(t1, 3)) * (A * 0.1667);
}

//--------------------------------------------------------------------------

bool SequenceConverter::calculateCPs(unsigned int i, unsigned int j, Length &len)
{

	unsigned int curr, old;

	TAffine M;
	TPointD l;
	T3DPointD a, e, x, y, A, B;
	T3DPointD IH, IK, IM, IN_; //"IN" seems to be reserved word
	double HxL, KyL, MxO, NyO;
	unsigned int k;

	a = middleAddedSequence[i];
	e = middleAddedSequence[j];
	x = middleAddedSequence[i + 1] - a;
	y = middleAddedSequence[j - 1] - e;

	//Build TAffine M
	double par = ellProd(x, y) / 5;
	M = TAffine(ellProd(x, x) / 3, par, 0, par, ellProd(y, y) / 3, 0);

	//Costruisco il termine noto b:
	//Calculate polygonal integrals

	//Integral from 0.0 to 1.0
	for (k = 0, old = i, curr = i + 1; k < middle; ++k, old = curr, curr += 2) {
		B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k + 1] - pars[k]));
		A = middleAddedSequence[old] - pars[k] * B;
		IH += int_H(A, B, pars[k], pars[k + 1]);
		IK += int_K(A, B, pars[k], pars[k + 1]);
	}

	if (curr == j + 1)
		curr = j;
	B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k + 1] - pars[k]));
	A = middleAddedSequence[old] - pars[k] * B;
	IH += int_H(A, B, pars[k], 1.0);
	IK += int_K(A, B, pars[k], 1.0);

	//Integral from 1.0 to 2.0
	for (k = pars.size() - 1, old = j, curr = j - 1; k > middle + 1; --k, old = curr, curr -= 2) {
		B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k] - pars[k - 1]));
		A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;
		IM += int_K(A, B, 2 - pars[k], 2 - pars[k - 1]);
		IN_ += int_H(A, B, 2 - pars[k], 2 - pars[k - 1]);
	}

	if (old == i + 1)
		curr = i;
	B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k] - pars[k - 1]));
	A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;
	IM += int_K(A, B, 2 - pars[k], 1.0);
	IN_ += int_H(A, B, 2 - pars[k], 1.0);

	//Polygonal-free integrals
	T3DPointD f = (a + e) * 0.5;
	HxL = (ellProd(a, x) * 0.3) + (ellProd(f, x) / 5.0);
	NyO = (ellProd(e, y) * 0.3) + (ellProd(f, y) / 5.0);
	KyL = (ellProd(a, y) / 15.0) + (ellProd(f, y) / 10.0);
	MxO = ((e * x) / 15.0) + (ellProd(f, x) / 10.0);

	//Infine, ho il termine noto
	l = TPointD(ellProd(IH, x) - HxL + ellProd(IM, x) - MxO,
				ellProd(IK, y) - KyL + ellProd(IN_, y) - NyO);
	M.a13 = -l.x;
	M.a23 = -l.y;

	//Check validity conditions:
	//  a) System is not singular
	if (fabs(M.det()) < 0.01)
		return 0;

	M = M.inv();

	//  b) Shift (solution) is positive
	if (M.a13 < 0 || M.a23 < 0)
		return 0;
	T3DPointD b = a + M.a13 * x;
	T3DPointD d = e + M.a23 * y;

	//  c) The height of every CP must be >=0
	if (b.z < 0 || d.z < 0)
		return 0;
	len.set_CPs(a, b, (b + d) * 0.5, d, e);

	return 1;
}

//==========================================================================

//------------------------
//      Penalties
//------------------------

inline T3DPointD int_B0a(const T3DPointD &A, const T3DPointD &B, double t1, double t2)
{
	return (0.25 * (pow(t2, 4) - pow(t1, 4))) * B + ((pow(t2, 3) - pow(t1, 3)) / 3.0) * (A - 2.0 * B) + (0.5 * (pow(t2, 2) - pow(t1, 2))) * (B - 2.0 * A) + (t2 - t1) * A;
}

//--------------------------------------------------------------------------

inline T3DPointD int_B1a(const T3DPointD &A, const T3DPointD &B, double t1, double t2)
{
	return -(0.5 * (pow(t2, 4) - pow(t1, 4))) * B + (2.0 * ((pow(t2, 3) - pow(t1, 3)) / 3.0) * (B - A) + (pow(t2, 2) - pow(t1, 2)) * A);
}

//--------------------------------------------------------------------------

inline T3DPointD int_B2a(const T3DPointD &A, const T3DPointD &B, double t1, double t2)
{
	return (0.25 * (pow(t2, 4) - pow(t1, 4))) * B + ((pow(t2, 3) - pow(t1, 3)) / 3.0) * A;
}

//--------------------------------------------------------------------------

inline double int_a2(const T3DPointD &A, const T3DPointD &B, double t1, double t2)
{
	return ellProd(A, A) * (t2 - t1) + ellProd(A, B) * (pow(t2, 2) - pow(t1, 2)) + (ellProd(B, B) * (pow(t2, 3) - pow(t1, 3)) / 3.0);
}

//--------------------------------------------------------------------------

//Penalty is the integral of the square norm of differences between polygonal and quadratics.
bool SequenceConverter::penalty(unsigned int a, unsigned int b, Length &len)
{

	unsigned int curr, old;

	const std::vector<T3DPointD> &CPs = len.CPs;
	T3DPointD A, B, P0, P1, P2;
	double p, p_max;
	unsigned int k;

	len.n = 2; //A couple of arcs

	//Prepare max penalty p_max
	p_max = 0;
	for (curr = a + 1, old = a, k = 0; curr < b; ++k, old = curr, curr += 2) {
		p_max += (middleAddedSequence[curr].z + middleAddedSequence[old].z) * (pars[k + 1] - pars[k]) / 2;
	}
	p_max += (middleAddedSequence[b].z + middleAddedSequence[old].z) * (pars[k + 1] - pars[k]) / 2;

	//Confronting 4th power of error with mean polygonal thickness
	// - can be changed
	p_max = tmin(sqrt(p_max) * m_penalty, Quad_eps_max);

	//CP only integral
	p = (ellProd(CPs[0], CPs[0]) + 2 * ellProd(CPs[2], CPs[2]) + ellProd(CPs[4], CPs[4]) +
		 ellProd(CPs[0], CPs[1]) + ellProd(CPs[1], CPs[2]) +
		 ellProd(CPs[2], CPs[3]) + ellProd(CPs[3], CPs[4])) /
			5.0 +
		(2 * (ellProd(CPs[1], CPs[1]) + ellProd(CPs[3], CPs[3])) +
		 ellProd(CPs[0], CPs[2]) + ellProd(CPs[2], CPs[4])) /
			15.0;

	//Penalty from 0.0 to 1.0
	P0 = P1 = P2 = T3DPointD();
	for (k = 0, old = a, curr = a + 1; k < middle; ++k, old = curr, curr += 2) {
		B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k + 1] - pars[k]));
		A = middleAddedSequence[old] - pars[k] * B;

		//Mixed integral
		P0 += int_B0a(A, B, pars[k], pars[k + 1]);
		P1 += int_B1a(A, B, pars[k], pars[k + 1]);
		P2 += int_B2a(A, B, pars[k], pars[k + 1]);

		//Sequence integral
		p += int_a2(A, B, pars[k], pars[k + 1]);
	}
	if (curr == b + 1)
		curr = b;
	B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k + 1] - pars[k]));
	A = middleAddedSequence[old] - pars[k] * B;

	//Mixed integral
	P0 += int_B0a(A, B, pars[k], 1.0);
	P1 += int_B1a(A, B, pars[k], 1.0);
	P2 += int_B2a(A, B, pars[k], 1.0);

	//Sequence integral
	p += int_a2(A, B, pars[k], 1.0);

	p -= 2 * (ellProd(P0, CPs[0]) + ellProd(P1, CPs[1]) + ellProd(P2, CPs[2]));

	//Penalty from 1.0 to 2.0
	P0 = P1 = P2 = T3DPointD();
	for (k = pars.size() - 1, old = b, curr = b - 1; k > middle + 1; --k, old = curr, curr -= 2) {
		B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k] - pars[k - 1]));
		A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;

		//Mixed integral
		P0 += int_B0a(A, B, 2 - pars[k], 2 - pars[k - 1]);
		P1 += int_B1a(A, B, 2 - pars[k], 2 - pars[k - 1]);
		P2 += int_B2a(A, B, 2 - pars[k], 2 - pars[k - 1]);

		//Sequence integral
		p += int_a2(A, B, 2 - pars[k], 2 - pars[k - 1]);
	}
	if (old == a + 1)
		curr = a;
	B = (middleAddedSequence[curr] - middleAddedSequence[old]) * (1 / (pars[k] - pars[k - 1]));
	A = middleAddedSequence[curr] - (2 - pars[k - 1]) * B;

	//Mixed integral
	P0 += int_B0a(A, B, 2 - pars[k], 1.0);
	P1 += int_B1a(A, B, 2 - pars[k], 1.0);
	P2 += int_B2a(A, B, 2 - pars[k], 1.0);

	//Sequence integral
	p += int_a2(A, B, 2 - pars[k], 1.0);

	p -= 2 * (ellProd(P0, CPs[4]) + ellProd(P1, CPs[3]) + ellProd(P2, CPs[2]));

	//OCCHIO! Ho visto ancora qualche p<0! Da rivedere - non dovrebbe...
	if (p > p_max || p < 0)
		return 0;
	else
		len.l = p;

	return 1;
}

//--------------------------------------------------------------------------

//-----------------------------
//      Convertion Mains
//-----------------------------

inline TStroke *convert(const Sequence &s, double penalty)
{
	SkeletonGraph *graph = s.m_graphHolder;

	TStroke *result;

	//First, we simplify the skeleton sequences found
	std::vector<unsigned int> reducedIndices;

	//NOTE: If s is circular, we have to protect head==tail 's adjacent nodes.
	//We then move away s tail and head, and insert them in the reducedIndices
	//apart from simplification.
	if (s.m_head == s.m_tail && graph->getNode(s.m_head).degree() == 2) {
		Sequence t = s;

		SequenceSimplifier simplifier(&t);
		reducedIndices.push_back(s.m_head);

		t.m_head = graph->getNode(s.m_head).getLink(0).getNext();
		t.m_headLink = !graph->getNode(t.m_head).linkOfNode(s.m_head);
		t.m_tail = graph->getNode(s.m_tail).getLink(1).getNext();
		t.m_tailLink = !graph->getNode(t.m_tail).linkOfNode(s.m_tail);

		simplifier.simplify(reducedIndices);
		reducedIndices.push_back(s.m_tail);
	} else {
		SequenceSimplifier simplifier(&s);
		simplifier.simplify(reducedIndices);
	}

	//For segments, apply this immediate conversion
	if (reducedIndices.size() == 2) {
		std::vector<TThickPoint> segment(3);
		segment[0] = *graph->getNode(s.m_head);
		segment[1] = (*graph->getNode(s.m_head) +
					  *graph->getNode(s.m_tail)) *
					 0.5;
		segment[2] = *graph->getNode(s.m_tail);
		return new TStroke(segment);
	}

	//Then, we convert the sequence in a quadratic stroke
	SequenceConverter converter(&s, penalty);
	result = converter(&reducedIndices);

	//If it is a circular stroke, setSelfLoop
	//NOTA: Sembra che pero' in questo modo non venga assegnato colore al confine con la cornice!!!
	//        => Solo nel caso outline...?
	//NOTA: Considera anche che pure le outline possono essere splittate per la colorazione!!
	//if(globals->currConfig->m_maxThickness == 0.0 && s.m_head == s.m_tail && s.m_graphHolder->getNode(s.m_head).degree() == 2) //globals->currConfig->m_outline
	//  result->setSelfLoop(true);

	//Pass the SkeletonArc::SS_OUTLINE attribute to the output stroke
	if (graph->getNode(s.m_head).getLink(s.m_headLink)->hasAttribute(SkeletonArc::SS_OUTLINE))
		result->setFlag(SkeletonArc::SS_OUTLINE, true);
	else if (graph->getNode(s.m_head).getLink(s.m_headLink)->hasAttribute(SkeletonArc::SS_OUTLINE_REVERSED))
		result->setFlag(SkeletonArc::SS_OUTLINE_REVERSED, true);

	return result;
}

//--------------------------------------------------------------------------

//Converts each forward or single Sequence of the image in its corresponding
//TStroke. Output is a vector<TStroke*>* whose ownership belongs to the user.
//This allow sorts on the TStroke vector *before* adding any stroke to the
//output TVectorImage.
//std::vector<TStroke*>* conversionToStrokes(void)
void conversionToStrokes(std::vector<TStroke *> &strokes, VectorizerCoreGlobals &g)
{
	SequenceList &singleSequences = g.singleSequences;
	JointSequenceGraphList &organizedGraphs = g.organizedGraphs;
	double penalty = g.currConfig->m_penalty;

	unsigned int i, j, k;

	//Convert single sequences
	for (i = 0; i < singleSequences.size(); ++i) {
		if (singleSequences[i].m_head == singleSequences[i].m_tail) {
			//If the sequence is circular, move your endpoints to an edge middle, in order
			//to allow a soft junction
			SkeletonGraph *currGraph = singleSequences[i].m_graphHolder;

			unsigned int head = singleSequences[i].m_head;
			unsigned int headLink = singleSequences[i].m_headLink;
			unsigned int next = currGraph->getNode(head).getLink(headLink).getNext();
			unsigned int nextLink = currGraph->getNode(next).linkOfNode(head);

			unsigned int addedNode =
				singleSequences[i].m_graphHolder->newNode((*currGraph->getNode(head) + *currGraph->getNode(next)) * 0.5);

			singleSequences[i].m_graphHolder->insert(addedNode, head, headLink);
			*singleSequences[i].m_graphHolder->node(addedNode).link(0) =
				*singleSequences[i].m_graphHolder->node(head).link(headLink);

			singleSequences[i].m_graphHolder->insert(addedNode, next, nextLink);
			*singleSequences[i].m_graphHolder->node(addedNode).link(1) =
				*singleSequences[i].m_graphHolder->node(next).link(nextLink);

			singleSequences[i].m_head = addedNode;
			singleSequences[i].m_headLink = 0;
			singleSequences[i].m_tail = addedNode;
			singleSequences[i].m_tailLink = 1;
		}

		strokes.push_back(convert(singleSequences[i], penalty));
	}

	//Convert graph sequences
	for (i = 0; i < organizedGraphs.size(); ++i)
		for (j = 0; j < organizedGraphs[i].getNodesCount(); ++j)
			if (!organizedGraphs[i].getNode(j).hasAttribute(JointSequenceGraph::ELIMINATED))
				//Otherwise eliminated by junction recovery
				for (k = 0; k < organizedGraphs[i].getNode(j).getLinksCount(); ++k) {
					//A sequence is taken at both extremities in our organized graphs
					if (organizedGraphs[i].getNode(j).getLink(k)->isForward())
						strokes.push_back(convert(*organizedGraphs[i].getNode(j).getLink(k), penalty));
				}
}