Blob Blame Raw

/*! @file dcomplex.c
 * \brief Common arithmetic for complex type
 *
 * <pre>
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 * This file defines common arithmetic operations for complex type.
 * </pre>
 */

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "slu_dcomplex.h"


/*! \brief Complex Division c = a/b */
void z_div(doublecomplex *c, doublecomplex *a, doublecomplex *b)
{
    double ratio, den;
    double abr, abi, cr, ci;
  
    if( (abr = b->r) < 0.)
	abr = - abr;
    if( (abi = b->i) < 0.)
	abi = - abi;
    if( abr <= abi ) {
	if (abi == 0) {
	    fprintf(stderr, "z_div.c: division by zero\n");
            exit(-1);
	}	  
	ratio = b->r / b->i ;
	den = b->i * (1 + ratio*ratio);
	cr = (a->r*ratio + a->i) / den;
	ci = (a->i*ratio - a->r) / den;
    } else {
	ratio = b->i / b->r ;
	den = b->r * (1 + ratio*ratio);
	cr = (a->r + a->i*ratio) / den;
	ci = (a->i - a->r*ratio) / den;
    }
    c->r = cr;
    c->i = ci;
}


/*! \brief Returns sqrt(z.r^2 + z.i^2) */
double z_abs(doublecomplex *z)
{
    double temp;
    double real = z->r;
    double imag = z->i;

    if (real < 0) real = -real;
    if (imag < 0) imag = -imag;
    if (imag > real) {
	temp = real;
	real = imag;
	imag = temp;
    }
    if ((real+imag) == real) return(real);
  
    temp = imag/real;
    temp = real*sqrt(1.0 + temp*temp);  /*overflow!!*/
    return (temp);
}


/*! \brief Approximates the abs. Returns abs(z.r) + abs(z.i) */
double z_abs1(doublecomplex *z)
{
    double real = z->r;
    double imag = z->i;
  
    if (real < 0) real = -real;
    if (imag < 0) imag = -imag;

    return (real + imag);
}

/*! \brief Return the exponentiation */
void z_exp(doublecomplex *r, doublecomplex *z)
{
    double expx;

    expx = exp(z->r);
    r->r = expx * cos(z->i);
    r->i = expx * sin(z->i);
}

/*! \brief Return the complex conjugate */
void d_cnjg(doublecomplex *r, doublecomplex *z)
{
    r->r = z->r;
    r->i = -z->i;
}

/*! \brief Return the imaginary part */
double d_imag(doublecomplex *z)
{
    return (z->i);
}


/*! \brief SIGN functions for complex number. Returns z/abs(z) */
doublecomplex z_sgn(doublecomplex *z)
{
    register double t = z_abs(z);
    register doublecomplex retval;

    if (t == 0.0) {
	retval.r = 1.0, retval.i = 0.0;
    } else {
	retval.r = z->r / t, retval.i = z->i / t;
    }

    return retval;
}

/*! \brief Square-root of a complex number. */
doublecomplex z_sqrt(doublecomplex *z)
{
    doublecomplex retval;
    register double cr, ci, real, imag;

    real = z->r;
    imag = z->i;

    if ( imag == 0.0 ) {
        retval.r = sqrt(real);
        retval.i = 0.0;
    } else {
        ci = (sqrt(real*real + imag*imag) - real) / 2.0;
        ci = sqrt(ci);
        cr = imag / (2.0 * ci);
        retval.r = cr;
        retval.i = ci;
    }

    return retval;
}