| #ifndef TOONZ_PLUGIN_HELPER_UTILS_AFFINE_HPP__ |
| #define TOONZ_PLUGIN_HELPER_UTILS_AFFINE_HPP__ |
| |
| #include <cmath> |
| #include <cfloat> |
| #include <cassert> |
| #include <toonz_hostif.h> |
| #include "rect.hpp" |
| |
| class ToonzAffine |
| { |
| public: |
| double a11, a12, a13; |
| double a21, a22, a23; |
| |
| ToonzAffine() : a11(1), a12(0), a13(0), a21(0), a22(1), a23(0) {} |
| ToonzAffine(double a11, double a12, double a13, |
| double a21, double a22, double a23) |
| : a11(a11), a12(a12), a13(a13), a21(a21), a22(a22), a23(a23) {} |
| ToonzAffine(const toonz_affine_t &affine) : a11(affine.a11), a12(affine.a12), a13(affine.a13), a21(affine.a21), a22(affine.a22), a23(affine.a23) {} |
| ToonzAffine(const ToonzAffine &toonzAffine) |
| : a11(toonzAffine.a11), a12(toonzAffine.a12), a13(toonzAffine.a13), |
| a21(toonzAffine.a21), a22(toonzAffine.a22), a23(toonzAffine.a23) {} |
| |
| static bool equals(double a, double b, double err = 1e-9) |
| { |
| return std::abs(a - b) < err; |
| } |
| |
| ToonzAffine operator*(const ToonzAffine &toonzAffine) const; |
| ToonzAffine &operator=(const ToonzAffine &toonzAffine); |
| ToonzAffine &operator*=(const ToonzAffine &toonzAffine); |
| bool operator==(const ToonzAffine &toonzAffine) const; |
| bool operator!=(const ToonzAffine &toonzAffine) const; |
| |
| ToonzPoint operator*(const ToonzPoint &p) const; |
| ToonzRect operator*(const ToonzRect &p) const; |
| ToonzAffine inv() const; |
| double det() const; |
| bool isIdentity(double err = 1e-9) const; |
| bool isTranslation(double err = 1e-9) const; |
| bool isIsotropic(double err = 1e-9) const; |
| ToonzAffine place(double u, double v, double x, double y) const; |
| }; |
| |
| inline ToonzPoint ToonzAffine::operator*(const ToonzPoint &pt) const |
| { |
| return ToonzPoint(pt.x * a11 + pt.y * a12 + a13, pt.x * a21 + pt.y * a22 + a23); |
| } |
| |
| inline ToonzRect ToonzAffine::operator*(const ToonzRect &r) const |
| { |
| if (r.x0 == -std::numeric_limits<double>::max() || |
| r.y0 == -std::numeric_limits<double>::max() || |
| r.x1 == std::numeric_limits<double>::max() || |
| r.y1 == std::numeric_limits<double>::max()) |
| return ToonzRect(-std::numeric_limits<double>::max(), -std::numeric_limits<double>::max(), std::numeric_limits<double>::max(), std::numeric_limits<double>::max()); |
| ToonzPoint p0 = this->operator*(ToonzPoint(r.x0, r.y0)); |
| ToonzPoint p1 = this->operator*(ToonzPoint(r.x1, r.y0)); |
| ToonzPoint p2 = this->operator*(ToonzPoint(r.x0, r.y1)); |
| ToonzPoint p3 = this->operator*(ToonzPoint(r.x1, r.y1)); |
| return ToonzRect(std::min(std::min(p0.x, p1.x), std::min(p2.x, p3.x)), std::min(std::min(p0.y, p1.y), std::min(p2.y, p3.y)), |
| std::max(std::max(p0.x, p1.x), std::max(p2.x, p3.x)), std::max(std::max(p0.y, p1.y), std::max(p2.y, p3.y))); |
| } |
| |
| ToonzAffine ToonzAffine::operator*(const ToonzAffine &toonzAffine) const |
| { |
| return ToonzAffine( |
| a11 * toonzAffine.a11 + a12 * toonzAffine.a21, |
| a11 * toonzAffine.a12 + a12 * toonzAffine.a22, |
| a11 * toonzAffine.a13 + a12 * toonzAffine.a23 + a13, |
| a21 * toonzAffine.a11 + a22 * toonzAffine.a21, |
| a21 * toonzAffine.a12 + a22 * toonzAffine.a22, |
| a21 * toonzAffine.a13 + a22 * toonzAffine.a23 + a23); |
| } |
| |
| ToonzAffine &ToonzAffine::operator=(const ToonzAffine &toonzAffine) |
| { |
| a11 = toonzAffine.a11; |
| a12 = toonzAffine.a12; |
| a13 = toonzAffine.a13; |
| a21 = toonzAffine.a21; |
| a22 = toonzAffine.a22; |
| a23 = toonzAffine.a23; |
| return *this; |
| } |
| |
| ToonzAffine &ToonzAffine::operator*=(const ToonzAffine &toonzAffine) |
| { |
| return *this = *this * toonzAffine; |
| } |
| |
| bool ToonzAffine::operator==(const ToonzAffine &toonzAffine) const |
| { |
| return equals(a11, toonzAffine.a11) && equals(a12, toonzAffine.a12) && |
| equals(a13, toonzAffine.a13) && equals(a21, toonzAffine.a21) && |
| equals(a22, toonzAffine.a22) && equals(a23, toonzAffine.a23); |
| } |
| |
| bool ToonzAffine::operator!=(const ToonzAffine &toonzAffine) const |
| { |
| return !(*this == toonzAffine); |
| } |
| |
| ToonzAffine ToonzAffine::inv() const |
| { |
| if (equals(a12, 0.0) && equals(a21, 0.0)) { |
| assert(!equals(a11, 0.0, DBL_EPSILON)); |
| assert(!equals(a22, 0.0, DBL_EPSILON)); |
| double inv_a11 = 1.0 / a11; |
| double inv_a22 = 1.0 / a22; |
| return ToonzAffine( |
| inv_a11, 0.0, -a13 * inv_a11, |
| 0.0, inv_a22, -a23 * inv_a22); |
| } else if (equals(a11, 0.0) && equals(a22, 0.0)) { |
| assert(!equals(a12, 0.0, DBL_EPSILON)); |
| assert(!equals(a21, 0.0, DBL_EPSILON)); |
| double inv_a21 = 1.0 / a21; |
| double inv_a12 = 1.0 / a12; |
| return ToonzAffine( |
| 0.0, inv_a21, -a23 * inv_a21, |
| inv_a12, 0.0, -a13 * inv_a12); |
| } |
| double inv_det = 1.0 / det(); |
| return ToonzAffine( |
| a22 * inv_det, -a12 * inv_det, (a12 * a23 - a22 * a13) * inv_det, |
| -a21 * inv_det, a11 * inv_det, (a21 * a13 - a11 * a23) * inv_det); |
| } |
| |
| double ToonzAffine::det() const |
| { |
| return a11 * a22 - a12 * a21; |
| } |
| |
| bool ToonzAffine::isIdentity(double err) const |
| { |
| double value = |
| (a11 - 1.0) * (a11 - 1.0) + |
| (a22 - 1.0) * (a22 - 1.0) + |
| a12 * a12 + a13 * a13 + |
| a21 * a21 + a23 * a23; |
| return value < err; |
| } |
| |
| bool ToonzAffine::isTranslation(double err) const |
| { |
| double value = |
| (a11 - 1.0) * (a11 - 1.0) + |
| (a22 - 1.0) * (a22 - 1.0) + |
| a12 * a12 + a21 * a21; |
| return value < err; |
| } |
| |
| bool ToonzAffine::isIsotropic(double err) const |
| { |
| if (equals(a11, a22, err) && equals(a12, -a21, err)) { |
| return true; |
| } |
| return false; |
| } |
| |
| ToonzAffine ToonzAffine::place(double u, double v, double x, double y) const |
| { |
| return ToonzAffine( |
| a11, a12, x - (a11 * u + a12 * v), |
| a21, a22, y - (a21 * u + a22 * v)); |
| } |
| |
| #endif |