/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Subroutine */ int cgemv_(char *trans, integer *m, integer *n, complex *
alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
beta, complex *y, integer *incy)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
complex q__1, q__2, q__3;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
static integer info;
static complex temp;
static integer lenx, leny, i, j;
extern logical lsame_(char *, char *);
static integer ix, iy, jx, jy, kx, ky;
extern /* Subroutine */ int xerbla_(char *, integer *);
static logical noconj;
/* Purpose
=======
CGEMV performs one of the matrix-vector operations
y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
y := alpha*conjg( A' )*x + beta*y,
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
Parameters
==========
TRANS - CHARACTER*1.
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
Unchanged on exit.
M - INTEGER.
On entry, M specifies the number of rows of the matrix A.
M must be at least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix A.
N must be at least zero.
Unchanged on exit.
ALPHA - COMPLEX .
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A - COMPLEX array of DIMENSION ( LDA, n ).
Before entry, the leading m by n part of the array A must
contain the matrix of coefficients.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. LDA must be at least
max( 1, m ).
Unchanged on exit.
X - COMPLEX array of DIMENSION at least
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
Before entry, the incremented array X must contain the
vector x.
Unchanged on exit.
INCX - INTEGER.
On entry, INCX specifies the increment for the elements of
X. INCX must not be zero.
Unchanged on exit.
BETA - COMPLEX .
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then Y need not be set on input.
Unchanged on exit.
Y - COMPLEX array of DIMENSION at least
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
and at least
( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
Before entry with BETA non-zero, the incremented array Y
must contain the vector y. On exit, Y is overwritten by the
updated vector y.
INCY - INTEGER.
On entry, INCY specifies the increment for the elements of
Y. INCY must not be zero.
Unchanged on exit.
Level 2 Blas routine.
-- Written on 22-October-1986.
Jack Dongarra, Argonne National Lab.
Jeremy Du Croz, Nag Central Office.
Sven Hammarling, Nag Central Office.
Richard Hanson, Sandia National Labs.
Test the input parameters.
Parameter adjustments
Function Body */
#define X(I) x[(I)-1]
#define Y(I) y[(I)-1]
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
info = 0;
if (! lsame_(trans, "N") && ! lsame_(trans, "T") && !
lsame_(trans, "C")) {
info = 1;
} else if (*m < 0) {
info = 2;
} else if (*n < 0) {
info = 3;
} else if (*lda < max(1,*m)) {
info = 6;
} else if (*incx == 0) {
info = 8;
} else if (*incy == 0) {
info = 11;
}
if (info != 0) {
xerbla_("CGEMV ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f && (beta->r
== 1.f && beta->i == 0.f)) {
return 0;
}
noconj = lsame_(trans, "T");
/* Set LENX and LENY, the lengths of the vectors x and y, and set
up the start points in X and Y. */
if (lsame_(trans, "N")) {
lenx = *n;
leny = *m;
} else {
lenx = *m;
leny = *n;
}
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (lenx - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (leny - 1) * *incy;
}
/* Start the operations. In this version the elements of A are
accessed sequentially with one pass through A.
First form y := beta*y. */
if (beta->r != 1.f || beta->i != 0.f) {
if (*incy == 1) {
if (beta->r == 0.f && beta->i == 0.f) {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
i__2 = i;
Y(i).r = 0.f, Y(i).i = 0.f;
/* L10: */
}
} else {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
i__2 = i;
i__3 = i;
q__1.r = beta->r * Y(i).r - beta->i * Y(i).i,
q__1.i = beta->r * Y(i).i + beta->i * Y(i)
.r;
Y(i).r = q__1.r, Y(i).i = q__1.i;
/* L20: */
}
}
} else {
iy = ky;
if (beta->r == 0.f && beta->i == 0.f) {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
i__2 = iy;
Y(iy).r = 0.f, Y(iy).i = 0.f;
iy += *incy;
/* L30: */
}
} else {
i__1 = leny;
for (i = 1; i <= leny; ++i) {
i__2 = iy;
i__3 = iy;
q__1.r = beta->r * Y(iy).r - beta->i * Y(iy).i,
q__1.i = beta->r * Y(iy).i + beta->i * Y(iy)
.r;
Y(iy).r = q__1.r, Y(iy).i = q__1.i;
iy += *incy;
/* L40: */
}
}
}
}
if (alpha->r == 0.f && alpha->i == 0.f) {
return 0;
}
if (lsame_(trans, "N")) {
/* Form y := alpha*A*x + y. */
jx = kx;
if (*incy == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = jx;
if (X(jx).r != 0.f || X(jx).i != 0.f) {
i__2 = jx;
q__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i,
q__1.i = alpha->r * X(jx).i + alpha->i * X(jx)
.r;
temp.r = q__1.r, temp.i = q__1.i;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = i;
i__4 = i;
i__5 = i + j * a_dim1;
q__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i,
q__2.i = temp.r * A(i,j).i + temp.i * A(i,j)
.r;
q__1.r = Y(i).r + q__2.r, q__1.i = Y(i).i +
q__2.i;
Y(i).r = q__1.r, Y(i).i = q__1.i;
/* L50: */
}
}
jx += *incx;
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
i__2 = jx;
if (X(jx).r != 0.f || X(jx).i != 0.f) {
i__2 = jx;
q__1.r = alpha->r * X(jx).r - alpha->i * X(jx).i,
q__1.i = alpha->r * X(jx).i + alpha->i * X(jx)
.r;
temp.r = q__1.r, temp.i = q__1.i;
iy = ky;
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = iy;
i__4 = iy;
i__5 = i + j * a_dim1;
q__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i,
q__2.i = temp.r * A(i,j).i + temp.i * A(i,j)
.r;
q__1.r = Y(iy).r + q__2.r, q__1.i = Y(iy).i +
q__2.i;
Y(iy).r = q__1.r, Y(iy).i = q__1.i;
iy += *incy;
/* L70: */
}
}
jx += *incx;
/* L80: */
}
}
} else {
/* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
*/
jy = ky;
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
temp.r = 0.f, temp.i = 0.f;
if (noconj) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = i + j * a_dim1;
i__4 = i;
q__2.r = A(i,j).r * X(i).r - A(i,j).i * X(i)
.i, q__2.i = A(i,j).r * X(i).i + A(i,j)
.i * X(i).r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
/* L90: */
}
} else {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
r_cnjg(&q__3, &A(i,j));
i__3 = i;
q__2.r = q__3.r * X(i).r - q__3.i * X(i).i,
q__2.i = q__3.r * X(i).i + q__3.i * X(i)
.r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
/* L100: */
}
}
i__2 = jy;
i__3 = jy;
q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i =
alpha->r * temp.i + alpha->i * temp.r;
q__1.r = Y(jy).r + q__2.r, q__1.i = Y(jy).i + q__2.i;
Y(jy).r = q__1.r, Y(jy).i = q__1.i;
jy += *incy;
/* L110: */
}
} else {
i__1 = *n;
for (j = 1; j <= *n; ++j) {
temp.r = 0.f, temp.i = 0.f;
ix = kx;
if (noconj) {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
i__3 = i + j * a_dim1;
i__4 = ix;
q__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(ix)
.i, q__2.i = A(i,j).r * X(ix).i + A(i,j)
.i * X(ix).r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
ix += *incx;
/* L120: */
}
} else {
i__2 = *m;
for (i = 1; i <= *m; ++i) {
r_cnjg(&q__3, &A(i,j));
i__3 = ix;
q__2.r = q__3.r * X(ix).r - q__3.i * X(ix).i,
q__2.i = q__3.r * X(ix).i + q__3.i * X(ix)
.r;
q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
temp.r = q__1.r, temp.i = q__1.i;
ix += *incx;
/* L130: */
}
}
i__2 = jy;
i__3 = jy;
q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i =
alpha->r * temp.i + alpha->i * temp.r;
q__1.r = Y(jy).r + q__2.r, q__1.i = Y(jy).i + q__2.i;
Y(jy).r = q__1.r, Y(jy).i = q__1.i;
jy += *incy;
/* L140: */
}
}
}
return 0;
/* End of CGEMV . */
} /* cgemv_ */