/*------------------------------------
Iwa_SpectrumFx
参照画像を位相差として、干渉色を出力する
------------------------------------*/
#include "iwa_spectrumfx.h"
#include "iwa_cie_d65.h"
#include "iwa_xyz.h"
namespace {
const float PI = 3.14159265f;
}
/*------------------------------------
Calculate soap bubble color map
------------------------------------*/
void Iwa_SpectrumFx::calcBubbleMap(float3 *bubbleColor, double frame,
bool computeAngularAxis) {
int i, j, k; /* bubbleColor[j][k] = [256][3] */
float d; /* Thickness of the film (μm) */
int ram; /* rambda iterator */
float rambda; /* wavelength of light (μm) */
struct REFLECTIVITY {
/* transmission and reflection amplitudes for each boundary */
float r_ab, t_ab, r_ba, t_ba;
float r_real, r_img; /* reflection amplitude of the film */
float R; /* energy reflectance */
} p, s;
float R_final; /* combined energy reflectance */
float phi; /* phase */
float color_x, color_y, color_z; /* xyz color channels */
/* obtain parameters */
float intensity = (float)m_intensity->getValue(frame);
float refractiveIndex = (float)m_refractiveIndex->getValue(frame);
float thickMax = (float)m_thickMax->getValue(frame);
float thickMin = (float)m_thickMin->getValue(frame);
float rgbGamma[3] = {(float)m_RGamma->getValue(frame),
(float)m_GGamma->getValue(frame),
(float)m_BGamma->getValue(frame)};
float lensFactor = (float)m_lensFactor->getValue(frame);
float shift = (float)m_spectrumShift->getValue(frame);
float fadeWidth = (float)m_loopSpectrumFadeWidth->getValue(frame) / 2.0f;
/* for Iwa_SpectrumFx, incident angle is fixed to 0,
for Iwa_SoapBubbleFx, compute for all discrete incident angles*/
int i_max = (computeAngularAxis) ? 256 : 1;
float3 *bubble_p = bubbleColor;
/* for each discrete incident angle */
for (i = 0; i < i_max; i++) {
/* incident angle (radian) */
float angle_in = PI / 2.0f / 255.0f * (float)i;
/* refraction angle (radian) */
float angle_re = asinf(sinf(angle_in) / refractiveIndex);
/* transmission and reflection amplitudes for each boundary, for each
* polarization */
float cos_in = cosf(angle_in);
float cos_re = cosf(angle_re);
// compute the offset in order to make the seam of looped-spectrum curved
// along the stripe
float seam_offset = 0.0f;
if (fadeWidth != 0.0f) { // if the fade width is 0, the seam does not curve
float base_light_diff =
(thickMax + thickMin) / cosf(asinf(1 / refractiveIndex));
float offset_width = 0.5f * (base_light_diff - thickMax - thickMin);
seam_offset = 0.5f * (base_light_diff *
cosf(asinf(cosf(angle_in) / refractiveIndex)) -
thickMax - thickMin - offset_width);
}
// P-polarized light
p.r_ab = (cos_re - refractiveIndex * cos_in) /
(cos_re + refractiveIndex * cos_re);
p.t_ab = (1.0f - p.r_ab) / refractiveIndex;
p.r_ba = -p.r_ab;
p.t_ba = (1.0f + p.r_ab) * refractiveIndex;
// S-polarized light
s.r_ab = (cos_in - refractiveIndex * cos_re) /
(cos_in + refractiveIndex * cos_re);
s.t_ab = 1.0f + s.r_ab;
s.r_ba = -s.r_ab;
s.t_ba = 1.0f - s.r_ab;
/* for each discrete thickness */
for (j = 0; j < 256; j++) {
// normalize within 0-1 and shift
float t = (float)j / 255.0f + shift;
// get fractional part
t -= std::floor(t);
// apply lens factor
t = powf(t, lensFactor);
float tmp_rgb[2][3];
float tmp_t[2];
float tmp_ratio[2];
if (t < seam_offset - fadeWidth) {
tmp_t[0] = t + 1.0f;
tmp_t[1] = 0; // unused
tmp_ratio[0] = 1.0f;
tmp_ratio[1] = 0.0f;
} else if (t < seam_offset + fadeWidth) {
tmp_t[0] = t;
tmp_t[1] = t + 1.0f;
tmp_ratio[0] = 0.5f + 0.5f * (t - seam_offset) / fadeWidth;
tmp_ratio[1] = 1.0f - tmp_ratio[0];
} else if (t > 1.0f + seam_offset + fadeWidth) {
tmp_t[0] = t - 1.0f;
tmp_t[1] = 0; // unused
tmp_ratio[0] = 1.0f;
tmp_ratio[1] = 0.0f;
} else if (t > 1.0f + seam_offset - fadeWidth) {
tmp_t[0] = t;
tmp_t[1] = t - 1.0f;
tmp_ratio[0] = 0.5f + 0.5f * (1.0f - t + seam_offset) / fadeWidth;
tmp_ratio[1] = 1.0f - tmp_ratio[0];
} else { // no fade
tmp_t[0] = t;
tmp_t[1] = 0; // unused
tmp_ratio[0] = 1.0f;
tmp_ratio[1] = 0.0f;
}
/* compute colors for two thickness values and fade them*/
for (int fadeId = 0; fadeId < 2; fadeId++) {
// if composit ratio is 0, skip computing
if (tmp_ratio[fadeId] == 0.0f) continue;
/* calculate the thickness of film (μm) */
d = thickMin + (thickMax - thickMin) * tmp_t[fadeId];
/* there may be a case that the thickness is smaller than 0 */
if (d < 0.0f) d = 0.0f;
/* initialize XYZ color channels */
color_x = 0.0f;
color_y = 0.0f;
color_z = 0.0f;
/* for each wavelength (in the range of visible light, 380nm-710nm) */
for (ram = 0; ram < 34; ram++) {
/* wavelength `λ` (μm) */
rambda = 0.38f + 0.01f * (float)ram;
/* phase of light */
phi = 4.0f * PI * refractiveIndex * d * cos_re / rambda;
/* reflection amplitude of the film for each polarization */
// P-polarized light
p.r_real = p.r_ab + p.t_ab * p.r_ba * p.t_ba * cosf(phi);
p.r_img = p.t_ab * p.r_ba * p.t_ba * sinf(phi);
// S-polarized light
s.r_real = s.r_ab + s.t_ab * s.r_ba * s.t_ba * cosf(phi);
s.r_img = s.t_ab * s.r_ba * s.t_ba * sinf(phi);
p.R = p.r_real * p.r_real + p.r_img * p.r_img;
s.R = s.r_real * s.r_real + s.r_img * s.r_img;
/* combined energy reflectance */
R_final = (p.R + s.R) / 2.0f;
/* accumulate XYZ channel values */
color_x += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 0];
color_y += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 1];
color_z += intensity * cie_d65[ram] * R_final * xyz[ram * 3 + 2];
} /* next wavelength (ram) */
tmp_rgb[fadeId][0] =
3.240479f * color_x - 1.537150f * color_y - 0.498535f * color_z;
tmp_rgb[fadeId][1] =
-0.969256f * color_x + 1.875992f * color_y + 0.041556f * color_z;
tmp_rgb[fadeId][2] =
0.055648f * color_x - 0.204043f * color_y + 1.057311f * color_z;
/* clamp overflows */
for (k = 0; k < 3; k++) {
if (tmp_rgb[fadeId][k] < 0.0f) tmp_rgb[fadeId][k] = 0.0f;
/* gamma adjustment */
tmp_rgb[fadeId][k] = powf((tmp_rgb[fadeId][k] / 255.0f), rgbGamma[k]);
if (tmp_rgb[fadeId][k] >= 1.0f) tmp_rgb[fadeId][k] = 1.0f;
}
}
bubble_p->x = tmp_rgb[0][0] * tmp_ratio[0] + tmp_rgb[1][0] * tmp_ratio[1];
bubble_p->y = tmp_rgb[0][1] * tmp_ratio[0] + tmp_rgb[1][1] * tmp_ratio[1];
bubble_p->z = tmp_rgb[0][2] * tmp_ratio[0] + tmp_rgb[1][2] * tmp_ratio[1];
bubble_p++;
} /*- next thickness d (j) -*/
} /*- next incident angle (i) -*/
}
//------------------------------------
Iwa_SpectrumFx::Iwa_SpectrumFx()
: m_intensity(1.0)
, m_refractiveIndex(1.25)
, m_thickMax(1.0)
, m_thickMin(0.0)
, m_RGamma(1.0)
, m_GGamma(1.0)
, m_BGamma(1.0)
, m_lensFactor(1.0)
, m_lightThres(1.0)
, m_lightIntensity(1.0)
, m_loopSpectrumFadeWidth(0.0)
, m_spectrumShift(0.0) {
addInputPort("Source", m_input);
addInputPort("Light", m_light);
bindParam(this, "intensity", m_intensity);
bindParam(this, "refractiveIndex", m_refractiveIndex);
bindParam(this, "thickMax", m_thickMax);
bindParam(this, "thickMin", m_thickMin);
bindParam(this, "RGamma", m_RGamma);
bindParam(this, "GGamma", m_GGamma);
bindParam(this, "BGamma", m_BGamma);
bindParam(this, "lensFactor", m_lensFactor);
bindParam(this, "lightThres", m_lightThres);
bindParam(this, "lightIntensity", m_lightIntensity);
bindParam(this, "loopSpectrumFadeWidth", m_loopSpectrumFadeWidth);
bindParam(this, "spectrumShift", m_spectrumShift);
m_intensity->setValueRange(0.0, 8.0);
m_refractiveIndex->setValueRange(1.0, 3.0);
m_thickMax->setValueRange(-1.5, 2.0);
m_thickMin->setValueRange(-1.5, 2.0);
m_RGamma->setValueRange(0.001, 1.0);
m_GGamma->setValueRange(0.001, 1.0);
m_BGamma->setValueRange(0.001, 1.0);
m_lensFactor->setValueRange(0.01, 10.0);
m_lightThres->setValueRange(-5.0, 1.0);
m_lightIntensity->setValueRange(0.0, 1.0);
m_loopSpectrumFadeWidth->setValueRange(0.0, 1.0);
m_spectrumShift->setValueRange(-10.0, 10.0);
}
//------------------------------------
void Iwa_SpectrumFx::doCompute(TTile &tile, double frame,
const TRenderSettings &settings) {
if (!m_input.isConnected()) return;
/*- 薄膜干渉色マップ -*/
float3 *bubbleColor;
TDimensionI dim(tile.getRaster()->getLx(), tile.getRaster()->getLy());
/*- 256段階で干渉色を計算 -*/
TRasterGR8P bubbleColor_ras(sizeof(float3) * 256, 1);
bubbleColor_ras->lock();
bubbleColor = (float3 *)bubbleColor_ras->getRawData();
/*- シャボン色マップの生成 -*/
calcBubbleMap(bubbleColor, frame);
/*- いったん素材をTileに収める -*/
m_input->compute(tile, frame, settings);
/*--------------------
ここで、Lightが刺さっていた場合は、Lightのアルファを使用&HDRThresでスクリーン合成
--------------------*/
TRasterP lightRas = 0;
if (m_light.isConnected()) {
TTile light_tile;
m_light->allocateAndCompute(light_tile, tile.m_pos, dim, tile.getRaster(),
frame, settings);
lightRas = light_tile.getRaster();
lightRas->lock();
}
TRaster32P ras32 = (TRaster32P)tile.getRaster();
TRaster64P ras64 = (TRaster64P)tile.getRaster();
{
if (ras32) {
if (lightRas)
convertRasterWithLight<TRaster32P, TPixel32>(
ras32, dim, bubbleColor, (TRaster32P)lightRas,
(float)m_lightThres->getValue(frame),
(float)m_lightIntensity->getValue(frame));
else
convertRaster<TRaster32P, TPixel32>(ras32, dim, bubbleColor);
} else if (ras64) {
if (lightRas)
convertRasterWithLight<TRaster64P, TPixel64>(
ras64, dim, bubbleColor, (TRaster64P)lightRas,
(float)m_lightThres->getValue(frame),
(float)m_lightIntensity->getValue(frame));
else
convertRaster<TRaster64P, TPixel64>(ras64, dim, bubbleColor);
}
}
//メモリ解放
// brightness_ras->unlock();
bubbleColor_ras->unlock();
if (lightRas) lightRas->unlock();
}
//------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::convertRaster(const RASTER ras, TDimensionI dim,
float3 *bubbleColor) {
float rr, gg, bb, aa;
float spec_r, spec_g, spec_b;
float brightness;
for (int j = 0; j < dim.ly; j++) {
PIXEL *pix = ras->pixels(j);
for (int i = 0; i < dim.lx; i++) {
aa = (float)pix->m / PIXEL::maxChannelValue;
if (aa == 0.0f) /*- アルファが0なら変化なし -*/
{
pix++;
continue;
}
/*- depremutiplyはしないでおく -*/
rr = (float)pix->r / (float)PIXEL::maxChannelValue;
gg = (float)pix->g / (float)PIXEL::maxChannelValue;
bb = (float)pix->b / (float)PIXEL::maxChannelValue;
brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb;
/*- 反転 -*/
brightness = 1.0f - brightness;
/*- 輝度MAXの場合 -*/
if (brightness >= 1.0f) {
spec_r = bubbleColor[255].x * aa;
spec_g = bubbleColor[255].y * aa;
spec_b = bubbleColor[255].z * aa;
} else {
/*- 線形補間する -*/
int index = (int)(brightness * 255.0f);
float ratio = brightness * 255.0f - (float)index;
spec_r = bubbleColor[index].x * (1.0f - ratio) +
bubbleColor[index + 1].x * ratio;
spec_g = bubbleColor[index].y * (1.0f - ratio) +
bubbleColor[index + 1].y * ratio;
spec_b = bubbleColor[index].z * (1.0f - ratio) +
bubbleColor[index + 1].z * ratio;
spec_r *= aa;
spec_g *= aa;
spec_b *= aa;
}
/*- 元のピクセルに書き戻す -*/
float val;
/*- チャンネル範囲にクランプ -*/
val = spec_r * (float)PIXEL::maxChannelValue + 0.5f;
pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = spec_g * (float)PIXEL::maxChannelValue + 0.5f;
pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = spec_b * (float)PIXEL::maxChannelValue + 0.5f;
pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
pix++;
}
}
}
//------------------------------------
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::convertRasterWithLight(const RASTER ras, TDimensionI dim,
float3 *bubbleColor,
const RASTER lightRas,
float lightThres,
float lightIntensity) {
float rr, gg, bb, aa;
float spec_r, spec_g, spec_b;
float brightness;
for (int j = 0; j < dim.ly; j++) {
PIXEL *light_pix = lightRas->pixels(j);
PIXEL *pix = ras->pixels(j);
for (int i = 0; i < dim.lx; i++) {
aa = (float)light_pix->m / PIXEL::maxChannelValue;
if (aa == 0.0f) /*- アルファが0なら透明にする -*/
{
*pix = PIXEL::Transparent;
light_pix++;
pix++;
continue;
}
/*- depremutiplyはしないでおく -*/
rr = (float)pix->r / (float)PIXEL::maxChannelValue;
gg = (float)pix->g / (float)PIXEL::maxChannelValue;
bb = (float)pix->b / (float)PIXEL::maxChannelValue;
brightness = 0.298912f * rr + 0.586611f * gg + 0.114478f * bb;
/*- 反転 -*/
brightness = 1.0f - brightness;
/*- 輝度MAXの場合 -*/
if (brightness >= 1.0f) {
spec_r = bubbleColor[255].x;
spec_g = bubbleColor[255].y;
spec_b = bubbleColor[255].z;
} else {
/*- 線形補間する -*/
int index = (int)(brightness * 255.0f);
float ratio = brightness * 255.0f - (float)index;
spec_r = bubbleColor[index].x * (1.0f - ratio) +
bubbleColor[index + 1].x * ratio;
spec_g = bubbleColor[index].y * (1.0f - ratio) +
bubbleColor[index + 1].y * ratio;
spec_b = bubbleColor[index].z * (1.0f - ratio) +
bubbleColor[index + 1].z * ratio;
}
/*- ここで、Light画像とのスクリーン合成を行う -*/
float HDR_Factor;
if (aa <= lightThres || lightThres == 1.0f)
HDR_Factor = 0.0;
else
HDR_Factor = lightIntensity * (aa - lightThres) / (1.0 - lightThres);
float light_r = (float)light_pix->r / (float)PIXEL::maxChannelValue;
float light_g = (float)light_pix->g / (float)PIXEL::maxChannelValue;
float light_b = (float)light_pix->b / (float)PIXEL::maxChannelValue;
/*- スクリーン合成結果と虹色をHDR_Factorで混ぜる -*/
spec_r = (1.0f - HDR_Factor) * spec_r +
HDR_Factor * (spec_r + light_r - spec_r * light_r);
spec_g = (1.0f - HDR_Factor) * spec_g +
HDR_Factor * (spec_g + light_g - spec_g * light_g);
spec_b = (1.0f - HDR_Factor) * spec_b +
HDR_Factor * (spec_b + light_b - spec_b * light_b);
spec_r *= aa;
spec_g *= aa;
spec_b *= aa;
/*- 元のピクセルに書き戻す -*/
float val;
/*- チャンネル範囲にクランプ -*/
val = spec_r * (float)PIXEL::maxChannelValue + 0.5f;
pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = spec_g * (float)PIXEL::maxChannelValue + 0.5f;
pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = spec_b * (float)PIXEL::maxChannelValue + 0.5f;
pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
pix->m = light_pix->m;
pix++;
light_pix++;
}
}
}
/*------------------------------------
素材タイルを0〜1に正規化して格納
------------------------------------*/
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::setSourceRasters(const RASTER ras,
float4 *in_out_tile_host,
const RASTER light_ras,
float4 *light_host, TDimensionI dim,
bool useLight) {
float4 *chann_p = in_out_tile_host;
float4 *lightChann_p = light_host;
for (int j = 0; j < dim.ly; j++) {
PIXEL *pix = ras->pixels(j);
PIXEL *lightPix = (useLight) ? light_ras->pixels(j) : 0;
for (int i = 0; i < dim.lx; i++) {
(*chann_p).x = (float)pix->r / (float)PIXEL::maxChannelValue;
(*chann_p).y = (float)pix->g / (float)PIXEL::maxChannelValue;
(*chann_p).z = (float)pix->b / (float)PIXEL::maxChannelValue;
(*chann_p).w = (float)pix->m / (float)PIXEL::maxChannelValue;
pix++;
chann_p++;
if (useLight) {
(*lightChann_p).x = (float)lightPix->r / (float)PIXEL::maxChannelValue;
(*lightChann_p).y = (float)lightPix->g / (float)PIXEL::maxChannelValue;
(*lightChann_p).z = (float)lightPix->b / (float)PIXEL::maxChannelValue;
(*lightChann_p).w = (float)lightPix->m / (float)PIXEL::maxChannelValue;
lightPix++;
lightChann_p++;
}
}
}
}
/*------------------------------------
出力結果をChannel値に変換してタイルに格納
------------------------------------*/
template <typename RASTER, typename PIXEL>
void Iwa_SpectrumFx::outputRasters(const RASTER outRas,
float4 *in_out_tile_host, TDimensionI dim) {
float4 *chann_p = in_out_tile_host;
for (int j = 0; j < dim.ly; j++) {
PIXEL *pix = outRas->pixels(j);
for (int i = 0; i < dim.lx; i++) {
float val;
val = (*chann_p).x * (float)PIXEL::maxChannelValue + 0.5f;
pix->r = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = (*chann_p).y * (float)PIXEL::maxChannelValue + 0.5f;
pix->g = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = (*chann_p).z * (float)PIXEL::maxChannelValue + 0.5f;
pix->b = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
val = (*chann_p).w * (float)PIXEL::maxChannelValue + 0.5f;
pix->m = (typename PIXEL::Channel)((val > (float)PIXEL::maxChannelValue)
? (float)PIXEL::maxChannelValue
: val);
pix++;
chann_p++;
}
}
}
//------------------------------------
bool Iwa_SpectrumFx::doGetBBox(double frame, TRectD &bBox,
const TRenderSettings &info) {
if (!m_input.isConnected()) {
bBox = TRectD();
return false;
}
return m_input->doGetBBox(frame, bBox, info);
}
//------------------------------------
bool Iwa_SpectrumFx::canHandle(const TRenderSettings &info, double frame) {
return true;
}
FX_PLUGIN_IDENTIFIER(Iwa_SpectrumFx, "iwa_SpectrumFx")