#include "iwa_bloomfx.h"
#include "tparamuiconcept.h"
#include <QVector>
#include <QPair>
namespace {
// convert sRGB color space to power space
template <typename T = double>
inline T to_linear_color_space(T nonlinear_color, T exposure, T gamma) {
return std::pow(nonlinear_color, gamma) / exposure;
}
// convert power space to sRGB color space
template <typename T = double>
inline T to_nonlinear_color_space(T linear_color, T exposure, T gamma) {
return std::pow(linear_color * exposure, T(1) / gamma);
}
template <class T = double>
const T &clamp(const T &v, const T &lo, const T &hi) {
assert(!(hi < lo));
return (v < lo) ? lo : (hi < v) ? hi : v;
}
void blurByRotate(cv::Mat &mat) {
double angle = 45.0;
int size = std::ceil(std::sqrt(mat.cols * mat.cols + mat.rows * mat.rows));
int width = ((size - mat.cols) % 2 == 0) ? size : size + 1;
int height = ((size - mat.rows) % 2 == 0) ? size : size + 1;
cv::Point2f center((mat.cols - 1) / 2.0, (mat.rows - 1) / 2.0);
cv::Mat rot = cv::getRotationMatrix2D(center, angle, 1.0);
rot.at<double>(0, 2) += (width - mat.cols) / 2.0;
rot.at<double>(1, 2) += (height - mat.rows) / 2.0;
cv::Mat tmp;
cv::warpAffine(mat, tmp, rot, cv::Size(width, height));
center = cv::Point2f((width - 1) / 2.0, (height - 1) / 2.0);
rot = cv::getRotationMatrix2D(center, -angle, 1.0);
rot.at<double>(0, 2) += (mat.cols - width) / 2.0;
rot.at<double>(1, 2) += (mat.rows - height) / 2.0;
cv::warpAffine(tmp, mat, rot, mat.size());
}
} // namespace
//--------------------------------------------
// Iwa_BloomFx
//--------------------------------------------
Iwa_BloomFx::Iwa_BloomFx()
: m_gamma(2.2), m_gain(2.0), m_size(100.0), m_alpha_rendering(false) {
addInputPort("Source", m_source);
bindParam(this, "gamma", m_gamma);
bindParam(this, "gain", m_gain);
bindParam(this, "size", m_size);
bindParam(this, "alpha_rendering", m_alpha_rendering);
m_gamma->setValueRange(0.1, 5.0);
m_gain->setValueRange(0.1, 10.0);
m_size->setValueRange(0.1, 1024.0);
m_size->setMeasureName("fxLength");
}
//------------------------------------------------
double Iwa_BloomFx::getSizePixelAmount(const double val, const TAffine affine) {
/*--- Convert to vector --- */
TPointD vect;
vect.x = val;
vect.y = 0.0;
/*--- Apply geometrical transformation ---*/
// For the following lines I referred to lines 586-592 of
// sources/stdfx/motionblurfx.cpp
TAffine aff(affine);
aff.a13 = aff.a23 = 0; /* ignore translation */
vect = aff * vect;
/*--- return the length of the vector ---*/
return sqrt(vect.x * vect.x + vect.y * vect.y);
}
//------------------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_BloomFx::setSourceTileToMat(const RASTER ras, cv::Mat &imgMat,
const double gamma) {
double maxi = static_cast<double>(PIXEL::maxChannelValue); // 255or65535
for (int j = 0; j < ras->getLy(); j++) {
const PIXEL *pix = ras->pixels(j);
cv::Vec3f *mat_p = imgMat.ptr<cv::Vec3f>(j);
for (int i = 0; i < ras->getLx(); i++, pix++, mat_p++) {
double pix_a = static_cast<double>(pix->m) / maxi;
if (pix_a <= 0.0) {
*mat_p = cv::Vec3f(0, 0, 0);
continue;
}
double bgra[3];
bgra[0] = static_cast<double>(pix->b) / maxi;
bgra[1] = static_cast<double>(pix->g) / maxi;
bgra[2] = static_cast<double>(pix->r) / maxi;
for (int c = 0; c < 3; c++) {
// assuming that the source image is premultiplied
bgra[c] = to_linear_color_space(bgra[c] / pix_a, 1.0, gamma) * pix_a;
}
*mat_p = cv::Vec3f(bgra[0], bgra[1], bgra[2]);
}
}
}
//------------------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_BloomFx::setMatToOutput(const RASTER ras, const RASTER srcRas,
cv::Mat &ingMat, const double gamma,
const double gain, const bool withAlpha,
const int margin) {
double maxi = static_cast<double>(PIXEL::maxChannelValue); // 255or65535
for (int j = 0; j < ras->getLy(); j++) {
cv::Vec3f const *mat_p = ingMat.ptr<cv::Vec3f>(j);
PIXEL *pix = ras->pixels(j);
PIXEL *srcPix = srcRas->pixels(j + margin) + margin;
for (int i = 0; i < ras->getLx(); i++, pix++, srcPix++, mat_p++) {
double nonlinear_b =
to_nonlinear_color_space((double)(*mat_p)[0] * gain, 1.0, gamma);
double nonlinear_g =
to_nonlinear_color_space((double)(*mat_p)[1] * gain, 1.0, gamma);
double nonlinear_r =
to_nonlinear_color_space((double)(*mat_p)[2] * gain, 1.0, gamma);
nonlinear_b = clamp(nonlinear_b, 0.0, 1.0);
nonlinear_g = clamp(nonlinear_g, 0.0, 1.0);
nonlinear_r = clamp(nonlinear_r, 0.0, 1.0);
pix->r = (typename PIXEL::Channel)(nonlinear_r * (maxi + 0.999999));
pix->g = (typename PIXEL::Channel)(nonlinear_g * (maxi + 0.999999));
pix->b = (typename PIXEL::Channel)(nonlinear_b * (maxi + 0.999999));
if (withAlpha) {
double chan_a =
std::max(std::max(nonlinear_b, nonlinear_g), nonlinear_r);
pix->m = std::max((typename PIXEL::Channel)(chan_a * (maxi + 0.999999)),
srcPix->m);
} else
pix->m = (typename PIXEL::Channel)(PIXEL::maxChannelValue);
}
}
}
//------------------------------------------------
void Iwa_BloomFx::doCompute(TTile &tile, double frame,
const TRenderSettings &settings) {
// If the source is not connected, then do nothing
if (!m_source.isConnected()) {
tile.getRaster()->clear();
return;
}
// obtain parameters
double gamma = m_gamma->getValue(frame);
double gain = m_gain->getValue(frame);
double size = getSizePixelAmount(m_size->getValue(frame), settings.m_affine);
bool withAlpha = m_alpha_rendering->getValue();
int margin = static_cast<int>(std::ceil(size));
TRectD _rect(tile.m_pos, TDimensionD(tile.getRaster()->getLx(),
tile.getRaster()->getLy()));
_rect = _rect.enlarge(static_cast<double>(margin));
TDimensionI dimSrc(static_cast<int>(_rect.getLx() + 0.5),
static_cast<int>(_rect.getLy() + 0.5));
// obtain the source tile
TTile sourceTile;
m_source->allocateAndCompute(sourceTile, _rect.getP00(), dimSrc,
tile.getRaster(), frame, settings);
// set the source image to cvMat, converting to linear color space
cv::Mat imgMat(cv::Size(dimSrc.lx, dimSrc.ly), CV_32FC3);
TRaster32P ras32 = tile.getRaster();
TRaster64P ras64 = tile.getRaster();
if (ras32)
setSourceTileToMat<TRaster32P, TPixel32>(sourceTile.getRaster(), imgMat,
gamma);
else if (ras64)
setSourceTileToMat<TRaster64P, TPixel64>(sourceTile.getRaster(), imgMat,
gamma);
// compute size and intensity ratios of resampled layers
// resample size is reduced from the specified size, taking into account
// that the gaussian blur (x 2) and the blur by rotation resampling (x sqrt2)
double no_blur_size = size / (2 * 1.5);
// find the mimimum "power of 2" value which is the same as or larger than the
// filter size
int level = 1;
double power_of_2 = 1.0;
while (1) {
if (power_of_2 >= no_blur_size) break;
level++;
power_of_2 *= 2.0;
}
// store the size of resampled layers
QVector<cv::Size> sizes;
double tmp_filterSize = no_blur_size;
double width = static_cast<double>(imgMat.size().width);
double height = static_cast<double>(imgMat.size().height);
for (int lvl = 0; lvl < level - 1; lvl++) {
int tmp_w = static_cast<int>(std::ceil(width / tmp_filterSize));
int tmp_h = static_cast<int>(std::ceil(height / tmp_filterSize));
sizes.push_front(cv::Size(tmp_w, tmp_h));
tmp_filterSize *= 0.5;
}
sizes.push_front(imgMat.size());
// the filter is based on the nearest power-of-2 sized one with an adjustment
// reducing the sizes and increasing the intensity with this ratio
double ratio = power_of_2 / no_blur_size;
// base filter sizes will be 1, 2, 4, ... 2^(level-1)
// intensity of the filter with sizes > 2
double intensity_all = power_of_2 / (power_of_2 * 2.0 - 1.0);
// intensity of the filter with size 1, so that the amount of the filter at
// the center point is always 1.0
double intensity_front = 1.0 - (1.0 - intensity_all) * ratio;
std::vector<cv::Mat> dst(level);
cv::Size const ksize(3, 3);
cv::Mat tmp;
int i;
// for each level of filter (from larger to smaller)
for (i = 0; i < level;) {
// scaling down the size
if (i) {
cv::resize(imgMat, tmp, sizes[i], 0.0, 0.0, cv::INTER_AREA);
imgMat = tmp;
}
// gaussian blur
cv::GaussianBlur(imgMat, dst[i], ksize, 0.0);
++i;
}
// for each level of filter (from smaller to larger)
for (--i; i > 0; --i) {
// scaling up the size
cv::resize(dst[i], tmp, dst[i - 1].size());
// blur by rotational resampling in order to reduce box-shaped artifact
blurByRotate(tmp);
// add to the upper resampled image
if (i > 1)
dst[i - 1] += tmp;
else
imgMat = dst[0] * intensity_front + tmp * intensity_all;
}
// get the subimage without margin
cv::Rect roi(cv::Point(margin, margin),
cv::Size(tile.getRaster()->getLx(), tile.getRaster()->getLy()));
imgMat = imgMat(roi);
// set the result to the tile, converting to rgb channel values
if (ras32)
setMatToOutput<TRaster32P, TPixel32>(tile.getRaster(),
sourceTile.getRaster(), imgMat, gamma,
gain, withAlpha, margin);
else if (ras64)
setMatToOutput<TRaster64P, TPixel64>(tile.getRaster(),
sourceTile.getRaster(), imgMat, gamma,
gain, withAlpha, margin);
}
//------------------------------------------------
bool Iwa_BloomFx::doGetBBox(double frame, TRectD &bBox,
const TRenderSettings &info) {
if (!m_source.isConnected()) {
bBox = TRectD();
return false;
}
bool ret = m_source->doGetBBox(frame, bBox, info);
int margin = static_cast<int>(
std::ceil(getSizePixelAmount(m_size->getValue(frame), info.m_affine)));
if (margin > 0) {
bBox = bBox.enlarge(static_cast<double>(margin));
}
return ret;
}
//------------------------------------------------
bool Iwa_BloomFx::canHandle(const TRenderSettings &info, double frame) {
return false;
}
//------------------------------------------------
void Iwa_BloomFx::getParamUIs(TParamUIConcept *&concepts, int &length) {
concepts = new TParamUIConcept[length = 1];
concepts[0].m_type = TParamUIConcept::RADIUS;
concepts[0].m_label = "Size";
concepts[0].m_params.push_back(m_size);
}
//------------------------------------------------
FX_PLUGIN_IDENTIFIER(Iwa_BloomFx, "iwa_BloomFx")