/*! @file cgsrfs.c
* \brief Improves computed solution to a system of inear equations
*
* <pre>
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Modified from lapack routine CGERFS
* </pre>
*/
/*
* File name: cgsrfs.c
* History: Modified from lapack routine CGERFS
*/
#include <math.h>
#include "slu_cdefs.h"
/*! \brief
*
* <pre>
* Purpose
* =======
*
* CGSRFS improves the computed solution to a system of linear
* equations and provides error bounds and backward error estimates for
* the solution.
*
* If equilibration was performed, the system becomes:
* (diag(R)*A_original*diag(C)) * X = diag(R)*B_original.
*
* See supermatrix.h for the definition of 'SuperMatrix' structure.
*
* Arguments
* =========
*
* trans (input) trans_t
* Specifies the form of the system of equations:
* = NOTRANS: A * X = B (No transpose)
* = TRANS: A'* X = B (Transpose)
* = CONJ: A**H * X = B (Conjugate transpose)
*
* A (input) SuperMatrix*
* The original matrix A in the system, or the scaled A if
* equilibration was done. The type of A can be:
* Stype = SLU_NC, Dtype = SLU_C, Mtype = SLU_GE.
*
* L (input) SuperMatrix*
* The factor L from the factorization Pr*A*Pc=L*U. Use
* compressed row subscripts storage for supernodes,
* i.e., L has types: Stype = SLU_SC, Dtype = SLU_C, Mtype = SLU_TRLU.
*
* U (input) SuperMatrix*
* The factor U from the factorization Pr*A*Pc=L*U as computed by
* cgstrf(). Use column-wise storage scheme,
* i.e., U has types: Stype = SLU_NC, Dtype = SLU_C, Mtype = SLU_TRU.
*
* perm_c (input) int*, dimension (A->ncol)
* Column permutation vector, which defines the
* permutation matrix Pc; perm_c[i] = j means column i of A is
* in position j in A*Pc.
*
* perm_r (input) int*, dimension (A->nrow)
* Row permutation vector, which defines the permutation matrix Pr;
* perm_r[i] = j means row i of A is in position j in Pr*A.
*
* equed (input) Specifies the form of equilibration that was done.
* = 'N': No equilibration.
* = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
* = 'C': Column equilibration, i.e., A was postmultiplied by
* diag(C).
* = 'B': Both row and column equilibration, i.e., A was replaced
* by diag(R)*A*diag(C).
*
* R (input) float*, dimension (A->nrow)
* The row scale factors for A.
* If equed = 'R' or 'B', A is premultiplied by diag(R).
* If equed = 'N' or 'C', R is not accessed.
*
* C (input) float*, dimension (A->ncol)
* The column scale factors for A.
* If equed = 'C' or 'B', A is postmultiplied by diag(C).
* If equed = 'N' or 'R', C is not accessed.
*
* B (input) SuperMatrix*
* B has types: Stype = SLU_DN, Dtype = SLU_C, Mtype = SLU_GE.
* The right hand side matrix B.
* if equed = 'R' or 'B', B is premultiplied by diag(R).
*
* X (input/output) SuperMatrix*
* X has types: Stype = SLU_DN, Dtype = SLU_C, Mtype = SLU_GE.
* On entry, the solution matrix X, as computed by cgstrs().
* On exit, the improved solution matrix X.
* if *equed = 'C' or 'B', X should be premultiplied by diag(C)
* in order to obtain the solution to the original system.
*
* FERR (output) float*, dimension (B->ncol)
* The estimated forward error bound for each solution vector
* X(j) (the j-th column of the solution matrix X).
* If XTRUE is the true solution corresponding to X(j), FERR(j)
* is an estimated upper bound for the magnitude of the largest
* element in (X(j) - XTRUE) divided by the magnitude of the
* largest element in X(j). The estimate is as reliable as
* the estimate for RCOND, and is almost always a slight
* overestimate of the true error.
*
* BERR (output) float*, dimension (B->ncol)
* The componentwise relative backward error of each solution
* vector X(j) (i.e., the smallest relative change in
* any element of A or B that makes X(j) an exact solution).
*
* stat (output) SuperLUStat_t*
* Record the statistics on runtime and floating-point operation count.
* See util.h for the definition of 'SuperLUStat_t'.
*
* info (output) int*
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Internal Parameters
* ===================
*
* ITMAX is the maximum number of steps of iterative refinement.
*
* </pre>
*/
void
cgsrfs(trans_t trans, SuperMatrix *A, SuperMatrix *L, SuperMatrix *U,
int *perm_c, int *perm_r, char *equed, float *R, float *C,
SuperMatrix *B, SuperMatrix *X, float *ferr, float *berr,
SuperLUStat_t *stat, int *info)
{
#define ITMAX 5
/* Table of constant values */
int ione = 1;
complex ndone = {-1., 0.};
complex done = {1., 0.};
/* Local variables */
NCformat *Astore;
complex *Aval;
SuperMatrix Bjcol;
DNformat *Bstore, *Xstore, *Bjcol_store;
complex *Bmat, *Xmat, *Bptr, *Xptr;
int kase;
float safe1, safe2;
int i, j, k, irow, nz, count, notran, rowequ, colequ;
int ldb, ldx, nrhs;
float s, xk, lstres, eps, safmin;
char transc[1];
trans_t transt;
complex *work;
float *rwork;
int *iwork;
extern int clacon_(int *, complex *, complex *, float *, int *);
#ifdef _CRAY
extern int CCOPY(int *, complex *, int *, complex *, int *);
extern int CSAXPY(int *, complex *, complex *, int *, complex *, int *);
#else
extern int ccopy_(int *, complex *, int *, complex *, int *);
extern int caxpy_(int *, complex *, complex *, int *, complex *, int *);
#endif
Astore = A->Store;
Aval = Astore->nzval;
Bstore = B->Store;
Xstore = X->Store;
Bmat = Bstore->nzval;
Xmat = Xstore->nzval;
ldb = Bstore->lda;
ldx = Xstore->lda;
nrhs = B->ncol;
/* Test the input parameters */
*info = 0;
notran = (trans == NOTRANS);
if ( !notran && trans != TRANS && trans != CONJ ) *info = -1;
else if ( A->nrow != A->ncol || A->nrow < 0 ||
A->Stype != SLU_NC || A->Dtype != SLU_C || A->Mtype != SLU_GE )
*info = -2;
else if ( L->nrow != L->ncol || L->nrow < 0 ||
L->Stype != SLU_SC || L->Dtype != SLU_C || L->Mtype != SLU_TRLU )
*info = -3;
else if ( U->nrow != U->ncol || U->nrow < 0 ||
U->Stype != SLU_NC || U->Dtype != SLU_C || U->Mtype != SLU_TRU )
*info = -4;
else if ( ldb < SUPERLU_MAX(0, A->nrow) ||
B->Stype != SLU_DN || B->Dtype != SLU_C || B->Mtype != SLU_GE )
*info = -10;
else if ( ldx < SUPERLU_MAX(0, A->nrow) ||
X->Stype != SLU_DN || X->Dtype != SLU_C || X->Mtype != SLU_GE )
*info = -11;
if (*info != 0) {
i = -(*info);
xerbla_("cgsrfs", &i);
return;
}
/* Quick return if possible */
if ( A->nrow == 0 || nrhs == 0) {
for (j = 0; j < nrhs; ++j) {
ferr[j] = 0.;
berr[j] = 0.;
}
return;
}
rowequ = lsame_(equed, "R") || lsame_(equed, "B");
colequ = lsame_(equed, "C") || lsame_(equed, "B");
/* Allocate working space */
work = complexMalloc(2*A->nrow);
rwork = (float *) SUPERLU_MALLOC( A->nrow * sizeof(float) );
iwork = intMalloc(A->nrow);
if ( !work || !rwork || !iwork )
ABORT("Malloc fails for work/rwork/iwork.");
if ( notran ) {
*(unsigned char *)transc = 'N';
transt = TRANS;
} else {
*(unsigned char *)transc = 'T';
transt = NOTRANS;
}
/* NZ = maximum number of nonzero elements in each row of A, plus 1 */
nz = A->ncol + 1;
eps = slamch_("Epsilon");
safmin = slamch_("Safe minimum");
/* Set SAFE1 essentially to be the underflow threshold times the
number of additions in each row. */
safe1 = nz * safmin;
safe2 = safe1 / eps;
/* Compute the number of nonzeros in each row (or column) of A */
for (i = 0; i < A->nrow; ++i) iwork[i] = 0;
if ( notran ) {
for (k = 0; k < A->ncol; ++k)
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
++iwork[Astore->rowind[i]];
} else {
for (k = 0; k < A->ncol; ++k)
iwork[k] = Astore->colptr[k+1] - Astore->colptr[k];
}
/* Copy one column of RHS B into Bjcol. */
Bjcol.Stype = B->Stype;
Bjcol.Dtype = B->Dtype;
Bjcol.Mtype = B->Mtype;
Bjcol.nrow = B->nrow;
Bjcol.ncol = 1;
Bjcol.Store = (void *) SUPERLU_MALLOC( sizeof(DNformat) );
if ( !Bjcol.Store ) ABORT("SUPERLU_MALLOC fails for Bjcol.Store");
Bjcol_store = Bjcol.Store;
Bjcol_store->lda = ldb;
Bjcol_store->nzval = work; /* address aliasing */
/* Do for each right hand side ... */
for (j = 0; j < nrhs; ++j) {
count = 0;
lstres = 3.;
Bptr = &Bmat[j*ldb];
Xptr = &Xmat[j*ldx];
while (1) { /* Loop until stopping criterion is satisfied. */
/* Compute residual R = B - op(A) * X,
where op(A) = A, A**T, or A**H, depending on TRANS. */
#ifdef _CRAY
CCOPY(&A->nrow, Bptr, &ione, work, &ione);
#else
ccopy_(&A->nrow, Bptr, &ione, work, &ione);
#endif
sp_cgemv(transc, ndone, A, Xptr, ione, done, work, ione);
/* Compute componentwise relative backward error from formula
max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
where abs(Z) is the componentwise absolute value of the matrix
or vector Z. If the i-th component of the denominator is less
than SAFE2, then SAFE1 is added to the i-th component of the
numerator before dividing. */
for (i = 0; i < A->nrow; ++i) rwork[i] = c_abs1( &Bptr[i] );
/* Compute abs(op(A))*abs(X) + abs(B). */
if (notran) {
for (k = 0; k < A->ncol; ++k) {
xk = c_abs1( &Xptr[k] );
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
rwork[Astore->rowind[i]] += c_abs1(&Aval[i]) * xk;
}
} else {
for (k = 0; k < A->ncol; ++k) {
s = 0.;
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
irow = Astore->rowind[i];
s += c_abs1(&Aval[i]) * c_abs1(&Xptr[irow]);
}
rwork[k] += s;
}
}
s = 0.;
for (i = 0; i < A->nrow; ++i) {
if (rwork[i] > safe2) {
s = SUPERLU_MAX( s, c_abs1(&work[i]) / rwork[i] );
} else if ( rwork[i] != 0.0 ) {
s = SUPERLU_MAX( s, (c_abs1(&work[i]) + safe1) / rwork[i] );
}
/* If rwork[i] is exactly 0.0, then we know the true
residual also must be exactly 0.0. */
}
berr[j] = s;
/* Test stopping criterion. Continue iterating if
1) The residual BERR(J) is larger than machine epsilon, and
2) BERR(J) decreased by at least a factor of 2 during the
last iteration, and
3) At most ITMAX iterations tried. */
if (berr[j] > eps && berr[j] * 2. <= lstres && count < ITMAX) {
/* Update solution and try again. */
cgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
#ifdef _CRAY
CAXPY(&A->nrow, &done, work, &ione,
&Xmat[j*ldx], &ione);
#else
caxpy_(&A->nrow, &done, work, &ione,
&Xmat[j*ldx], &ione);
#endif
lstres = berr[j];
++count;
} else {
break;
}
} /* end while */
stat->RefineSteps = count;
/* Bound error from formula:
norm(X - XTRUE) / norm(X) .le. FERR = norm( abs(inv(op(A)))*
( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
where
norm(Z) is the magnitude of the largest component of Z
inv(op(A)) is the inverse of op(A)
abs(Z) is the componentwise absolute value of the matrix or
vector Z
NZ is the maximum number of nonzeros in any row of A, plus 1
EPS is machine epsilon
The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
is incremented by SAFE1 if the i-th component of
abs(op(A))*abs(X) + abs(B) is less than SAFE2.
Use CLACON to estimate the infinity-norm of the matrix
inv(op(A)) * diag(W),
where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
for (i = 0; i < A->nrow; ++i) rwork[i] = c_abs1( &Bptr[i] );
/* Compute abs(op(A))*abs(X) + abs(B). */
if ( notran ) {
for (k = 0; k < A->ncol; ++k) {
xk = c_abs1( &Xptr[k] );
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i)
rwork[Astore->rowind[i]] += c_abs1(&Aval[i]) * xk;
}
} else {
for (k = 0; k < A->ncol; ++k) {
s = 0.;
for (i = Astore->colptr[k]; i < Astore->colptr[k+1]; ++i) {
irow = Astore->rowind[i];
xk = c_abs1( &Xptr[irow] );
s += c_abs1(&Aval[i]) * xk;
}
rwork[k] += s;
}
}
for (i = 0; i < A->nrow; ++i)
if (rwork[i] > safe2)
rwork[i] = c_abs(&work[i]) + (iwork[i]+1)*eps*rwork[i];
else
rwork[i] = c_abs(&work[i])+(iwork[i]+1)*eps*rwork[i]+safe1;
kase = 0;
do {
clacon_(&A->nrow, &work[A->nrow], work,
&ferr[j], &kase);
if (kase == 0) break;
if (kase == 1) {
/* Multiply by diag(W)*inv(op(A)**T)*(diag(C) or diag(R)). */
if ( notran && colequ )
for (i = 0; i < A->ncol; ++i) {
cs_mult(&work[i], &work[i], C[i]);
}
else if ( !notran && rowequ )
for (i = 0; i < A->nrow; ++i) {
cs_mult(&work[i], &work[i], R[i]);
}
cgstrs (transt, L, U, perm_c, perm_r, &Bjcol, stat, info);
for (i = 0; i < A->nrow; ++i) {
cs_mult(&work[i], &work[i], rwork[i]);
}
} else {
/* Multiply by (diag(C) or diag(R))*inv(op(A))*diag(W). */
for (i = 0; i < A->nrow; ++i) {
cs_mult(&work[i], &work[i], rwork[i]);
}
cgstrs (trans, L, U, perm_c, perm_r, &Bjcol, stat, info);
if ( notran && colequ )
for (i = 0; i < A->ncol; ++i) {
cs_mult(&work[i], &work[i], C[i]);
}
else if ( !notran && rowequ )
for (i = 0; i < A->ncol; ++i) {
cs_mult(&work[i], &work[i], R[i]);
}
}
} while ( kase != 0 );
/* Normalize error. */
lstres = 0.;
if ( notran && colequ ) {
for (i = 0; i < A->nrow; ++i)
lstres = SUPERLU_MAX( lstres, C[i] * c_abs1( &Xptr[i]) );
} else if ( !notran && rowequ ) {
for (i = 0; i < A->nrow; ++i)
lstres = SUPERLU_MAX( lstres, R[i] * c_abs1( &Xptr[i]) );
} else {
for (i = 0; i < A->nrow; ++i)
lstres = SUPERLU_MAX( lstres, c_abs1( &Xptr[i]) );
}
if ( lstres != 0. )
ferr[j] /= lstres;
} /* for each RHS j ... */
SUPERLU_FREE(work);
SUPERLU_FREE(rwork);
SUPERLU_FREE(iwork);
SUPERLU_FREE(Bjcol.Store);
return;
} /* cgsrfs */