#ifndef TCG_SEQUENCE_OPS_HPP
#define TCG_SEQUENCE_OPS_HPP
#include "../sequence_ops.h"
#ifdef min
#undef min
#endif
namespace tcg
{
namespace sequence_ops
{
//***********************************************************************************
// Minimal Path Functions
//***********************************************************************************
template <typename ranit_type, typename edge_eval, typename containers_reader>
bool minimalPath(ranit_type begin, ranit_type end, edge_eval &eval, containers_reader &output)
{
typedef typename ranit_type::difference_type diff_type;
typedef typename edge_eval::penalty_type penalty_type;
ranit_type a, b;
diff_type i, j, m, n = end - begin, last = n - 1;
//Precache the longest edge possible from each vertex, imposing that furthest
//nodes have increasing indices.
std::vector<diff_type> furthest(n);
diff_type currFurthest = furthest[last] = last;
for (i = last - 1; i >= 0; --i) {
currFurthest = furthest[i] = std::min(eval.furthestFrom(begin + i) - begin, currFurthest);
if (currFurthest == i)
return false; //There exists no path from start to end - quit
}
//Iterate from begin to end, using the maximum step allowed. The number of
//iterations is the number of output edges.
for (i = 0, m = 0; i < last; i = furthest[i], ++m)
;
//Also, build the iteration sequence. It will define the upper bounds for the
//k-th vertex of the output.
std::vector<diff_type> upperBound(m + 1);
for (i = 0, j = 0; i <= m; j = furthest[j], ++i)
upperBound[i] = j;
//Now, the body of the algorithm
std::vector<penalty_type> minPenaltyToEnd(n);
std::vector<diff_type> minPenaltyNext(last);
diff_type aIdx, bIdx;
penalty_type newPenalty;
minPenaltyToEnd[last] = 0;
diff_type nextLowerBound;
for (j = m - 1, nextLowerBound = last; j >= 0; --j) {
//Build the minimal penalty to end (also storing the next iterator
//leading to it) from each vertex of the polygon, assuming the minimal
//number of edges from the vertex to end.
//The j-th polygon vertex must lie in the [lowerBound, upperBound[j]]
//interval, whereas the (j+1)-th will be in [nextLowerBound, upperBound[j+1]].
//Please, observe that we always have upperBound[j] < nextLowerBound due
//to the minimal edge count constraint.
for (aIdx = upperBound[j];
aIdx >= 0 && furthest[aIdx] >= nextLowerBound;
--aIdx) {
a = begin + aIdx;
//Search the vertex next to a which minimizes the penalty to end - and store it.
minPenaltyToEnd[aIdx] = (std::numeric_limits<penalty_type>::max)();
for (bIdx = nextLowerBound, b = begin + nextLowerBound; furthest[aIdx] >= bIdx; ++b, ++bIdx) {
assert(minPenaltyToEnd[bIdx] < (std::numeric_limits<penalty_type>::max)());
newPenalty = eval.penalty(a, b) + minPenaltyToEnd[bIdx];
if (newPenalty < minPenaltyToEnd[aIdx]) {
minPenaltyToEnd[aIdx] = newPenalty;
minPenaltyNext[aIdx] = bIdx;
}
}
}
//Update
nextLowerBound = aIdx;
++nextLowerBound;
}
//Finally, build the output sequence
output.openContainer(begin);
for (i = minPenaltyNext[0], j = 1; j < m; i = minPenaltyNext[i], ++j)
output.addElement(begin + i);
output.addElement(begin + last);
output.closeContainer();
return true;
}
}
} // namespace tcg::sequence_ops
#endif // TCG_SEQUENCE_OPS_HPP