#include "trop.h"
#include "tfxparam.h"
#include "stdfx.h"
#include "tpluginmanager.h"
#include "tpixelutils.h"
#include "tspectrumparam.h"
#include "ttzpimagefx.h"
#include "gradients.h"
#include "tunit.h"
#include "tparamuiconcept.h"
#include <QCoreApplication>
#ifdef _MSC_VER
#pragma warning(disable : 4996)
#endif
#undef max
//==================================================================
bool isAlmostIsotropic(const TAffine &aff) { return aff.isIsotropic(0.001); }
//==================================================================
class FadeFx final : public TStandardRasterFx {
FX_PLUGIN_DECLARATION(FadeFx)
TRasterFxPort m_input;
TDoubleParamP m_value;
public:
FadeFx() : m_value(50) {
m_value->setValueRange(0, 100);
bindParam(this, "value", m_value);
addInputPort("Source", m_input);
enableComputeInFloat(true);
};
~FadeFx(){};
bool doGetBBox(double frame, TRectD &bBox,
const TRenderSettings &info) override {
if (m_input.isConnected()) {
bool ret = m_input->doGetBBox(frame, bBox, info);
// devo scurire bgColor
return ret;
} else {
bBox = TRectD();
return false;
}
};
void doCompute(TTile &tile, double frame,
const TRenderSettings &ri) override {
if (!m_input.isConnected()) return;
m_input->compute(tile, frame, ri);
double v = 1 - m_value->getValue(frame) / 100;
TRop::rgbmScale(tile.getRaster(), tile.getRaster(), 1, 1, 1, v);
}
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
};
//==================================================================
class SpiralFx final : public TStandardZeraryFx {
FX_PLUGIN_DECLARATION(SpiralFx)
TIntEnumParamP m_type;
TDoubleParamP m_freq;
TDoubleParamP m_phase;
TSpectrumParamP m_spectrum;
enum SpiralType { Archimedean, Logarithmic };
public:
SpiralFx()
: m_type(new TIntEnumParam(Archimedean, "Archimedean"))
, m_freq(0.1) // args, "Freq")
, m_phase(0.0) // args, "Phase")
{
// m_freq->setDefaultValue(0.1);
// m_phase->setDefaultValue(0.0);
const TPixel32 transparent(0, 0, 0, 0);
/*
TPixel32 colors[] = {
TPixel32::Magenta,
TPixel32::Black,
TPixel32::Red,
TPixel32::Yellow,
transparent};
*/
std::vector<TSpectrum::ColorKey> colors = {
TSpectrum::ColorKey(0, TPixel32::Magenta),
TSpectrum::ColorKey(0.25, TPixel32::Black),
TSpectrum::ColorKey(0.5, TPixel32::Red),
TSpectrum::ColorKey(0.75, TPixel32::Yellow),
TSpectrum::ColorKey(1, transparent)};
m_spectrum = TSpectrumParamP(colors);
m_type->addItem(Logarithmic, "Logarithmic");
bindParam(this, "type", m_type);
bindParam(this, "colors", m_spectrum);
bindParam(this, "freq", m_freq);
bindParam(this, "phase", m_phase);
m_freq->setValueRange(0, 1);
// m_spectrum->setDefaultValue(tArrayCount(colors), colors);
};
~SpiralFx(){};
bool doGetBBox(double, TRectD &bBox, const TRenderSettings &info) override {
bBox = TConsts::infiniteRectD;
return true;
};
void doCompute(TTile &tile, double frame, const TRenderSettings &ri) override;
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
};
//------------------------------------------------------------------
namespace {
template <class T>
void doComputeT(TRasterPT<T> raster, TPointD posTrasf, const TAffine &aff,
const TSpectrumT<T> &spectrum, double freq, double phase,
bool isLogarithmic) {
raster->lock();
for (int y = 0; y < raster->getLy(); y++) {
TPointD posAux = posTrasf;
T *pix = raster->pixels(y);
for (int x = 0; x < raster->getLx(); x++) {
double ang = 0.0;
if (posAux.x != 0 || posAux.y != 0) ang = atan2(posAux.y, posAux.x);
double r = sqrt(posAux.x * posAux.x + posAux.y * posAux.y);
if (isLogarithmic) r = std::log(r) * 30.0;
double v = 0.5 * (1 + sin(r * freq + ang + phase));
*pix++ = spectrum.getPremultipliedValue(v);
posAux.x += aff.a11;
posAux.y += aff.a21;
}
posTrasf.x += aff.a12;
posTrasf.y += aff.a22;
}
raster->unlock();
}
} // namespace
//==================================================================
void SpiralFx::doCompute(TTile &tile, double frame, const TRenderSettings &ri) {
double phase = m_phase->getValue(frame);
double freq = m_freq->getValue(frame);
bool isLogarithmic = SpiralType(m_type->getValue()) == Logarithmic;
TAffine aff = ri.m_affine.inv();
TPointD posTrasf = aff * tile.m_pos;
if (TRaster32P ras32 = tile.getRaster())
doComputeT<TPixel32>(ras32, posTrasf, aff, m_spectrum->getValue(frame),
freq, phase, isLogarithmic);
else if (TRaster64P ras64 = tile.getRaster())
doComputeT<TPixel64>(ras64, posTrasf, aff, m_spectrum->getValue64(frame),
freq, phase, isLogarithmic);
else
throw TException("SpiralFx: unsupported Pixel Type");
}
//------------------------------------------------------------------
class MultiLinearGradientFx final : public TStandardZeraryFx {
FX_PLUGIN_DECLARATION(MultiLinearGradientFx)
TDoubleParamP m_period;
TDoubleParamP m_count;
TDoubleParamP m_cycle;
TDoubleParamP m_wave_amplitude;
TDoubleParamP m_wave_freq;
TDoubleParamP m_wave_phase;
TSpectrumParamP m_colors;
TIntEnumParamP m_curveType;
public:
MultiLinearGradientFx()
: m_period(100) // args, "Period")
, m_count(2) // args, "Count")
, m_cycle(0.0) // args, "Cycle")
, m_wave_amplitude(0.0) // args, "Cycle")
, m_wave_freq(0.0) // args, "Cycle")
, m_wave_phase(0.0) // args, "Cycle")
// , m_colors (0) //args, "Colors")
, m_curveType(new TIntEnumParam(EaseInOut, "Ease In-Out")) {
m_curveType->addItem(Linear, "Linear");
m_curveType->addItem(EaseIn, "Ease In");
m_curveType->addItem(EaseOut, "Ease Out");
std::vector<TSpectrum::ColorKey> colors = {
TSpectrum::ColorKey(0, TPixel32::White),
TSpectrum::ColorKey(0.33, TPixel32::Yellow),
TSpectrum::ColorKey(0.66, TPixel32::Red),
TSpectrum::ColorKey(1, TPixel32::White)};
m_colors = TSpectrumParamP(colors);
bindParam(this, "period", m_period);
bindParam(this, "count", m_count);
bindParam(this, "cycle", m_cycle);
bindParam(this, "wave_amplitude", m_wave_amplitude);
bindParam(this, "wave_frequency", m_wave_freq);
bindParam(this, "wave_phase", m_wave_phase);
bindParam(this, "colors", m_colors);
bindParam(this, "curveType", m_curveType);
m_period->setValueRange(0, (std::numeric_limits<double>::max)());
m_cycle->setValueRange(0, (std::numeric_limits<double>::max)());
m_wave_amplitude->setValueRange(0, (std::numeric_limits<double>::max)());
m_count->setValueRange(0, (std::numeric_limits<double>::max)());
m_period->setMeasureName("fxLength");
m_wave_amplitude->setMeasureName("fxLength");
enableComputeInFloat(true);
}
~MultiLinearGradientFx(){};
bool doGetBBox(double, TRectD &bBox, const TRenderSettings &info) override {
bBox = TConsts::infiniteRectD;
return true;
// si potrebbe/dovrebbe fare meglio
};
void doCompute(TTile &tile, double frame, const TRenderSettings &ri) override;
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
void getParamUIs(TParamUIConcept *&concepts, int &length) override {
concepts = new TParamUIConcept[length = 1];
concepts[0].m_type = TParamUIConcept::WIDTH;
concepts[0].m_label = "Size";
concepts[0].m_params.push_back(m_period);
}
};
// From V1.4 LinearGradientFx becomes obsolete and was replaced by
// Iwa_LinearGradientFx which has more flexibility. (iwa_lineargradientfx.cpp)
// This code is kept in order to load the fx made with older OT versions.
// Nov 14, 2019
class LinearGradientFx final : public TStandardZeraryFx {
FX_PLUGIN_DECLARATION(LinearGradientFx)
TDoubleParamP m_period;
TDoubleParamP m_wave_amplitude;
TDoubleParamP m_wave_freq;
TDoubleParamP m_wave_phase;
TPixelParamP m_color1;
TPixelParamP m_color2;
TIntEnumParamP m_curveType;
public:
LinearGradientFx()
: m_period(100) // args, "Period")
, m_wave_amplitude(0.0) // args, "Cycle")
, m_wave_freq(0.0) // args, "Cycle")
, m_wave_phase(0.0) // args, "Cycle")
, m_color1(TPixel32::Black)
, m_color2(TPixel32::White)
// , m_colors (0) //args, "Colors")
, m_curveType(new TIntEnumParam(EaseInOut, "Ease In-Out")) {
m_curveType->addItem(Linear, "Linear");
m_curveType->addItem(EaseIn, "Ease In");
m_curveType->addItem(EaseOut, "Ease Out");
bindParam(this, "period", m_period);
bindParam(this, "wave_amplitude", m_wave_amplitude);
bindParam(this, "wave_frequency", m_wave_freq);
bindParam(this, "wave_phase", m_wave_phase);
bindParam(this, "color1", m_color1);
bindParam(this, "color2", m_color2);
bindParam(this, "curveType", m_curveType);
m_period->setValueRange(0, std::numeric_limits<double>::max());
m_wave_amplitude->setValueRange(0, std::numeric_limits<double>::max());
m_period->setMeasureName("fxLength");
m_wave_amplitude->setMeasureName("fxLength");
enableComputeInFloat(true);
}
~LinearGradientFx(){};
bool doGetBBox(double, TRectD &bBox, const TRenderSettings &info) override {
bBox = TConsts::infiniteRectD;
return true;
// si potrebbe/dovrebbe fare meglio
};
void doCompute(TTile &tile, double frame, const TRenderSettings &ri) override;
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
void getParamUIs(TParamUIConcept *&concepts, int &length) override {
concepts = new TParamUIConcept[length = 1];
concepts[0].m_type = TParamUIConcept::WIDTH;
concepts[0].m_label = "Size";
concepts[0].m_params.push_back(m_period);
}
};
//==================================================================
namespace {
template <class T>
void doComputeT(TRasterPT<T> ras, TPointD posTrasf,
const TSpectrumT<T> &spectrum, double period, double count,
double w_amplitude, double w_freq, double w_phase, double cycle,
const TAffine &aff) {
double shift = 0;
double maxRadius = period * count / 2.;
double freq = 1.0 / period;
int j;
ras->lock();
for (j = 0; j < ras->getLy(); j++) {
TPointD posAux = posTrasf;
// TPointD pos = tile.m_pos;
// pos.y += j;
T *pix = ras->pixels(j);
T *endPix = pix + ras->getLx();
while (pix < endPix) {
if (w_amplitude) shift = w_amplitude * sin(w_freq * posAux.y + w_phase);
double radius = posAux.x + shift;
double t = 1;
if (fabs(radius) < maxRadius) {
t = (radius + maxRadius + cycle) * freq;
t -= floor(t);
} else if (radius < 0)
t = 0;
double polinomfactor = (-2 * t + 3) * (t * t);
// pos.x += 1.0;
*pix++ = spectrum.getPremultipliedValue(polinomfactor);
posAux.x += aff.a11;
posAux.y += aff.a21;
}
posTrasf.x += aff.a12;
posTrasf.y += aff.a22;
}
ras->unlock();
}
} // namespace
//==================================================================
void LinearGradientFx::doCompute(TTile &tile, double frame,
const TRenderSettings &ri) {
assert((TRaster32P)tile.getRaster() || (TRaster64P)tile.getRaster() ||
(TRasterFP)tile.getRaster());
double period = m_period->getValue(frame) / ri.m_shrinkX;
double count = 1.0;
double cycle = 0;
double w_amplitude = m_wave_amplitude->getValue(frame) / ri.m_shrinkX;
double w_freq = m_wave_freq->getValue(frame) * ri.m_shrinkX;
double w_phase = m_wave_phase->getValue(frame);
w_freq *= 0.01 * M_PI_180;
std::vector<TSpectrum::ColorKey> colors = {
TSpectrum::ColorKey(0, m_color1->getValue(frame)),
TSpectrum::ColorKey(1, m_color2->getValue(frame))};
TSpectrumParamP m_colors = TSpectrumParamP(colors);
TAffine aff = ri.m_affine.inv();
TPointD posTrasf = aff * tile.m_pos;
multiLinear(tile.getRaster(), posTrasf, m_colors, period, count, w_amplitude,
w_freq, w_phase, cycle, aff, frame,
(GradientCurveType)m_curveType->getValue());
/*
if (TRaster32P ras32 = tile.getRaster())
doComputeT<TPixel32>(
ras32, posTrasf,
m_colors->getValue(frame),
period, count, w_amplitude, w_freq, w_phase, cycle, aff);
else if (TRaster64P ras64 = tile.getRaster())
doComputeT<TPixel64>(
ras64, posTrasf,
m_colors->getValue64(frame),
period, count, w_amplitude, w_freq, w_phase, cycle, aff);
else
throw TException("MultiLinearGradientFx: unsupported Pixel Type");
*/
}
//==================================================================
void MultiLinearGradientFx::doCompute(TTile &tile, double frame,
const TRenderSettings &ri) {
assert((TRaster32P)tile.getRaster() || (TRaster64P)tile.getRaster() ||
(TRasterFP)tile.getRaster());
double period = m_period->getValue(frame) / ri.m_shrinkX;
double count = m_count->getValue(frame);
double cycle = m_cycle->getValue(frame) / ri.m_shrinkX;
double w_amplitude = m_wave_amplitude->getValue(frame) / ri.m_shrinkX;
double w_freq = m_wave_freq->getValue(frame) * ri.m_shrinkX;
double w_phase = m_wave_phase->getValue(frame);
w_freq *= 0.01 * M_PI_180;
TAffine aff = ri.m_affine.inv();
TPointD posTrasf = aff * tile.m_pos;
multiLinear(tile.getRaster(), posTrasf, m_colors, period, count, w_amplitude,
w_freq, w_phase, cycle, aff, frame,
(GradientCurveType)m_curveType->getValue());
/*
if (TRaster32P ras32 = tile.getRaster())
doComputeT<TPixel32>(
ras32, posTrasf,
m_colors->getValue(frame),
period, count, w_amplitude, w_freq, w_phase, cycle, aff);
else if (TRaster64P ras64 = tile.getRaster())
doComputeT<TPixel64>(
ras64, posTrasf,
m_colors->getValue64(frame),
period, count, w_amplitude, w_freq, w_phase, cycle, aff);
else
throw TException("MultiLinearGradientFx: unsupported Pixel Type");
*/
}
//==================================================================
class RadialGradientFx final : public TStandardZeraryFx {
FX_PLUGIN_DECLARATION(RadialGradientFx)
TDoubleParamP m_period;
TDoubleParamP m_innerperiod;
TPixelParamP m_color1;
TPixelParamP m_color2;
TIntEnumParamP m_curveType;
public:
RadialGradientFx()
: m_period(100.0)
, m_innerperiod(0.0) // args, "Period")
, m_color1(TPixel32::White)
, m_color2(TPixel32::Transparent)
// , m_colors (0) //args, "Colors")
, m_curveType(new TIntEnumParam()) {
m_curveType->addItem(EaseInOut, "Ease In-Out");
m_curveType->addItem(Linear, "Linear");
m_curveType->addItem(EaseIn, "Ease In");
m_curveType->addItem(EaseOut, "Ease Out");
m_curveType->setDefaultValue(Linear);
m_curveType->setValue(Linear);
m_period->setMeasureName("fxLength");
m_innerperiod->setMeasureName("fxLength");
bindParam(this, "period", m_period);
bindParam(this, "innerperiod", m_innerperiod);
bindParam(this, "color1", m_color1);
bindParam(this, "color2", m_color2);
bindParam(this, "curveType", m_curveType);
m_period->setValueRange(0.0, std::numeric_limits<double>::max());
m_innerperiod->setValueRange(0.0, std::numeric_limits<double>::max());
enableComputeInFloat(true);
}
~RadialGradientFx(){};
bool doGetBBox(double, TRectD &bBox, const TRenderSettings &info) override {
bBox = TConsts::infiniteRectD;
return true;
// si potrebbe/dovrebbe fare meglio
};
void doCompute(TTile &tile, double frame, const TRenderSettings &ri) override;
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
void getParamUIs(TParamUIConcept *&concepts, int &length) override {
concepts = new TParamUIConcept[length = 2];
concepts[0].m_type = TParamUIConcept::RADIUS;
concepts[0].m_label = "Inner Size";
concepts[0].m_params.push_back(m_innerperiod);
concepts[1].m_type = TParamUIConcept::RADIUS;
concepts[1].m_label = "Outer Size";
concepts[1].m_params.push_back(m_period);
}
};
//==================================================================
class MultiRadialGradientFx final : public TStandardZeraryFx {
FX_PLUGIN_DECLARATION(MultiRadialGradientFx)
TDoubleParamP m_period;
TDoubleParamP m_count;
TDoubleParamP m_cycle;
TSpectrumParamP m_colors;
TIntEnumParamP m_curveType;
public:
MultiRadialGradientFx()
: m_period(100) // args, "Period")
, m_count(2) // args, "Count")
, m_cycle(0.0) // args, "Count")
// , m_colors (0) //args, "Colors")
, m_curveType(new TIntEnumParam()) {
m_curveType->addItem(EaseInOut, "Ease In-Out");
m_curveType->addItem(Linear, "Linear");
m_curveType->addItem(EaseIn, "Ease In");
m_curveType->addItem(EaseOut, "Ease Out");
m_curveType->setDefaultValue(Linear);
m_curveType->setValue(Linear);
m_period->setMeasureName("fxLength");
std::vector<TSpectrum::ColorKey> colors = {
TSpectrum::ColorKey(0, TPixel32::White),
TSpectrum::ColorKey(0.33, TPixel32::Yellow),
TSpectrum::ColorKey(0.66, TPixel32::Red),
TSpectrum::ColorKey(1, TPixel32::White)};
m_colors = TSpectrumParamP(colors);
bindParam(this, "period", m_period);
bindParam(this, "count", m_count);
bindParam(this, "cycle", m_cycle);
bindParam(this, "colors", m_colors);
bindParam(this, "curveType", m_curveType);
m_period->setValueRange(0, (std::numeric_limits<double>::max)());
m_cycle->setValueRange(0, (std::numeric_limits<double>::max)());
m_count->setValueRange(0, (std::numeric_limits<double>::max)());
enableComputeInFloat(true);
}
~MultiRadialGradientFx(){};
bool doGetBBox(double, TRectD &bBox, const TRenderSettings &info) override {
bBox = TConsts::infiniteRectD;
return true;
// si potrebbe/dovrebbe fare meglio
};
void doCompute(TTile &tile, double frame, const TRenderSettings &ri) override;
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
void getParamUIs(TParamUIConcept *&concepts, int &length) override {
concepts = new TParamUIConcept[length = 1];
concepts[0].m_type = TParamUIConcept::RADIUS;
concepts[0].m_label = "Period";
concepts[0].m_params.push_back(m_period);
}
};
//------------------------------------------------------------------
//==================================================================
void MultiRadialGradientFx::doCompute(TTile &tile, double frame,
const TRenderSettings &ri) {
assert((TRaster32P)tile.getRaster() || (TRaster64P)tile.getRaster() ||
(TRasterFP)tile.getRaster());
double period = m_period->getValue(frame) / ri.m_shrinkX;
double count = m_count->getValue(frame);
double cycle = m_cycle->getValue(frame) / ri.m_shrinkX;
TAffine aff = ri.m_affine.inv();
TPointD posTrasf = aff * tile.m_pos;
multiRadial(tile.getRaster(), posTrasf, m_colors, period, count, cycle, aff,
frame, 0.0, (GradientCurveType)m_curveType->getValue());
}
//==================================================================
void RadialGradientFx::doCompute(TTile &tile, double frame,
const TRenderSettings &ri) {
assert((TRaster32P)tile.getRaster() || (TRaster64P)tile.getRaster() ||
(TRasterFP)tile.getRaster());
double period = m_period->getValue(frame) / ri.m_shrinkX;
double innerperiod = m_innerperiod->getValue(frame) / ri.m_shrinkX;
double count = 1.0;
double cycle = 0.0;
double inner = 0.0;
if (innerperiod < period)
inner = innerperiod / period;
else
inner = 1 - TConsts::epsilon;
std::vector<TSpectrum::ColorKey> colors = {
TSpectrum::ColorKey(0, m_color1->getValue(frame)),
TSpectrum::ColorKey(1, m_color2->getValue(frame))};
TSpectrumParamP m_colors = TSpectrumParamP(colors);
TAffine aff = ri.m_affine.inv();
TPointD posTrasf = aff * tile.m_pos;
multiRadial(tile.getRaster(), posTrasf, m_colors, period, count, cycle, aff,
frame, inner, (GradientCurveType)m_curveType->getValue());
}
//------------------------------------------------------------------
class LightSpotFx final : public TStandardZeraryFx {
FX_PLUGIN_DECLARATION(LightSpotFx)
TDoubleParamP m_softness;
TDoubleParamP m_a;
TDoubleParamP m_b;
TPixelParamP m_color;
public:
LightSpotFx()
: m_softness(0.2) // args, "Softness")
, m_a(200) // args, "A")
, m_b(100) // args, "B")
, m_color(TPixel::Magenta) // args, "Color")
{
m_a->setMeasureName("fxLength");
m_b->setMeasureName("fxLength");
bindParam(this, "softness", m_softness);
bindParam(this, "a", m_a);
bindParam(this, "b", m_b);
bindParam(this, "color", m_color);
/*
m_a->setDefaultValue(200);
m_b->setDefaultValue(100);
m_color->setDefaultValue(TPixel::Magenta);
*/
}
~LightSpotFx(){};
bool doGetBBox(double, TRectD &bBox, const TRenderSettings &info) override {
bBox = TConsts::infiniteRectD;
return true;
// si potrebbe/dovrebbe fare meglio
};
void doCompute(TTile &tile, double frame, const TRenderSettings &ri) override;
bool canHandle(const TRenderSettings &info, double frame) override {
return true;
}
void getParamUIs(TParamUIConcept *&concepts, int &length) override {
concepts = new TParamUIConcept[length = 1];
concepts[0].m_type = TParamUIConcept::RECT;
concepts[0].m_params.push_back(m_a);
concepts[0].m_params.push_back(m_b);
}
};
//------------------------------------------------------------------
namespace {
template <class T>
void doComputeT(TRasterPT<T> raster, TPointD posTrasf, const TAffine &aff,
const T &pixelColor, double softness, double a, double b) {
double aa = a * a;
double bb = b * b;
double invaa = 1 / aa;
double invbb = 1 / bb;
double num = 2 * (aa + bb);
double normax = num / (5 * aa + bb);
int j;
raster->lock();
for (j = 0; j < raster->getLy(); j++) {
TPointD posAux = posTrasf;
T *pix = raster->pixels(j);
T *endPix = pix + raster->getLx();
while (pix < endPix) {
double yyrot = (posAux.y) * (posAux.y);
double yvar = (yyrot)*invbb + 1;
double result;
double fact, xrot, tempvar, normtmp, outsideslope;
// pos.x += 1.0;
xrot = (posAux.x);
tempvar = xrot * xrot * invaa + yvar;
fact = tempvar * 0.5;
if (fact < 1) {
normtmp = num / (aa + bb + (xrot - a) * (xrot - a) + yyrot);
result = normtmp;
} else {
outsideslope = 1 / (1 + (fact - 1) * softness);
result = normax * outsideslope;
}
if (result > 1) result = 1;
if (result < 0) result = 0;
*pix++ = blend(T::Black, pixelColor, result);
posAux.x += aff.a11;
posAux.y += aff.a21;
}
posTrasf.x += aff.a12;
posTrasf.y += aff.a22;
}
raster->unlock();
}
} // namespace
//==================================================================
void LightSpotFx::doCompute(TTile &tile, double frame,
const TRenderSettings &ri) {
double a = m_a->getValue(frame) / ri.m_shrinkX;
double b = m_b->getValue(frame) / ri.m_shrinkX;
if (a == 0.0 || b == 0.0) {
if ((TRaster32P)tile.getRaster())
((TRaster32P)tile.getRaster())->fill(TPixel32::Black);
else if ((TRaster64P)tile.getRaster())
((TRaster64P)tile.getRaster())->fill(TPixel64::Black);
return;
}
TAffine aff = ri.m_affine.inv();
TPointD posTrasf = aff * tile.m_pos;
const TPixel32 pixelColor = m_color->getValue(frame);
double softness = m_softness->getValue(frame);
if ((TRaster32P)tile.getRaster())
doComputeT<TPixel32>(tile.getRaster(), posTrasf, aff, pixelColor, softness,
a, b);
else if ((TRaster64P)tile.getRaster())
doComputeT<TPixel64>(tile.getRaster(), posTrasf, aff, toPixel64(pixelColor),
softness, a, b);
}
//------------------------------------------------------------------
FX_PLUGIN_IDENTIFIER(SpiralFx, "spiralFx")
FX_PLUGIN_IDENTIFIER(FadeFx, "fadeFx")
FX_PLUGIN_IDENTIFIER(RadialGradientFx, "radialGradientFx")
FX_PLUGIN_IDENTIFIER(MultiRadialGradientFx, "multiRadialGradientFx")
FX_PLUGIN_IDENTIFIER(LinearGradientFx, "linearGradientFx")
FX_PLUGIN_IDENTIFIER(MultiLinearGradientFx, "multiLinearGradientFx")
FX_PLUGIN_IDENTIFIER(LightSpotFx, "lightSpotFx")
/*
TLIBMAIN {
static TPluginInfo info("stdfx");
return &info;
};
*/
/* TODO, move to header */
DV_EXPORT_API void initStdFx();
DV_EXPORT_API void initStdFx() {}