Blob Blame Raw
/*
  Modified tif_getimage.c that takes uint64 as output pixel type
*/

/* $Id: tif_getimage.c,v 1.82 2012-06-06 00:17:49 fwarmerdam Exp $ */

/*
 * Copyright (c) 1991-1997 Sam Leffler
 * Copyright (c) 1991-1997 Silicon Graphics, Inc.
 *
 * Permission to use, copy, modify, distribute, and sell this software and 
 * its documentation for any purpose is hereby granted without fee, provided
 * that (i) the above copyright notices and this permission notice appear in
 * all copies of the software and related documentation, and (ii) the names of
 * Sam Leffler and Silicon Graphics may not be used in any advertising or
 * publicity relating to the software without the specific, prior written
 * permission of Sam Leffler and Silicon Graphics.
 * 
 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY 
 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
 * 
 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF 
 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 
 * OF THIS SOFTWARE.
 */

/*
 * TIFF Library
 *
 * Read and return a packed RGBA image.
 */
#include "tiffiop.h"
#include <stdio.h>

typedef int (*gtFunc_32)(TIFFRGBAImage *, uint32 *, uint32, uint32);
typedef int (*gtFunc_64)(TIFFRGBAImage *, uint64 *, uint32, uint32);
typedef void (*tileContigRoutine_64)(TIFFRGBAImage *, uint64 *, uint32, uint32, uint32, uint32, int32, int32,
									 unsigned char *);
typedef void (*tileSeparateRoutine_64)(TIFFRGBAImage *, uint64 *, uint32, uint32, uint32, uint32, int32, int32,
									   unsigned char *, unsigned char *, unsigned char *, unsigned char *);

static int gtTileContig(TIFFRGBAImage *, uint64 *, uint32, uint32);
static int gtTileSeparate(TIFFRGBAImage *, uint64 *, uint32, uint32);
static int gtStripContig(TIFFRGBAImage *, uint64 *, uint32, uint32);
static int gtStripSeparate(TIFFRGBAImage *, uint64 *, uint32, uint32);
static int PickContigCase(TIFFRGBAImage *);
static int PickSeparateCase(TIFFRGBAImage *);

static int BuildMapUaToAa(TIFFRGBAImage *img);
static int BuildMapBitdepth16To8(TIFFRGBAImage *img);

static const char photoTag[] = "PhotometricInterpretation";

/* 
 * Helper constants used in Orientation tag handling
 */
#define FLIP_VERTICALLY 0x01
#define FLIP_HORIZONTALLY 0x02

/*
 * Color conversion constants. We will define display types here.
 */

static const TIFFDisplay display_sRGB = {
	{/* XYZ -> luminance matrix */
	 {3.2410F, -1.5374F, -0.4986F},
	 {-0.9692F, 1.8760F, 0.0416F},
	 {0.0556F, -0.2040F, 1.0570F}},
	100.0F,
	100.0F,
	100.0F, /* Light o/p for reference white */
	255,
	255,
	255, /* Pixel values for ref. white */
	1.0F,
	1.0F,
	1.0F, /* Residual light o/p for black pixel */
	2.4F,
	2.4F,
	2.4F, /* Gamma values for the three guns */
};

static int
isCCITTCompression(TIFF *tif)
{
	uint16 compress;
	TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
	return (compress == COMPRESSION_CCITTFAX3 ||
			compress == COMPRESSION_CCITTFAX4 ||
			compress == COMPRESSION_CCITTRLE ||
			compress == COMPRESSION_CCITTRLEW);
}

int TIFFRGBAImageBegin_64(TIFFRGBAImage *img, TIFF *tif, int stop, char emsg[1024])
{
	uint16 *sampleinfo;
	uint16 extrasamples;
	uint16 planarconfig;
	uint16 compress;
	int colorchannels;
	uint16 *red_orig, *green_orig, *blue_orig;
	int n_color;

	/* Initialize to normal values */
	img->row_offset = 0;
	img->col_offset = 0;
	img->redcmap = NULL;
	img->greencmap = NULL;
	img->bluecmap = NULL;
	img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */

	img->tif = tif;
	img->stoponerr = stop;
	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
	switch (img->bitspersample) {
	case 1:
	case 2:
	case 4:
	case 8:
	case 16:
		break;
	default:
		sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
				img->bitspersample);
		goto fail_return;
	}
	img->alpha = 0;
	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
						  &extrasamples, &sampleinfo);
	if (extrasamples >= 1) {
		switch (sampleinfo[0]) {
		case EXTRASAMPLE_UNSPECIFIED:	 /* Workaround for some images without */
			if (img->samplesperpixel > 3) /* correct info about alpha channel */
				img->alpha = EXTRASAMPLE_ASSOCALPHA;
			break;
		case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */
		case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */
			img->alpha = sampleinfo[0];
			break;
		}
	}

#ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
		img->photometric = PHOTOMETRIC_MINISWHITE;

	if (extrasamples == 0 && img->samplesperpixel == 4 && img->photometric == PHOTOMETRIC_RGB) {
		img->alpha = EXTRASAMPLE_ASSOCALPHA;
		extrasamples = 1;
	}
#endif

	colorchannels = img->samplesperpixel - extrasamples;
	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
		switch (colorchannels) {
		case 1:
			if (isCCITTCompression(tif))
				img->photometric = PHOTOMETRIC_MINISWHITE;
			else
				img->photometric = PHOTOMETRIC_MINISBLACK;
			break;
		case 3:
			img->photometric = PHOTOMETRIC_RGB;
			break;
		default:
			sprintf(emsg, "Missing needed %s tag", photoTag);
			goto fail_return;
		}
	}
	switch (img->photometric) {
	case PHOTOMETRIC_PALETTE:
		if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
						  &red_orig, &green_orig, &blue_orig)) {
			sprintf(emsg, "Missing required \"Colormap\" tag");
			goto fail_return;
		}

		/* copy the colormaps so we can modify them */
		n_color = (1L << img->bitspersample);
		img->redcmap = (uint16 *)_TIFFmalloc(sizeof(uint16) * n_color);
		img->greencmap = (uint16 *)_TIFFmalloc(sizeof(uint16) * n_color);
		img->bluecmap = (uint16 *)_TIFFmalloc(sizeof(uint16) * n_color);
		if (!img->redcmap || !img->greencmap || !img->bluecmap) {
			sprintf(emsg, "Out of memory for colormap copy");
			goto fail_return;
		}

		_TIFFmemcpy(img->redcmap, red_orig, n_color * 2);
		_TIFFmemcpy(img->greencmap, green_orig, n_color * 2);
		_TIFFmemcpy(img->bluecmap, blue_orig, n_color * 2);

	/* fall thru... */
	case PHOTOMETRIC_MINISWHITE:
	case PHOTOMETRIC_MINISBLACK:
		if (planarconfig == PLANARCONFIG_CONTIG && img->samplesperpixel != 1 && img->bitspersample < 8) {
			sprintf(emsg,
					"Sorry, can not handle contiguous data with %s=%d, "
					"and %s=%d and Bits/Sample=%d",
					photoTag, img->photometric,
					"Samples/pixel", img->samplesperpixel,
					img->bitspersample);
			goto fail_return;
		}
		break;
	case PHOTOMETRIC_YCBCR:
		/* It would probably be nice to have a reality check here. */
		if (planarconfig == PLANARCONFIG_CONTIG)
			/* can rely on libjpeg to convert to RGB */
			/* XXX should restore current state on exit */
			switch (compress) {
			case COMPRESSION_JPEG:
				/*
						 * TODO: when complete tests verify complete desubsampling
						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
						 * favor of tif_getimage.c native handling
						 */
				TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
				img->photometric = PHOTOMETRIC_RGB;
				break;
			default:
				/* do nothing */;
				break;
			}
		/*
			 * TODO: if at all meaningful and useful, make more complete
			 * support check here, or better still, refactor to let supporting
			 * code decide whether there is support and what meaningfull
			 * error to return
			 */
		break;
	case PHOTOMETRIC_RGB:
		if (colorchannels < 3) {
			sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
					"Color channels", colorchannels);
			goto fail_return;
		}
		break;
	case PHOTOMETRIC_SEPARATED: {
		uint16 inkset;
		TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
		if (inkset != INKSET_CMYK) {
			sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
					"InkSet", inkset);
			goto fail_return;
		}
		if (img->samplesperpixel < 4) {
			sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
					"Samples/pixel", img->samplesperpixel);
			goto fail_return;
		}
	} break;
	case PHOTOMETRIC_LOGL:
		if (compress != COMPRESSION_SGILOG) {
			sprintf(emsg, "Sorry, LogL data must have %s=%d",
					"Compression", COMPRESSION_SGILOG);
			goto fail_return;
		}
		TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
		img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */
		img->bitspersample = 8;
		break;
	case PHOTOMETRIC_LOGLUV:
		if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
			sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
					"Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
			goto fail_return;
		}
		if (planarconfig != PLANARCONFIG_CONTIG) {
			sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
					"Planarconfiguration", planarconfig);
			return (0);
		}
		TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
		img->photometric = PHOTOMETRIC_RGB; /* little white lie */
		img->bitspersample = 8;
		break;
	case PHOTOMETRIC_CIELAB:
		break;
	default:
		sprintf(emsg, "Sorry, can not handle image with %s=%d",
				photoTag, img->photometric);
		goto fail_return;
	}
	img->Map = NULL;
	img->BWmap = NULL;
	img->PALmap = NULL;
	img->ycbcr = NULL;
	img->cielab = NULL;
	img->UaToAa = NULL;
	img->Bitdepth16To8 = NULL;
	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
	img->isContig =
		!(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
	if (img->isContig) {
		if (!PickContigCase(img)) {
			sprintf(emsg, "Sorry, can not handle image");
			goto fail_return;
		}
	} else {
		if (!PickSeparateCase(img)) {
			sprintf(emsg, "Sorry, can not handle image");
			goto fail_return;
		}
	}
	return 1;

fail_return:
	_TIFFfree(img->redcmap);
	_TIFFfree(img->greencmap);
	_TIFFfree(img->bluecmap);
	img->redcmap = img->greencmap = img->bluecmap = NULL;
	return 0;
}

int TIFFRGBAImageGet_64(TIFFRGBAImage *img, uint64 *raster, uint32 w, uint32 h)
{
	gtFunc_64 get = (gtFunc_64)img->get;

	if (img->get == NULL) {
		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
		return (0);
	}
	if (img->put.any == NULL) {
		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
					 "No \"put\" routine setupl; probably can not handle image format");
		return (0);
	}

	// Casting between 2 function pointers is allowed in and C++ and works as expected
	// if re-casted back.
	// See C 6.3.2.3 (8) and 5.2.10 (6)

	return (*get)(img, raster, w, h);
}

static int
setorientation(TIFFRGBAImage *img)
{
	switch (img->orientation) {
	case ORIENTATION_TOPLEFT:
	case ORIENTATION_LEFTTOP:
		if (img->req_orientation == ORIENTATION_TOPRIGHT ||
			img->req_orientation == ORIENTATION_RIGHTTOP)
			return FLIP_HORIZONTALLY;
		else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
				 img->req_orientation == ORIENTATION_RIGHTBOT)
			return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
		else if (img->req_orientation == ORIENTATION_BOTLEFT ||
				 img->req_orientation == ORIENTATION_LEFTBOT)
			return FLIP_VERTICALLY;
		else
			return 0;
	case ORIENTATION_TOPRIGHT:
	case ORIENTATION_RIGHTTOP:
		if (img->req_orientation == ORIENTATION_TOPLEFT ||
			img->req_orientation == ORIENTATION_LEFTTOP)
			return FLIP_HORIZONTALLY;
		else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
				 img->req_orientation == ORIENTATION_RIGHTBOT)
			return FLIP_VERTICALLY;
		else if (img->req_orientation == ORIENTATION_BOTLEFT ||
				 img->req_orientation == ORIENTATION_LEFTBOT)
			return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
		else
			return 0;
	case ORIENTATION_BOTRIGHT:
	case ORIENTATION_RIGHTBOT:
		if (img->req_orientation == ORIENTATION_TOPLEFT ||
			img->req_orientation == ORIENTATION_LEFTTOP)
			return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
		else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
				 img->req_orientation == ORIENTATION_RIGHTTOP)
			return FLIP_VERTICALLY;
		else if (img->req_orientation == ORIENTATION_BOTLEFT ||
				 img->req_orientation == ORIENTATION_LEFTBOT)
			return FLIP_HORIZONTALLY;
		else
			return 0;
	case ORIENTATION_BOTLEFT:
	case ORIENTATION_LEFTBOT:
		if (img->req_orientation == ORIENTATION_TOPLEFT ||
			img->req_orientation == ORIENTATION_LEFTTOP)
			return FLIP_VERTICALLY;
		else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
				 img->req_orientation == ORIENTATION_RIGHTTOP)
			return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
		else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
				 img->req_orientation == ORIENTATION_RIGHTBOT)
			return FLIP_HORIZONTALLY;
		else
			return 0;
	default: /* NOTREACHED */
		return 0;
	}
}

/*
 * Get an tile-organized image that has
 *	PlanarConfiguration contiguous if SamplesPerPixel > 1
 * or
 *	SamplesPerPixel == 1
 */
static int
gtTileContig(TIFFRGBAImage *img, uint64 *raster, uint32 w, uint32 h)
{
	TIFF *tif = img->tif;
	tileContigRoutine_64 put = (tileContigRoutine_64)img->put.contig;
	uint32 col, row, y, rowstoread;
	tmsize_t pos;
	uint32 tw, th;
	unsigned char *buf;
	int32 fromskew, toskew;
	uint32 nrow;
	int ret = 1, flip;

	buf = (unsigned char *)_TIFFmalloc(TIFFTileSize(tif));
	if (buf == 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
		return (0);
	}
	_TIFFmemset(buf, 0, TIFFTileSize(tif));
	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);

	flip = setorientation(img);
	if (flip & FLIP_VERTICALLY) {
		y = h - 1;
		toskew = -(int32)(tw + w);
	} else {
		y = 0;
		toskew = -(int32)(tw - w);
	}

	for (row = 0; row < h; row += nrow) {
		rowstoread = th - (row + img->row_offset) % th;
		nrow = (row + rowstoread > h ? h - row : rowstoread);
		for (col = 0; col < w; col += tw) {
			if (TIFFReadTile(tif, buf, col + img->col_offset,
							 row + img->row_offset, 0, 0) == (tmsize_t)(-1) &&
				img->stoponerr) {
				ret = 0;
				break;
			}

			pos = ((row + img->row_offset) % th) * TIFFTileRowSize(tif);

			if (col + tw > w) {
				/*
                 * Tile is clipped horizontally.  Calculate
                 * visible portion and skewing factors.
                 */
				uint32 npix = w - col;
				fromskew = tw - npix;
				(*put)(img, raster + y * w + col, col, y,
					   npix, nrow, fromskew, toskew + fromskew, buf + pos);
			} else {
				(*put)(img, raster + y * w + col, col, y, tw, nrow, 0, toskew, buf + pos);
			}
		}

		y += (flip & FLIP_VERTICALLY ? -(int32)nrow : (int32)nrow);
	}
	_TIFFfree(buf);

	if (flip & FLIP_HORIZONTALLY) {
		uint32 line;

		for (line = 0; line < h; line++) {
			uint64 *left = raster + (line * w);
			uint64 *right = left + w - 1;

			while (left < right) {
				uint64 temp = *left;
				*left = *right;
				*right = temp;
				left++, right--;
			}
		}
	}

	return (ret);
}

/*
 * Get an tile-organized image that has
 *	 SamplesPerPixel > 1
 *	 PlanarConfiguration separated
 * We assume that all such images are RGB.
 */
static int
gtTileSeparate(TIFFRGBAImage *img, uint64 *raster, uint32 w, uint32 h)
{
	TIFF *tif = img->tif;
	tileSeparateRoutine_64 put = (tileSeparateRoutine_64)img->put.separate;
	uint32 col, row, y, rowstoread;
	tmsize_t pos;
	uint32 tw, th;
	unsigned char *buf;
	unsigned char *p0;
	unsigned char *p1;
	unsigned char *p2;
	unsigned char *pa;
	tmsize_t tilesize;
	tmsize_t bufsize;
	int32 fromskew, toskew;
	int alpha = img->alpha;
	uint32 nrow;
	int ret = 1, flip;
	int colorchannels;

	tilesize = TIFFTileSize(tif);
	bufsize = TIFFSafeMultiply(tmsize_t, alpha ? 4 : 3, tilesize);
	if (bufsize == 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
		return (0);
	}
	buf = (unsigned char *)_TIFFmalloc(bufsize);
	if (buf == 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
		return (0);
	}
	_TIFFmemset(buf, 0, bufsize);
	p0 = buf;
	p1 = p0 + tilesize;
	p2 = p1 + tilesize;
	pa = (alpha ? (p2 + tilesize) : NULL);
	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);

	flip = setorientation(img);
	if (flip & FLIP_VERTICALLY) {
		y = h - 1;
		toskew = -(int32)(tw + w);
	} else {
		y = 0;
		toskew = -(int32)(tw - w);
	}

	switch (img->photometric) {
	case PHOTOMETRIC_MINISWHITE:
	case PHOTOMETRIC_MINISBLACK:
	case PHOTOMETRIC_PALETTE:
		colorchannels = 1;
		p2 = p1 = p0;
		break;

	default:
		colorchannels = 3;
		break;
	}

	for (row = 0; row < h; row += nrow) {
		rowstoread = th - (row + img->row_offset) % th;
		nrow = (row + rowstoread > h ? h - row : rowstoread);
		for (col = 0; col < w; col += tw) {
			if (TIFFReadTile(tif, p0, col + img->col_offset,
							 row + img->row_offset, 0, 0) == (tmsize_t)(-1) &&
				img->stoponerr) {
				ret = 0;
				break;
			}
			if (colorchannels > 1 && TIFFReadTile(tif, p1, col + img->col_offset, row + img->row_offset, 0, 1) == (tmsize_t)(-1) && img->stoponerr) {
				ret = 0;
				break;
			}
			if (colorchannels > 1 && TIFFReadTile(tif, p2, col + img->col_offset, row + img->row_offset, 0, 2) == (tmsize_t)(-1) && img->stoponerr) {
				ret = 0;
				break;
			}
			if (alpha && TIFFReadTile(tif, pa, col + img->col_offset, row + img->row_offset, 0, colorchannels) == (tmsize_t)(-1) && img->stoponerr) {
				ret = 0;
				break;
			}

			pos = ((row + img->row_offset) % th) * TIFFTileRowSize(tif);

			if (col + tw > w) {
				/*
				 * Tile is clipped horizontally.  Calculate
				 * visible portion and skewing factors.
				 */
				uint32 npix = w - col;
				fromskew = tw - npix;
				(*put)(img, raster + y * w + col, col, y,
					   npix, nrow, fromskew, toskew + fromskew,
					   p0 + pos, p1 + pos, p2 + pos, (alpha ? (pa + pos) : NULL));
			} else {
				(*put)(img, raster + y * w + col, col, y,
					   tw, nrow, 0, toskew, p0 + pos, p1 + pos, p2 + pos, (alpha ? (pa + pos) : NULL));
			}
		}

		y += (flip & FLIP_VERTICALLY ? -(int32)nrow : (int32)nrow);
	}

	if (flip & FLIP_HORIZONTALLY) {
		uint32 line;

		for (line = 0; line < h; line++) {
			uint64 *left = raster + (line * w);
			uint64 *right = left + w - 1;

			while (left < right) {
				uint64 temp = *left;
				*left = *right;
				*right = temp;
				left++, right--;
			}
		}
	}

	_TIFFfree(buf);
	return (ret);
}

/*
 * Get a strip-organized image that has
 *	PlanarConfiguration contiguous if SamplesPerPixel > 1
 * or
 *	SamplesPerPixel == 1
 */
static int
gtStripContig(TIFFRGBAImage *img, uint64 *raster, uint32 w, uint32 h)
{
	TIFF *tif = img->tif;
	tileContigRoutine_64 put = (tileContigRoutine_64)img->put.contig;
	uint32 row, y, nrow, nrowsub, rowstoread;
	tmsize_t pos;
	unsigned char *buf;
	uint32 rowsperstrip;
	uint16 subsamplinghor, subsamplingver;
	uint32 imagewidth = img->width;
	tmsize_t scanline;
	int32 fromskew, toskew;
	int ret = 1, flip;

	buf = (unsigned char *)_TIFFmalloc(TIFFStripSize(tif));
	if (buf == 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer");
		return (0);
	}
	_TIFFmemset(buf, 0, TIFFStripSize(tif));

	flip = setorientation(img);
	if (flip & FLIP_VERTICALLY) {
		y = h - 1;
		toskew = -(int32)(w + w);
	} else {
		y = 0;
		toskew = -(int32)(w - w);
	}

	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
	scanline = TIFFScanlineSize(tif);
	fromskew = (w < imagewidth ? imagewidth - w : 0);
	for (row = 0; row < h; row += nrow) {
		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
		nrow = (row + rowstoread > h ? h - row : rowstoread);
		nrowsub = nrow;
		if ((nrowsub % subsamplingver) != 0)
			nrowsub += subsamplingver - nrowsub % subsamplingver;
		if (TIFFReadEncodedStrip(tif,
								 TIFFComputeStrip(tif, row + img->row_offset, 0),
								 buf,
								 ((row + img->row_offset) % rowsperstrip + nrowsub) * scanline) == (tmsize_t)(-1) &&
			img->stoponerr) {
			ret = 0;
			break;
		}

		pos = ((row + img->row_offset) % rowsperstrip) * scanline;
		(*put)(img, raster + y * w, 0, y, w, nrow, fromskew, toskew, buf + pos);
		y += (flip & FLIP_VERTICALLY ? -(int32)nrow : (int32)nrow);
	}

	if (flip & FLIP_HORIZONTALLY) {
		uint32 line;

		for (line = 0; line < h; line++) {
			uint64 *left = raster + (line * w);
			uint64 *right = left + w - 1;

			while (left < right) {
				uint64 temp = *left;
				*left = *right;
				*right = temp;
				left++, right--;
			}
		}
	}

	_TIFFfree(buf);
	return (ret);
}

/*
 * Get a strip-organized image with
 *	 SamplesPerPixel > 1
 *	 PlanarConfiguration separated
 * We assume that all such images are RGB.
 */
static int
gtStripSeparate(TIFFRGBAImage *img, uint64 *raster, uint32 w, uint32 h)
{
	TIFF *tif = img->tif;
	tileSeparateRoutine_64 put = (tileSeparateRoutine_64)img->put.separate;
	unsigned char *buf;
	unsigned char *p0, *p1, *p2, *pa;
	uint32 row, y, nrow, rowstoread;
	tmsize_t pos;
	tmsize_t scanline;
	uint32 rowsperstrip, offset_row;
	uint32 imagewidth = img->width;
	tmsize_t stripsize;
	tmsize_t bufsize;
	int32 fromskew, toskew;
	int alpha = img->alpha;
	int ret = 1, flip, colorchannels;

	stripsize = TIFFStripSize(tif);
	bufsize = TIFFSafeMultiply(tmsize_t, alpha ? 4 : 3, stripsize);
	if (bufsize == 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
		return (0);
	}
	p0 = buf = (unsigned char *)_TIFFmalloc(bufsize);
	if (buf == 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer");
		return (0);
	}
	_TIFFmemset(buf, 0, bufsize);
	p1 = p0 + stripsize;
	p2 = p1 + stripsize;
	pa = (alpha ? (p2 + stripsize) : NULL);

	flip = setorientation(img);
	if (flip & FLIP_VERTICALLY) {
		y = h - 1;
		toskew = -(int32)(w + w);
	} else {
		y = 0;
		toskew = -(int32)(w - w);
	}

	switch (img->photometric) {
	case PHOTOMETRIC_MINISWHITE:
	case PHOTOMETRIC_MINISBLACK:
	case PHOTOMETRIC_PALETTE:
		colorchannels = 1;
		p2 = p1 = p0;
		break;

	default:
		colorchannels = 3;
		break;
	}

	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
	scanline = TIFFScanlineSize(tif);
	fromskew = (w < imagewidth ? imagewidth - w : 0);
	for (row = 0; row < h; row += nrow) {
		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
		nrow = (row + rowstoread > h ? h - row : rowstoread);
		offset_row = row + img->row_offset;
		if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
								 p0, ((row + img->row_offset) % rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) &&
			img->stoponerr) {
			ret = 0;
			break;
		}
		if (colorchannels > 1 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), p1, ((row + img->row_offset) % rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) && img->stoponerr) {
			ret = 0;
			break;
		}
		if (colorchannels > 1 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), p2, ((row + img->row_offset) % rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) && img->stoponerr) {
			ret = 0;
			break;
		}
		if (alpha) {
			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
									 pa, ((row + img->row_offset) % rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) &&
				img->stoponerr) {
				ret = 0;
				break;
			}
		}

		pos = ((row + img->row_offset) % rowsperstrip) * scanline;
		(*put)(img, raster + y * w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
			   p2 + pos, (alpha ? (pa + pos) : NULL));
		y += (flip & FLIP_VERTICALLY ? -(int32)nrow : (int32)nrow);
	}

	if (flip & FLIP_HORIZONTALLY) {
		uint32 line;

		for (line = 0; line < h; line++) {
			uint64 *left = raster + (line * w);
			uint64 *right = left + w - 1;

			while (left < right) {
				uint64 temp = *left;
				*left = *right;
				*right = temp;
				left++, right--;
			}
		}
	}

	_TIFFfree(buf);
	return (ret);
}

/*
 * The following routines move decoded data returned
 * from the TIFF library into rasters filled with packed
 * ABGR pixels (i.e. suitable for passing to lrecwrite.)
 *
 * The routines have been created according to the most
 * important cases and optimized.  PickContigCase and
 * PickSeparateCase analyze the parameters and select
 * the appropriate "get" and "put" routine to use.
 */
#define REPEAT8(op) \
	REPEAT4(op);    \
	REPEAT4(op)
#define REPEAT4(op) \
	REPEAT2(op);    \
	REPEAT2(op)
#define REPEAT2(op) \
	op;             \
	op
#define CASE8(x, op) \
	switch (x) {     \
	case 7:          \
		op;          \
	case 6:          \
		op;          \
	case 5:          \
		op;          \
	case 4:          \
		op;          \
	case 3:          \
		op;          \
	case 2:          \
		op;          \
	case 1:          \
		op;          \
	}
#define CASE4(x, op) \
	switch (x) {     \
	case 3:          \
		op;          \
	case 2:          \
		op;          \
	case 1:          \
		op;          \
	}
#define NOP

#define UNROLL8(w, op1, op2)             \
	{                                    \
		uint32 _x;                       \
		for (_x = w; _x >= 8; _x -= 8) { \
			op1;                         \
			REPEAT8(op2);                \
		}                                \
		if (_x > 0) {                    \
			op1;                         \
			CASE8(_x, op2);              \
		}                                \
	}
#define UNROLL4(w, op1, op2)             \
	{                                    \
		uint64 _x;                       \
		for (_x = w; _x >= 4; _x -= 4) { \
			op1;                         \
			REPEAT4(op2);                \
		}                                \
		if (_x > 0) {                    \
			op1;                         \
			CASE4(_x, op2);              \
		}                                \
	}
#define UNROLL2(w, op1, op2)             \
	{                                    \
		uint64 _x;                       \
		for (_x = w; _x >= 2; _x -= 2) { \
			op1;                         \
			REPEAT2(op2);                \
		}                                \
		if (_x) {                        \
			op1;                         \
			op2;                         \
		}                                \
	}

#define SKEW(r, g, b, skew) \
	{                       \
		r += skew;          \
		g += skew;          \
		b += skew;          \
	}
#define SKEW4(r, g, b, a, skew) \
	{                           \
		r += skew;              \
		g += skew;              \
		b += skew;              \
		a += skew;              \
	}

#define A1 (((uint64)0xffffL) << 48)
#define PACK_32(r, g, b) \
	((uint32)(r) | ((uint32)(g) << 8) | ((uint32)(b) << 16) | (0xff << 24))
#define PACK(r, g, b) \
	((uint64)(r) | ((uint64)(g) << 16) | ((uint64)(b) << 32) | A1)
#define PACK4(r, g, b, a) \
	((uint64)(r) | ((uint64)(g) << 16) | ((uint64)(b) << 32) | ((uint64)(a) << 48))
#define W2B(v) (((v) >> 16) & 0xffff)
/* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
#define PACKW(r, g, b) \
	((uint64)W2B(r) | ((uint64)W2B(g) << 16) | ((uint64)W2B(b) << 32) | A1)
#define PACKW4(r, g, b, a) \
	((uint64)W2B(r) | ((uint64)W2B(g) << 16) | ((uint64)W2B(b) << 32) | ((uint64)W2B(a) << 48))

#define DECLAREContigPutFunc(name)    \
	static void name(                 \
		TIFFRGBAImage *img,           \
		uint64 *cp,                   \
		uint32 x, uint32 y,           \
		uint32 w, uint32 h,           \
		int32 fromskew, int32 toskew, \
		unsigned char *pp)

/*
 * 8-bit greyscale => colormap/RGB
 */
DECLAREContigPutFunc(putgreytile)
{
	int samplesperpixel = img->samplesperpixel;
	uint64 **BWmap = (uint64 **)img->BWmap;

	(void)y;
	while (h-- > 0) {
		for (x = w; x-- > 0;) {
			*cp++ = BWmap[*pp][0];
			pp += samplesperpixel;
		}
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 8-bit greyscale with associated alpha => colormap/RGBA
 */
DECLAREContigPutFunc(putagreytile)
{
	int samplesperpixel = img->samplesperpixel;
	uint64 **BWmap = (uint64 **)img->BWmap;

	(void)y;
	while (h-- > 0) {
		for (x = w; x-- > 0;) {
			*cp++ = BWmap[*pp][0] & ((uint64) * (pp + 1) << 48 | ~A1);
			pp += samplesperpixel;
		}
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 16-bit greyscale => colormap/RGB
 */
DECLAREContigPutFunc(put16bitbwtile)
{
	int samplesperpixel = img->samplesperpixel;
	uint64 **BWmap = (uint64 **)img->BWmap;

	(void)y;
	while (h-- > 0) {
		uint16 *wp = (uint16 *)pp;

		for (x = w; x-- > 0;) {
			/* use high order byte of 16bit value */

			*cp++ = BWmap[*wp >> 8][0];
			pp += 2 * samplesperpixel;
			wp += samplesperpixel;
		}
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 1-bit bilevel => colormap/RGB
 */
DECLAREContigPutFunc(put1bitbwtile)
{
	uint64 **BWmap = (uint64 **)img->BWmap;

	(void)x;
	(void)y;
	fromskew /= 8;
	while (h-- > 0) {
		uint64 *bw;
		UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 2-bit greyscale => colormap/RGB
 */
DECLAREContigPutFunc(put2bitbwtile)
{
	uint64 **BWmap = (uint64 **)img->BWmap;

	(void)x;
	(void)y;
	fromskew /= 4;
	while (h-- > 0) {
		uint64 *bw;
		UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 4-bit greyscale => colormap/RGB
 */
DECLAREContigPutFunc(put4bitbwtile)
{
	uint64 **BWmap = (uint64 **)img->BWmap;

	(void)x;
	(void)y;
	fromskew /= 2;
	while (h-- > 0) {
		uint64 *bw;
		UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 8-bit packed samples, no Map => RGB
 */
DECLAREContigPutFunc(putRGBcontig8bittile)
{
	int samplesperpixel = img->samplesperpixel;

	(void)x;
	(void)y;
	fromskew *= samplesperpixel;
	while (h-- > 0) {
		UNROLL8(w, NOP,
					   *cp++ = PACK(pp[0] << 8, pp[1] << 8, pp[2] << 8);
				pp += samplesperpixel);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 8-bit packed samples => RGBA
 * (known to have Map == NULL)
 */
DECLAREContigPutFunc(putRGBAAcontig8bittile)
{
	int samplesperpixel = img->samplesperpixel;

	(void)x;
	(void)y;
	fromskew *= samplesperpixel;
	while (h-- > 0) {
		UNROLL8(w, NOP,
					   *cp++ = PACK4(pp[0] << 8, pp[1] << 8, pp[2] << 8, pp[3] << 8);
				pp += samplesperpixel);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 16-bit packed samples => RGB
 */
DECLAREContigPutFunc(putRGBcontig16bittile)
{
	int samplesperpixel = img->samplesperpixel;
	uint16 *wp = (uint16 *)pp;
	(void)y;
	fromskew *= samplesperpixel;
	while (h-- > 0) {
		for (x = w; x-- > 0;) {
			*cp++ = PACK(wp[0], wp[1], wp[2]);
			wp += samplesperpixel;
		}
		cp += toskew;
		wp += fromskew;
	}
}

/*
 * 16-bit packed samples => RGBA w/ associated alpha
 * (known to have Map == NULL)
 */
DECLAREContigPutFunc(putRGBAAcontig16bittile)
{
	int samplesperpixel = img->samplesperpixel;
	uint16 *wp = (uint16 *)pp;
	(void)y;
	fromskew *= samplesperpixel;
	while (h-- > 0) {
		for (x = w; x-- > 0;) {
			*cp++ = PACK4(wp[0], wp[1], wp[2], wp[3]);
			wp += samplesperpixel;
		}
		cp += toskew;
		wp += fromskew;
	}
}

/*
 * 8-bit packed CMYK samples w/o Map => RGB
 *
 * NB: The conversion of CMYK->RGB is *very* crude.
 */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
{
	int samplesperpixel = img->samplesperpixel;
	uint16 r, g, b, k;

	(void)x;
	(void)y;
	fromskew *= samplesperpixel;
	while (h-- > 0) {
		UNROLL8(w, NOP,
				k = 255 - pp[3];
				r = (k * (255 - pp[0]));
				g = (k * (255 - pp[1]));
				b = (k * (255 - pp[2]));
					*cp++ = PACK(r, g, b);
				pp += samplesperpixel);
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * 8-bit packed CMYK samples w/Map => RGB
 *
 * NB: The conversion of CMYK->RGB is *very* crude.
 */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
{
	int samplesperpixel = img->samplesperpixel;
	TIFFRGBValue *Map = img->Map;
	uint16 r, g, b, k;

	(void)y;
	fromskew *= samplesperpixel;
	while (h-- > 0) {
		for (x = w; x-- > 0;) {
			k = 255 - pp[3];
			r = (k * (255 - pp[0])) / 255;
			g = (k * (255 - pp[1])) / 255;
			b = (k * (255 - pp[2])) / 255;
			*cp++ = PACK(Map[r] << 8, Map[g] << 8, Map[b] << 8);
			pp += samplesperpixel;
		}
		pp += fromskew;
		cp += toskew;
	}
}

#define DECLARESepPutFunc(name)       \
	static void name(                 \
		TIFFRGBAImage *img,           \
		uint64 *cp,                   \
		uint32 x, uint32 y,           \
		uint32 w, uint32 h,           \
		int32 fromskew, int32 toskew, \
		unsigned char *r, unsigned char *g, unsigned char *b, unsigned char *a)

/*
 * 8-bit unpacked samples => RGB
 */
DECLARESepPutFunc(putRGBseparate8bittile)
{
	(void)img;
	(void)x;
	(void)y;
	(void)a;
	while (h-- > 0) {
		UNROLL8(w, NOP, *cp++ = PACK(*r++ << 8, *g++ << 8, *b++ << 8));
		SKEW(r, g, b, fromskew);
		cp += toskew;
	}
}

/*
 * 8-bit unpacked samples => RGBA w/ associated alpha
 */
DECLARESepPutFunc(putRGBAAseparate8bittile)
{
	(void)img;
	(void)x;
	(void)y;
	while (h-- > 0) {
		UNROLL8(w, NOP, *cp++ = PACK4(*r++ << 8, *g++ << 8, *b++ << 8, *a++ << 8));
		SKEW4(r, g, b, a, fromskew);
		cp += toskew;
	}
}

/*
 * 8-bit unpacked CMYK samples => RGBA
 */
DECLARESepPutFunc(putCMYKseparate8bittile)
{
	(void)img;
	(void)y;
	while (h-- > 0) {
		uint32 rv, gv, bv, kv;
		for (x = w; x-- > 0;) {
			kv = 255 - *a++;
			rv = (kv * (255 - *r++));
			gv = (kv * (255 - *g++));
			bv = (kv * (255 - *b++));
			*cp++ = PACK4(rv, gv, bv, 65535);
		}
		SKEW4(r, g, b, a, fromskew);
		cp += toskew;
	}
}

/*
 * 16-bit unpacked samples => RGB
 */
DECLARESepPutFunc(putRGBseparate16bittile)
{
	uint16 *wr = (uint16 *)r;
	uint16 *wg = (uint16 *)g;
	uint16 *wb = (uint16 *)b;
	(void)img;
	(void)y;
	(void)a;
	while (h-- > 0) {
		for (x = 0; x < w; x++)
			*cp++ = PACK(*wr++, *wg++, *wb++);
		SKEW(wr, wg, wb, fromskew);
		cp += toskew;
	}
}

/*
 * 16-bit unpacked samples => RGBA w/ associated alpha
 */
DECLARESepPutFunc(putRGBAAseparate16bittile)
{
	uint16 *wr = (uint16 *)r;
	uint16 *wg = (uint16 *)g;
	uint16 *wb = (uint16 *)b;
	uint16 *wa = (uint16 *)a;
	(void)img;
	(void)y;
	while (h-- > 0) {
		for (x = 0; x < w; x++)
			*cp++ = PACK4(*wr++, *wg++, *wb++, *wa++);
		SKEW4(wr, wg, wb, wa, fromskew);
		cp += toskew;
	}
}

/*
 * 8-bit packed CIE L*a*b 1976 samples => RGB
 */
DECLAREContigPutFunc(putcontig8bitCIELab)
{
	float X, Y, Z;
	uint32 r, g, b;
	(void)y;
	fromskew *= 3;
	while (h-- > 0) {
		for (x = w; x-- > 0;) {
			TIFFCIELabToXYZ(img->cielab,
							(unsigned char)pp[0],
							(signed char)pp[1],
							(signed char)pp[2],
							&X, &Y, &Z);
			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
			*cp++ = PACK(r << 8, g << 8, b << 8);
			pp += 3;
		}
		cp += toskew;
		pp += fromskew;
	}
}

/*
 * YCbCr -> RGB conversion and packing routines.
 */

#define YCbCrtoRGB(dst, Y)                                                \
	{                                                                     \
		uint32 r, g, b;                                                   \
		TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);              \
		dst = PACK(((uint64)r) << 8, ((uint64)g) << 8, ((uint64)b) << 8); \
	}

/*
 * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
{
	uint64 *cp1 = cp + w + toskew;
	uint64 *cp2 = cp1 + w + toskew;
	uint64 *cp3 = cp2 + w + toskew;
	int32 incr = 3 * w + 4 * toskew;

	(void)y;
	/* adjust fromskew */
	fromskew = (fromskew * 18) / 4;
	if ((h & 3) == 0 && (w & 3) == 0) {
		for (; h >= 4; h -= 4) {
			x = w >> 2;
			do {
				int32 Cb = pp[16];
				int32 Cr = pp[17];

				YCbCrtoRGB(cp[0], pp[0]);
				YCbCrtoRGB(cp[1], pp[1]);
				YCbCrtoRGB(cp[2], pp[2]);
				YCbCrtoRGB(cp[3], pp[3]);
				YCbCrtoRGB(cp1[0], pp[4]);
				YCbCrtoRGB(cp1[1], pp[5]);
				YCbCrtoRGB(cp1[2], pp[6]);
				YCbCrtoRGB(cp1[3], pp[7]);
				YCbCrtoRGB(cp2[0], pp[8]);
				YCbCrtoRGB(cp2[1], pp[9]);
				YCbCrtoRGB(cp2[2], pp[10]);
				YCbCrtoRGB(cp2[3], pp[11]);
				YCbCrtoRGB(cp3[0], pp[12]);
				YCbCrtoRGB(cp3[1], pp[13]);
				YCbCrtoRGB(cp3[2], pp[14]);
				YCbCrtoRGB(cp3[3], pp[15]);

				cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
				pp += 18;
			} while (--x);
			cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
			pp += fromskew;
		}
	} else {
		while (h > 0) {
			for (x = w; x > 0;) {
				int32 Cb = pp[16];
				int32 Cr = pp[17];
				switch (x) {
				default:
					switch (h) {
					default:
						YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
					case 3:
						YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
					case 2:
						YCbCrtoRGB(cp1[3], pp[7]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[3], pp[3]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				case 3:
					switch (h) {
					default:
						YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
					case 3:
						YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
					case 2:
						YCbCrtoRGB(cp1[2], pp[6]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[2], pp[2]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				case 2:
					switch (h) {
					default:
						YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
					case 3:
						YCbCrtoRGB(cp2[1], pp[9]); /* FALLTHROUGH */
					case 2:
						YCbCrtoRGB(cp1[1], pp[5]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[1], pp[1]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				case 1:
					switch (h) {
					default:
						YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
					case 3:
						YCbCrtoRGB(cp2[0], pp[8]); /* FALLTHROUGH */
					case 2:
						YCbCrtoRGB(cp1[0], pp[4]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[0], pp[0]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				}
				if (x < 4) {
					cp += x;
					cp1 += x;
					cp2 += x;
					cp3 += x;
					x = 0;
				} else {
					cp += 4;
					cp1 += 4;
					cp2 += 4;
					cp3 += 4;
					x -= 4;
				}
				pp += 18;
			}
			if (h <= 4)
				break;
			h -= 4;
			cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
			pp += fromskew;
		}
	}
}

/*
 * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
{
	uint64 *cp1 = cp + w + toskew;
	int32 incr = 2 * toskew + w;

	(void)y;
	fromskew = (fromskew * 10) / 4;
	if ((h & 3) == 0 && (w & 1) == 0) {
		for (; h >= 2; h -= 2) {
			x = w >> 2;
			do {
				int32 Cb = pp[8];
				int32 Cr = pp[9];

				YCbCrtoRGB(cp[0], pp[0]);
				YCbCrtoRGB(cp[1], pp[1]);
				YCbCrtoRGB(cp[2], pp[2]);
				YCbCrtoRGB(cp[3], pp[3]);
				YCbCrtoRGB(cp1[0], pp[4]);
				YCbCrtoRGB(cp1[1], pp[5]);
				YCbCrtoRGB(cp1[2], pp[6]);
				YCbCrtoRGB(cp1[3], pp[7]);

				cp += 4, cp1 += 4;
				pp += 10;
			} while (--x);
			cp += incr, cp1 += incr;
			pp += fromskew;
		}
	} else {
		while (h > 0) {
			for (x = w; x > 0;) {
				int32 Cb = pp[8];
				int32 Cr = pp[9];
				switch (x) {
				default:
					switch (h) {
					default:
						YCbCrtoRGB(cp1[3], pp[7]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[3], pp[3]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				case 3:
					switch (h) {
					default:
						YCbCrtoRGB(cp1[2], pp[6]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[2], pp[2]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				case 2:
					switch (h) {
					default:
						YCbCrtoRGB(cp1[1], pp[5]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[1], pp[1]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				case 1:
					switch (h) {
					default:
						YCbCrtoRGB(cp1[0], pp[4]); /* FALLTHROUGH */
					case 1:
						YCbCrtoRGB(cp[0], pp[0]); /* FALLTHROUGH */
					}							  /* FALLTHROUGH */
				}
				if (x < 4) {
					cp += x;
					cp1 += x;
					x = 0;
				} else {
					cp += 4;
					cp1 += 4;
					x -= 4;
				}
				pp += 10;
			}
			if (h <= 2)
				break;
			h -= 2;
			cp += incr, cp1 += incr;
			pp += fromskew;
		}
	}
}

/*
 * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
{
	(void)y;
	/* XXX adjust fromskew */
	do {
		x = w >> 2;
		do {
			int32 Cb = pp[4];
			int32 Cr = pp[5];

			YCbCrtoRGB(cp[0], pp[0]);
			YCbCrtoRGB(cp[1], pp[1]);
			YCbCrtoRGB(cp[2], pp[2]);
			YCbCrtoRGB(cp[3], pp[3]);

			cp += 4;
			pp += 6;
		} while (--x);

		if ((w & 3) != 0) {
			int32 Cb = pp[4];
			int32 Cr = pp[5];

			switch ((w & 3)) {
			case 3:
				YCbCrtoRGB(cp[2], pp[2]);
			case 2:
				YCbCrtoRGB(cp[1], pp[1]);
			case 1:
				YCbCrtoRGB(cp[0], pp[0]);
			case 0:
				break;
			}

			cp += (w & 3);
			pp += 6;
		}

		cp += toskew;
		pp += fromskew;
	} while (--h);
}

/*
 * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
{
	uint64 *cp2;
	int32 incr = 2 * toskew + w;
	(void)y;
	fromskew = (fromskew / 2) * 6;
	cp2 = cp + w + toskew;
	while (h >= 2) {
		x = w;
		while (x >= 2) {
			uint32 Cb = pp[4];
			uint32 Cr = pp[5];
			YCbCrtoRGB(cp[0], pp[0]);
			YCbCrtoRGB(cp[1], pp[1]);
			YCbCrtoRGB(cp2[0], pp[2]);
			YCbCrtoRGB(cp2[1], pp[3]);
			cp += 2;
			cp2 += 2;
			pp += 6;
			x -= 2;
		}
		if (x == 1) {
			uint32 Cb = pp[4];
			uint32 Cr = pp[5];
			YCbCrtoRGB(cp[0], pp[0]);
			YCbCrtoRGB(cp2[0], pp[2]);
			cp++;
			cp2++;
			pp += 6;
		}
		cp += incr;
		cp2 += incr;
		pp += fromskew;
		h -= 2;
	}
	if (h == 1) {
		x = w;
		while (x >= 2) {
			uint32 Cb = pp[4];
			uint32 Cr = pp[5];
			YCbCrtoRGB(cp[0], pp[0]);
			YCbCrtoRGB(cp[1], pp[1]);
			cp += 2;
			cp2 += 2;
			pp += 6;
			x -= 2;
		}
		if (x == 1) {
			uint32 Cb = pp[4];
			uint32 Cr = pp[5];
			YCbCrtoRGB(cp[0], pp[0]);
		}
	}
}

/*
 * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
{
	(void)y;
	fromskew = (fromskew * 4) / 2;
	do {
		x = w >> 1;
		do {
			int32 Cb = pp[2];
			int32 Cr = pp[3];

			YCbCrtoRGB(cp[0], pp[0]);
			YCbCrtoRGB(cp[1], pp[1]);

			cp += 2;
			pp += 4;
		} while (--x);

		if ((w & 1) != 0) {
			int32 Cb = pp[2];
			int32 Cr = pp[3];

			YCbCrtoRGB(cp[0], pp[0]);

			cp += 1;
			pp += 4;
		}

		cp += toskew;
		pp += fromskew;
	} while (--h);
}

/*
 * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
{
	uint64 *cp2;
	int32 incr = 2 * toskew + w;
	(void)y;
	fromskew = (fromskew / 2) * 4;
	cp2 = cp + w + toskew;
	while (h >= 2) {
		x = w;
		do {
			uint32 Cb = pp[2];
			uint32 Cr = pp[3];
			YCbCrtoRGB(cp[0], pp[0]);
			YCbCrtoRGB(cp2[0], pp[1]);
			cp++;
			cp2++;
			pp += 4;
		} while (--x);
		cp += incr;
		cp2 += incr;
		pp += fromskew;
		h -= 2;
	}
	if (h == 1) {
		x = w;
		do {
			uint32 Cb = pp[2];
			uint32 Cr = pp[3];
			YCbCrtoRGB(cp[0], pp[0]);
			cp++;
			pp += 4;
		} while (--x);
	}
}

/*
 * 8-bit packed YCbCr samples w/ no subsampling => RGB
 */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
{
	(void)y;
	fromskew *= 3;
	do {
		x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
		do {
			int32 Cb = pp[1];
			int32 Cr = pp[2];

			YCbCrtoRGB(*cp++, pp[0]);

			pp += 3;
		} while (--x);
		cp += toskew;
		pp += fromskew;
	} while (--h);
}

/*
 * 8-bit packed YCbCr samples w/ no subsampling => RGB
 */
DECLARESepPutFunc(putseparate8bitYCbCr11tile)
{
	(void)y;
	(void)a;
	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
	while (h-- > 0) {
		x = w;
		do {
			uint32 dr, dg, db;
			TIFFYCbCrtoRGB(img->ycbcr, *r++, *g++, *b++, &dr, &dg, &db);
			*cp++ = PACK(dr, dg, db);
		} while (--x);
		SKEW(r, g, b, fromskew);
		cp += toskew;
	}
}
#undef YCbCrtoRGB

static int
initYCbCrConversion(TIFFRGBAImage *img)
{
	static const char module[] = "initYCbCrConversion";

	float *luma, *refBlackWhite;

	if (img->ycbcr == NULL) {
		img->ycbcr = (TIFFYCbCrToRGB *)_TIFFmalloc(
			TIFFroundup_32(sizeof(TIFFYCbCrToRGB), sizeof(long)) + 4 * 256 * sizeof(TIFFRGBValue) + 2 * 256 * sizeof(int) + 3 * 256 * sizeof(int32));
		if (img->ycbcr == NULL) {
			TIFFErrorExt(img->tif->tif_clientdata, module,
						 "No space for YCbCr->RGB conversion state");
			return (0);
		}
	}

	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
						  &refBlackWhite);
	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
		return (0);
	return (1);
}

static tileContigRoutine_64
initCIELabConversion(TIFFRGBAImage *img)
{
	static const char module[] = "initCIELabConversion";

	float *whitePoint;
	float refWhite[3];

	if (!img->cielab) {
		img->cielab = (TIFFCIELabToRGB *)
			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
		if (!img->cielab) {
			TIFFErrorExt(img->tif->tif_clientdata, module,
						 "No space for CIE L*a*b*->RGB conversion state.");
			return NULL;
		}
	}

	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
	refWhite[1] = 100.0F;
	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) / whitePoint[1] * refWhite[1];
	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
		TIFFErrorExt(img->tif->tif_clientdata, module,
					 "Failed to initialize CIE L*a*b*->RGB conversion state.");
		_TIFFfree(img->cielab);
		return NULL;
	}

	return putcontig8bitCIELab;
}

/*
 * Greyscale images with less than 8 bits/sample are handled
 * with a table to avoid lots of shifts and masks.  The table
 * is setup so that put*bwtile (below) can retrieve 8/bitspersample
 * pixel values simply by indexing into the table with one
 * number.
 */
static int
makebwmap(TIFFRGBAImage *img)
{
	TIFFRGBValue *Map = img->Map;
	int bitspersample = img->bitspersample;
	int nsamples = 8 / bitspersample;
	int i;
	uint64 *p;

	if (nsamples == 0)
		nsamples = 1;

	img->BWmap = (uint32 **)_TIFFmalloc(
		256 * sizeof(uint32 *) + (256 * nsamples * sizeof(uint64)));
	if (img->BWmap == NULL) {
		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
		return (0);
	}
	p = (uint64 *)(img->BWmap + 256);
	for (i = 0; i < 256; i++) {
		TIFFRGBValue c;
		img->BWmap[i] = (uint32 *)p;
		switch (bitspersample) {
#define GREY(x) \
	c = Map[x]; \
	*p++ = PACK(c << 8, c << 8, c << 8);
		case 1:
			GREY(i >> 7);
			GREY((i >> 6) & 1);
			GREY((i >> 5) & 1);
			GREY((i >> 4) & 1);
			GREY((i >> 3) & 1);
			GREY((i >> 2) & 1);
			GREY((i >> 1) & 1);
			GREY(i & 1);
			break;
		case 2:
			GREY(i >> 6);
			GREY((i >> 4) & 3);
			GREY((i >> 2) & 3);
			GREY(i & 3);
			break;
		case 4:
			GREY(i >> 4);
			GREY(i & 0xf);
			break;
		case 8:
		case 16:
			GREY(i);
			break;
		}
#undef GREY
	}
	return (1);
}

/*
 * Construct a mapping table to convert from the range
 * of the data samples to [0,255] --for display.  This
 * process also handles inverting B&W images when needed.
 */
static int
setupMap(TIFFRGBAImage *img)
{
	int32 x, range;

	range = (int32)((1L << img->bitspersample) - 1);

	/* treat 16 bit the same as eight bit */
	if (img->bitspersample == 16)
		range = (int32)255;

	img->Map = (TIFFRGBValue *)_TIFFmalloc((range + 1) * sizeof(TIFFRGBValue));
	if (img->Map == NULL) {
		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
					 "No space for photometric conversion table");
		return (0);
	}
	if (img->photometric == PHOTOMETRIC_MINISWHITE) {
		for (x = 0; x <= range; x++)
			img->Map[x] = (TIFFRGBValue)(((range - x) * 255) / range);
	} else {
		for (x = 0; x <= range; x++)
			img->Map[x] = (TIFFRGBValue)((x * 255) / range);
	}
	if (img->bitspersample <= 16 &&
		(img->photometric == PHOTOMETRIC_MINISBLACK ||
		 img->photometric == PHOTOMETRIC_MINISWHITE)) {
		/*
	 * Use photometric mapping table to construct
	 * unpacking tables for samples <= 8 bits.
	 */
		if (!makebwmap(img))
			return (0);
		/* no longer need Map, free it */
		_TIFFfree(img->Map), img->Map = NULL;
	}
	return (1);
}

static int
checkcmap(TIFFRGBAImage *img)
{
	uint16 *r = img->redcmap;
	uint16 *g = img->greencmap;
	uint16 *b = img->bluecmap;
	long n = 1L << img->bitspersample;

	while (n-- > 0)
		if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
			return (16);
	return (8);
}

static void
cvtcmap(TIFFRGBAImage *img)
{
	uint16 *r = img->redcmap;
	uint16 *g = img->greencmap;
	uint16 *b = img->bluecmap;
	long i;

	for (i = (1L << img->bitspersample) - 1; i >= 0; i--) {
#define CVT(x) ((uint16)((x) >> 8))
		r[i] = CVT(r[i]);
		g[i] = CVT(g[i]);
		b[i] = CVT(b[i]);
#undef CVT
	}
}

/*
 * Palette images with <= 8 bits/sample are handled
 * with a table to avoid lots of shifts and masks.  The table
 * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
 * pixel values simply by indexing into the table with one
 * number.
 */
static int
makecmap(TIFFRGBAImage *img)
{
	int bitspersample = img->bitspersample;
	int nsamples = 8 / bitspersample;
	uint16 *r = img->redcmap;
	uint16 *g = img->greencmap;
	uint16 *b = img->bluecmap;
	uint32 *p;
	int i;

	img->PALmap = (uint32 **)_TIFFmalloc(
		256 * sizeof(uint32 *) + (256 * nsamples * sizeof(uint32)));
	if (img->PALmap == NULL) {
		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
		return (0);
	}
	p = (uint32 *)(img->PALmap + 256);
	for (i = 0; i < 256; i++) {
		TIFFRGBValue c;
		img->PALmap[i] = p;
#define CMAP(x)          \
	c = (TIFFRGBValue)x; \
	*p++ = PACK_32(r[c] & 0xff, g[c] & 0xff, b[c] & 0xff);
		switch (bitspersample) {
		case 1:
			CMAP(i >> 7);
			CMAP((i >> 6) & 1);
			CMAP((i >> 5) & 1);
			CMAP((i >> 4) & 1);
			CMAP((i >> 3) & 1);
			CMAP((i >> 2) & 1);
			CMAP((i >> 1) & 1);
			CMAP(i & 1);
			break;
		case 2:
			CMAP(i >> 6);
			CMAP((i >> 4) & 3);
			CMAP((i >> 2) & 3);
			CMAP(i & 3);
			break;
		case 4:
			CMAP(i >> 4);
			CMAP(i & 0xf);
			break;
		case 8:
			CMAP(i);
			break;
		}
#undef CMAP
	}
	return (1);
}

/* 
 * Construct any mapping table used
 * by the associated put routine.
 */
static int
buildMap(TIFFRGBAImage *img)
{
	switch (img->photometric) {
	case PHOTOMETRIC_RGB:
	case PHOTOMETRIC_YCBCR:
	case PHOTOMETRIC_SEPARATED:
		if (img->bitspersample == 8)
			break;
	/* fall thru... */
	case PHOTOMETRIC_MINISBLACK:
	case PHOTOMETRIC_MINISWHITE:
		if (!setupMap(img))
			return (0);
		break;
	case PHOTOMETRIC_PALETTE:
		/*
	 * Convert 16-bit colormap to 8-bit (unless it looks
	 * like an old-style 8-bit colormap).
	 */
		if (checkcmap(img) == 16)
			cvtcmap(img);
		else
			TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
		/*
	 * Use mapping table and colormap to construct
	 * unpacking tables for samples < 8 bits.
	 */
		if (img->bitspersample <= 8 && !makecmap(img))
			return (0);
		break;
	}
	return (1);
}

/*
 * Select the appropriate conversion routine for packed data.
 */
static int
PickContigCase(TIFFRGBAImage *img)
{
	img->get = (gtFunc_32)(TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig);
	img->put.contig = NULL;
	switch (img->photometric) {
	case PHOTOMETRIC_RGB:
		switch (img->bitspersample) {
		case 8:
			if (img->alpha != EXTRASAMPLE_UNSPECIFIED)
				img->put.contig = (tileContigRoutine)putRGBAAcontig8bittile;
			else
				img->put.contig = (tileContigRoutine)putRGBcontig8bittile;
			break;
		case 16:
			if (img->alpha != EXTRASAMPLE_UNSPECIFIED)
				img->put.contig = (tileContigRoutine)putRGBAAcontig16bittile;
			else {
				if (BuildMapBitdepth16To8(img))
					img->put.contig = (tileContigRoutine)putRGBcontig16bittile;
			}
			break;
		}
		break;
	case PHOTOMETRIC_SEPARATED:
		if (buildMap(img)) {
			if (img->bitspersample == 8) {
				if (!img->Map)
					img->put.contig = (tileContigRoutine)putRGBcontig8bitCMYKtile;
				else
					img->put.contig = (tileContigRoutine)putRGBcontig8bitCMYKMaptile;
			}
		}
		break;
	case PHOTOMETRIC_PALETTE:
	case PHOTOMETRIC_MINISWHITE:
	case PHOTOMETRIC_MINISBLACK:
		if (buildMap(img)) {
			switch (img->bitspersample) {
			case 16:
				img->put.contig = (tileContigRoutine)put16bitbwtile;
				break;
			case 8:
				if (img->alpha && img->samplesperpixel == 2)
					img->put.contig = (tileContigRoutine)putagreytile;
				else
					img->put.contig = (tileContigRoutine)putgreytile;
				break;
			case 4:
				img->put.contig = (tileContigRoutine)put4bitbwtile;
				break;
			case 2:
				img->put.contig = (tileContigRoutine)put2bitbwtile;
				break;
			case 1:
				img->put.contig = (tileContigRoutine)put1bitbwtile;
				break;
			}
		}
		break;
	case PHOTOMETRIC_YCBCR:
		if ((img->bitspersample == 8) && (img->samplesperpixel == 3)) {
			if (initYCbCrConversion(img) != 0) {
				/*
					 * The 6.0 spec says that subsampling must be
					 * one of 1, 2, or 4, and that vertical subsampling
					 * must always be <= horizontal subsampling; so
					 * there are only a few possibilities and we just
					 * enumerate the cases.
					 * Joris: added support for the [1,2] case, nonetheless, to accomodate
					 * some OJPEG files
					 */
				uint16 SubsamplingHor;
				uint16 SubsamplingVer;
				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
				switch ((SubsamplingHor << 4) | SubsamplingVer) {
				case 0x44:
					img->put.contig = (tileContigRoutine)putcontig8bitYCbCr44tile;
					break;
				case 0x42:
					img->put.contig = (tileContigRoutine)putcontig8bitYCbCr42tile;
					break;
				case 0x41:
					img->put.contig = (tileContigRoutine)putcontig8bitYCbCr41tile;
					break;
				case 0x22:
					img->put.contig = (tileContigRoutine)putcontig8bitYCbCr22tile;
					break;
				case 0x21:
					img->put.contig = (tileContigRoutine)putcontig8bitYCbCr21tile;
					break;
				case 0x12:
					img->put.contig = (tileContigRoutine)putcontig8bitYCbCr12tile;
					break;
				case 0x11:
					img->put.contig = (tileContigRoutine)putcontig8bitYCbCr11tile;
					break;
				}
			}
		}
		break;
	case PHOTOMETRIC_CIELAB:
		if (buildMap(img)) {
			if (img->bitspersample == 8)
				img->put.contig = (tileContigRoutine)initCIELabConversion(img);
			break;
		}
	}
	return ((img->get != NULL) && (img->put.contig != NULL));
}

/*
 * Select the appropriate conversion routine for unpacked data.
 *
 * NB: we assume that unpacked single channel data is directed
 *	 to the "packed routines.
 */
static int
PickSeparateCase(TIFFRGBAImage *img)
{
	img->get = (gtFunc_32)(TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate);
	img->put.separate = NULL;
	switch (img->photometric) {
	case PHOTOMETRIC_MINISWHITE:
	case PHOTOMETRIC_MINISBLACK:
	/* greyscale images processed pretty much as RGB by gtTileSeparate */
	case PHOTOMETRIC_RGB:
		switch (img->bitspersample) {
		case 8:
			if (img->alpha != EXTRASAMPLE_UNSPECIFIED)
				img->put.separate = (tileSeparateRoutine)putRGBAAseparate8bittile;
			else
				img->put.separate = (tileSeparateRoutine)putRGBseparate8bittile;
			break;
		case 16:
			if (img->alpha != EXTRASAMPLE_UNSPECIFIED) {
				if (BuildMapBitdepth16To8(img))
					img->put.separate = (tileSeparateRoutine)putRGBAAseparate16bittile;
			} else {
				if (BuildMapBitdepth16To8(img))
					img->put.separate = (tileSeparateRoutine)putRGBseparate16bittile;
			}
			break;
		}
		break;
	case PHOTOMETRIC_SEPARATED:
		if (img->bitspersample == 8 && img->samplesperpixel == 4) {
			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
			img->put.separate = (tileSeparateRoutine)putCMYKseparate8bittile;
		}
		break;
	case PHOTOMETRIC_YCBCR:
		if ((img->bitspersample == 8) && (img->samplesperpixel == 3)) {
			if (initYCbCrConversion(img) != 0) {
				uint16 hs, vs;
				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
				switch ((hs << 4) | vs) {
				case 0x11:
					img->put.separate = (tileSeparateRoutine)putseparate8bitYCbCr11tile;
					break;
					/* TODO: add other cases here */
				}
			}
		}
		break;
	}
	return ((img->get != NULL) && (img->put.separate != NULL));
}

static int
BuildMapBitdepth16To8(TIFFRGBAImage *img)
{
	static const char module[] = "BuildMapBitdepth16To8";
	uint8 *m;
	uint32 n;
	assert(img->Bitdepth16To8 == NULL);
	img->Bitdepth16To8 = _TIFFmalloc(65536);
	if (img->Bitdepth16To8 == NULL) {
		TIFFErrorExt(img->tif->tif_clientdata, module, "Out of memory");
		return (0);
	}
	m = img->Bitdepth16To8;
	for (n = 0; n < 65536; n++)
		*m++ = (n + 128) / 257;
	return (1);
}

/*
 * Read a whole strip off data from the file, and convert to RGBA form.
 * If this is the last strip, then it will only contain the portion of
 * the strip that is actually within the image space.  The result is
 * organized in bottom to top form.
 */

int TIFFReadRGBAStrip_64(TIFF *tif, uint32 row, uint64 *raster)

{
	char emsg[1024] = "";
	TIFFRGBAImage img;
	int ok;
	uint32 rowsperstrip, rows_to_read;

	if (TIFFIsTiled(tif)) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
					 "Can't use TIFFReadRGBAStrip() with tiled file.");
		return (0);
	}

	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
	if ((row % rowsperstrip) != 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
					 "Row passed to TIFFReadRGBAStrip() must be first in a strip.");
		return (0);
	}

	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin_64(&img, tif, 0, emsg)) {

		img.row_offset = row;
		img.col_offset = 0;

		if (row + rowsperstrip > img.height)
			rows_to_read = img.height - row;
		else
			rows_to_read = rowsperstrip;

		ok = TIFFRGBAImageGet_64(&img, raster, img.width, rows_to_read);

		TIFFRGBAImageEnd(&img);
	} else {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
		ok = 0;
	}

	return (ok);
}

/*
 * Read a whole tile off data from the file, and convert to RGBA form.
 * The returned RGBA data is organized from bottom to top of tile,
 * and may include zeroed areas if the tile extends off the image.
 */

int TIFFReadRGBATile_64(TIFF *tif, uint32 col, uint32 row, uint64 *raster)

{
	char emsg[1024] = "";
	TIFFRGBAImage img;
	int ok;
	uint32 tile_xsize, tile_ysize;
	uint32 read_xsize, read_ysize;
	uint32 i_row;

	/*
     * Verify that our request is legal - on a tile file, and on a
     * tile boundary.
     */

	if (!TIFFIsTiled(tif)) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
					 "Can't use TIFFReadRGBATile() with stripped file.");
		return (0);
	}

	TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
	TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
	if ((col % tile_xsize) != 0 || (row % tile_ysize) != 0) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
					 "Row/col passed to TIFFReadRGBATile() must be top"
					 "left corner of a tile.");
		return (0);
	}

	/*
     * Setup the RGBA reader.
     */

	if (!TIFFRGBAImageOK(tif, emsg) || !TIFFRGBAImageBegin_64(&img, tif, 0, emsg)) {
		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
		return (0);
	}

	/*
     * The TIFFRGBAImageGet() function doesn't allow us to get off the
     * edge of the image, even to fill an otherwise valid tile.  So we
     * figure out how much we can read, and fix up the tile buffer to
     * a full tile configuration afterwards.
     */

	if (row + tile_ysize > img.height)
		read_ysize = img.height - row;
	else
		read_ysize = tile_ysize;

	if (col + tile_xsize > img.width)
		read_xsize = img.width - col;
	else
		read_xsize = tile_xsize;

	/*
     * Read the chunk of imagery.
     */

	img.row_offset = row;
	img.col_offset = col;

	ok = TIFFRGBAImageGet_64(&img, raster, read_xsize, read_ysize);

	TIFFRGBAImageEnd(&img);

	/*
     * If our read was incomplete we will need to fix up the tile by
     * shifting the data around as if a full tile of data is being returned.
     *
     * This is all the more complicated because the image is organized in
     * bottom to top format. 
     */

	if (read_xsize == tile_xsize && read_ysize == tile_ysize)
		return (ok);

	for (i_row = 0; i_row < read_ysize; i_row++) {
		memmove(raster + (tile_ysize - i_row - 1) * tile_xsize,
				raster + (read_ysize - i_row - 1) * read_xsize,
				read_xsize * sizeof(uint64));
		_TIFFmemset(raster + (tile_ysize - i_row - 1) * tile_xsize + read_xsize,
					0, sizeof(uint64) * (tile_xsize - read_xsize));
	}

	for (i_row = read_ysize; i_row < tile_ysize; i_row++) {
		_TIFFmemset(raster + (tile_ysize - i_row - 1) * tile_xsize,
					0, sizeof(uint64) * tile_xsize);
	}

	return (ok);
}

/* vim: set ts=8 sts=8 sw=8 noet: */
/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 8
 * fill-column: 78
 * End:
 */