Blob Blame Raw


#include "trasterfx.h"

//Core-system includes
#include "tsystem.h"
#include "tthreadmessage.h"

//Fx basics
#include "tparamcontainer.h"
#include "tbasefx.h"
#include "tfxattributes.h"

//Images components
#include "timagecache.h"
#include "trasterimage.h"
#include "trop.h"

//Optimization components
#include "trenderresourcemanager.h"
#include "tfxcachemanager.h"
#include "trenderer.h"

//Diagnostics
//#define DIAGNOSTICS
#ifdef DIAGNOSTICS
#include "diagnostics.h"

#endif //DIAGNOSTICS

//===================================================

namespace
{
inline bool areEqual(const TRasterFxRenderDataP &d1, const TRasterFxRenderDataP &d2)
{
	return (*d1 == *d2);
}

//--------------------------------------------------

inline int myCeil(double x)
{
	return ((x - (int)(x)) > TConsts::epsilon ? (int)(x) + 1 : (int)(x));
}

//--------------------------------------------------

inline TRect myConvert(const TRectD &r, TPointD &dp)
{

	TRect ri(tfloor(r.x0), tfloor(r.y0), myCeil(r.x1), myCeil(r.y1));
	dp.x = r.x0 - ri.x0;
	dp.y = r.y0 - ri.y0;
	assert(dp.x >= 0 && dp.y >= 0);
	return ri;
}

//--------------------------------------------------

inline bool myIsEmpty(const TRectD &r)
{
	return r.getLx() < 1 || r.getLy() < 1;
}

//--------------------------------------------------

inline TRect myConvert(const TRectD &rect)
{
	return TRect(tround(rect.x0), tround(rect.y0), tround(rect.x1) - 1, tround(rect.y1) - 1);
}

//--------------------------------------------------

inline TRectD myConvert(const TRect &rect)
{
	return TRectD(rect.x0, rect.y0, rect.x1 + 1, rect.y1 + 1);
}

//--------------------------------------------------

inline void enlargeToI(TRectD &r)
{
	TRectD temp(tfloor(r.x0), tfloor(r.y0), tceil(r.x1), tceil(r.y1));
	//NOTE: If we enlarge a TConsts::infiniteRectD or one which trespass
	//ints' numerical bounds, the rect may become empty.
	if (!myIsEmpty(temp))
		r = temp;
}

//--------------------------------------------------

//Calculates the 2-norm of the passed affine A - that is, the max modulus
//of A*A's eigenvalues (*A being the adjoint).
double norm2(const TAffine &aff)
{
	double a11 = aff.a11 * aff.a11 + aff.a12 * aff.a12;
	double a12 = aff.a11 * aff.a21 + aff.a12 * aff.a22;
	double a21 = aff.a21 * aff.a11 + aff.a22 * aff.a12;
	double a22 = aff.a21 * aff.a21 + aff.a22 * aff.a22;

	double a11plusa22 = a11 + a22;
	double delta = sq(a11 - a22) + 4 * a12 * a21;

	delta = sqrt(delta);

	double eig1 = a11plusa22 + delta;
	double eig2 = a11plusa22 - delta;
	return std::max(sqrt(eig1 / 2.0), sqrt(eig2 / 2.0));
}

//--------------------------------------------------

inline int getResampleFilterRadius(const TRenderSettings &info)
{
	switch (info.m_quality) {
	case TRenderSettings::StandardResampleQuality            : return 1;
	case TRenderSettings::ImprovedResampleQuality            : return 2;
	case TRenderSettings::HighResampleQuality                : return 3;
	case TRenderSettings::Triangle_FilterResampleQuality     : return 1;
	case TRenderSettings::Mitchell_FilterResampleQuality     : return 2;
	case TRenderSettings::Cubic5_FilterResampleQuality       : return 2;
	case TRenderSettings::Cubic75_FilterResampleQuality      : return 2;
	case TRenderSettings::Cubic1_FilterResampleQuality       : return 2;
	case TRenderSettings::Hann2_FilterResampleQuality        : return 2;
	case TRenderSettings::Hann3_FilterResampleQuality        : return 3;
	case TRenderSettings::Hamming2_FilterResampleQuality     : return 2;
	case TRenderSettings::Hamming3_FilterResampleQuality     : return 3;
	case TRenderSettings::Lanczos2_FilterResampleQuality     : return 2;
	case TRenderSettings::Lanczos3_FilterResampleQuality     : return 3;
	case TRenderSettings::Gauss_FilterResampleQuality        : return 2;
	case TRenderSettings::ClosestPixel_FilterResampleQuality : return 1;
	case TRenderSettings::Bilinear_FilterResampleQuality     : return 1;
	default:
		assert(false);
		return -1;
	}
}

//--------------------------------------------------

inline QString traduce(const TRectD &rect)
{
	return "[" + QString::number(rect.x0) + " " + QString::number(rect.y0) + " " +
		   QString::number(rect.x1) + " " + QString::number(rect.y1) + "]";
}

//--------------------------------------------------

inline QString traduce(const TRect &rect)
{
	return "[" + QString::number(rect.x0) + " " + QString::number(rect.y0) + " " +
		   QString::number(rect.x1) + " " + QString::number(rect.y1) + "]";
}

//--------------------------------------------------

inline QString qTraduce(const TAffine &aff)
{
	return "[" +
		   QString::number(aff.a11, 'g', 15) + "," +
		   QString::number(aff.a12, 'g', 15) + "," +
		   QString::number(aff.a13, 'g', 15) + "," +
		   QString::number(aff.a21, 'g', 15) + "," +
		   QString::number(aff.a22, 'g', 15) + "," +
		   QString::number(aff.a23, 'g', 15) + "]";
}

//--------------------------------------------------

inline std::string traduce(const TAffine &aff)
{
	return
		//Observe that toString distinguishes + and - 0. That is a problem
		//when comparing aliases - so near 0 values are explicitly rounded to 0.
		(areAlmostEqual(aff.a11, 0.0) ? "0" : toString(aff.a11, 5)) + "," +
		(areAlmostEqual(aff.a12, 0.0) ? "0" : toString(aff.a12, 5)) + "," +
		(areAlmostEqual(aff.a13, 0.0) ? "0" : toString(aff.a13, 5)) + "," +
		(areAlmostEqual(aff.a21, 0.0) ? "0" : toString(aff.a21, 5)) + "," +
		(areAlmostEqual(aff.a22, 0.0) ? "0" : toString(aff.a22, 5)) + "," +
		(areAlmostEqual(aff.a23, 0.0) ? "0" : toString(aff.a23, 5));
}

} // Local namespace

//------------------------------------------------------------------------------

//The following should be cleared - and its functionalities surrendered directly
//to an appropriate resource manager...

//!Declares an image to be kept in cache until the render ends or is canceled.
void addRenderCache(const std::string &alias, TImageP image)
{
	TFxCacheManager::instance()->add(alias, image);
}

//------------------------------------------------------------------------------

//!The inverse function to addRenderCache.
void removeRenderCache(const std::string &alias)
{
	TFxCacheManager::instance()->remove(alias);
}

//==============================================================================
//
// TrFx   (Affine Transformer Fx)
//
//------------------------------------------------------------------------------

//! Internal fx node which applies the implicit affine stored in the TRenderSettings structure,
//! replacing the old TRasterFx::doCompute.
class TrFx : public TBaseRasterFx
{
	FX_DECLARATION(TrFx)

	TRasterFx *m_fx;

public:
	TrFx() {}
	~TrFx() {}

	//-----------------------------------------------------------

	void setFx(TRasterFx *fx) { m_fx = fx; }

	//-----------------------------------------------------------

	bool isCachable() const { return true; } //Currently cachable as a test. Observe that it was NOT in Toonz 6.1

	//-----------------------------------------------------------

	bool canHandle(const TRenderSettings &info, double frame) { return true; }

	//-----------------------------------------------------------

	std::string getAlias(double frame, const TRenderSettings &info) const
	{
		//NOTE: TrFx are not present at this recursive level. Affines dealing is currently handled by inserting the
		//rendering affine AFTER a getAlias call. Ever.
		std::string alias = getFxType();
		return alias + "[" + m_fx->getAlias(frame, info) + "]";
	}

	//-----------------------------------------------------------

	bool doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info)
	{
		//NOTE: TrFx are not present at this recursive level. Affines dealing is still handled by TGeometryFxs here....
		return m_fx->doGetBBox(frame, bBox, info);
	}

	//-----------------------------------------------------------

	void doCompute(TTile &tile, double frame, const TRenderSettings &info)
	{
		const TRectD &rectOut = myConvert(tile.getRaster()->getBounds()) + tile.m_pos;

		TRectD rectIn;
		TRenderSettings infoIn(info);
		TAffine appliedAff;

		if (!buildInput(rectOut, frame, info, rectIn, infoIn, appliedAff))
			return;

		const TRect &rectInI = myConvert(rectIn);

		// rasIn e' un raster dello stesso tipo di tile.getRaster()

		TTile inTile;
		m_fx->allocateAndCompute(inTile, rectIn.getP00(), TDimension(rectInI.getLx(), rectInI.getLy()),
								 tile.getRaster(), frame, infoIn);

		infoIn.m_affine = appliedAff;
		TRasterFx::applyAffine(tile, inTile, infoIn);
	}

	//-----------------------------------------------------------

	void doDryCompute(TRectD &rect, double frame, const TRenderSettings &info)
	{
		TRectD rectIn;
		TRenderSettings infoIn(info);
		TAffine appliedAff;

		if (!buildInput(rect, frame, info, rectIn, infoIn, appliedAff))
			return;

		m_fx->dryCompute(rectIn, frame, infoIn);
	}

	//-----------------------------------------------------------

	int getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
	{
		TRectD rectIn;
		TRenderSettings infoIn(info);
		TAffine appliedAff;

		if (!buildInput(rect, frame, info, rectIn, infoIn, appliedAff))
			return 0;

		return TRasterFx::memorySize(rectIn, info.m_bpp);
	}

private:
	bool buildInput(const TRectD &rectOut, double frame, const TRenderSettings &infoOut,
					TRectD &rectIn, TRenderSettings &infoIn, TAffine &appliedAff)
	{
		if (myIsEmpty(rectOut))
			return false;

		// Build the affines
		infoIn.m_affine = m_fx->handledAffine(infoOut, frame);
		appliedAff = infoOut.m_affine * infoIn.m_affine.inv();

		// Quick fix - prevent near-singular transforms.
		// NOTE: This check **SHOULD BE REMOVED** and dealt with at the RESAMPLING level.
		//       Observe how the tolerance value is quite arbitrary! Yeah I know it's shameful... :(
		if (fabs(appliedAff.det()) < 1e-6) // TO BE REMOVED
			return false;				   // TO BE REMOVED

		// Build the input rect
		const TAffine &appliedAffInv = appliedAff.inv();
		int filterRadius = getResampleFilterRadius(infoOut);

		TRectD bbox;
		m_fx->getBBox(frame, bbox, infoIn);

		rectIn = ((appliedAffInv * rectOut).enlarge(filterRadius) + // The filter size applies in input during
				  (appliedAffInv * rectOut.enlarge(filterRadius))) *
				 bbox; // magnifications, and in output during
					   // minifications. Thus, they basically cumulate.
		if (myIsEmpty(rectIn))
			return false;

		enlargeToI(rectIn);
		return true;
	}
};

FX_IDENTIFIER_IS_HIDDEN(TrFx, "trFx")

//==============================================================================
//
// FxResourceBuilder
//
//------------------------------------------------------------------------------

// This class is the internal interface with the cache regarding intermediate render
// results. Please refer to the ResourceBuilder documentation in tfxcachemanager.cpp
class FxResourceBuilder : public ResourceBuilder
{
	TRasterFxP m_rfx;
	double m_frame;
	const TRenderSettings *m_rs;

	TTile *m_outTile;
	TTile *m_currTile;
	TTile m_newTile;

	TRectD m_outRect;

public:
	FxResourceBuilder(const std::string &resourceName,
					  const TRasterFxP &fx, const TRenderSettings &rs, double frame)
		: ResourceBuilder(resourceName, fx.getPointer(), frame, rs), m_rfx(fx), m_frame(frame), m_rs(&rs), m_currTile(0) {}

	inline void build(TTile &tile);

protected:
	void simCompute(const TRectD &rect)
	{
		TRectD rectCpy(rect); //Why the hell dryCompute(..) has non-const TRectD& input ????
		m_rfx->doDryCompute(rectCpy, m_frame, *m_rs);
	}

	void buildTileToCalculate(const TRectD &tileRect);
	void compute(const TRectD &tileRect);

	void upload(TCacheResourceP &resource);
	bool download(TCacheResourceP &resource);
};

//------------------------------------------------------------------------------

inline void FxResourceBuilder::build(TTile &tile)
{
	m_outTile = &tile;

	TDimension dim(tile.getRaster()->getSize());
	m_outRect = TRectD(tile.m_pos, TDimensionD(dim.lx, dim.ly));

	ResourceBuilder::build(m_outRect);
}

//------------------------------------------------------------------------------

void FxResourceBuilder::buildTileToCalculate(const TRectD &tileGeom)
{
	if (tileGeom == m_outRect) {
		m_currTile = m_outTile;
		return;
	}

	m_newTile.m_pos = tileGeom.getP00();

	TRasterP outRas(m_outTile->getRaster());

	//If possible, try to reuse outRas's buffer.

	TDimension outputSize(outRas->getSize());
	TDimension requiredSize(tceil(tileGeom.getLx()), tceil(tileGeom.getLy()));

	TRasterP ras;
	if (outputSize.lx >= requiredSize.lx && outputSize.ly >= requiredSize.ly) {
		//Reuse fxOutput's buffer
		TRect rect(0, 0, requiredSize.lx - 1, requiredSize.ly - 1);
		ras = outRas->extract(rect);
		ras->clear();
	} else
		ras = outRas->create(requiredSize.lx, requiredSize.ly);

	m_newTile.setRaster(ras);

	m_currTile = &m_newTile;
}

//------------------------------------------------------------------------------

void FxResourceBuilder::compute(const TRectD &tileRect)
{
#ifdef DIAGNOSTICS
	TStopWatch sw;
	sw.start();
#endif

	buildTileToCalculate(tileRect);
	m_rfx->doCompute(*m_currTile, m_frame, *m_rs);

#ifdef DIAGNOSTICS
	sw.stop();

	DIAGNOSTICS_THRSET("FComputeTime", sw.getTotalTime());
#endif
}

//------------------------------------------------------------------------------

void FxResourceBuilder::upload(TCacheResourceP &resource)
{
	resource->upload(*m_currTile);
	if (m_currTile == &m_newTile)
		m_newTile.setRaster(0);
}

//------------------------------------------------------------------------------

bool FxResourceBuilder::download(TCacheResourceP &resource)
{
	//In case the output tile was used to calculate the fx, avoid downloading
	if (m_currTile == m_outTile)
		return true;

	return resource->downloadAll(*m_outTile);
}

//==============================================================================
//
// TRasterFx
//
//------------------------------------------------------------------------------

class TRasterFx::TRasterFxImp
{
public:
	bool m_cacheEnabled;
	TTile m_cachedTile;
	double m_frame;
	bool m_isEnabled;

	TRenderSettings m_info;
	std::string m_interactiveCacheId;
	mutable TThread::Mutex m_mutex; //brutto

	TRasterFxImp() : m_cacheEnabled(false), m_isEnabled(true), m_cachedTile(0)
	{
	}

	~TRasterFxImp() {}

	void enableCache(bool on)
	{
		QMutexLocker sl(&m_mutex);
		m_cacheEnabled = on;
		if (!m_cacheEnabled) {
			m_interactiveCacheId = "";
			m_frame = 0;
			m_info = TRenderSettings();
			m_cachedTile.setRaster(0);
			m_cachedTile.m_pos = TPointD();
		}
	}

	bool isCacheEnabled() const
	{
		return m_cacheEnabled;
	}

	bool isEnabled() const
	{
		QMutexLocker sl(&m_mutex); // a che serve??
		return m_isEnabled;
	}

	void enable(bool on)
	{
		QMutexLocker sl(&m_mutex); // a che serve
		m_isEnabled = on;
	}
};

//--------------------------------------------------

TRasterFx::TRasterFx()
	: m_rasFxImp(new TRasterFxImp)
{
}

//--------------------------------------------------

TRasterFx::~TRasterFx()
{
	delete m_rasFxImp;
}

//--------------------------------------------------

TAffine TRasterFx::handledAffine(const TRenderSettings &info, double frame)
{
	return (
			   info.m_affine.a11 == info.m_affine.a22 &&
			   info.m_affine.a12 == 0 && info.m_affine.a21 == 0 &&
			   info.m_affine.a13 == 0 && info.m_affine.a23 == 0)
			   ? info.m_affine
			   : TScale(norm2(info.m_affine));
}

//--------------------------------------------------

bool TRasterFx::getBBox(double frame, TRectD &bBox, const TRenderSettings &info)
{
	bool ret = doGetBBox(frame, bBox, info);
	bBox = info.m_affine * bBox;
	enlargeToI(bBox);
	return ret;
}

//--------------------------------------------------

void TRasterFx::transform(double frame,
						  int port,
						  const TRectD &rectOnOutput,
						  const TRenderSettings &infoOnOutput,
						  TRectD &rectOnInput,
						  TRenderSettings &infoOnInput)
{
	rectOnInput = rectOnOutput;
	infoOnInput = infoOnOutput;
}

//--------------------------------------------------

int TRasterFx::memorySize(const TRectD &rect, int bpp)
{
	if (rect.x1 <= rect.x0 || rect.y1 <= rect.y0)
		return 0;

	return (unsigned long)(rect.getLx() + 1) * (unsigned long)(rect.getLy() + 1) * (bpp >> 3) >> 20;
}

//--------------------------------------------------

//! Specifies the approximate size (in MegaBytes) of the maximum allocation instance that this fx
//! will need to perform in order to render the passed input.
//! This method should be reimplemented in order to make the Toonz rendering process aware of
//! the use of big raster memory chunks, at least.
//! Observe that the passed tile geometry is implicitly <i> already allocated <\i> for the fx output.
//! \n
//! The default implementation returns 0, assuming that the passed implicit memory size is passed
//! below in node computation without further allocation of resources. Fxs can reimplement this
//! to -1 to explicitly disable the Toonz's smart memory handling.
//! \n \n
//! \note The rendering process ensures that the passed render settings are \a handled
//! by the fx before this function is invoked - do not waste code for it.
//! \sa TRasterFx::memorySize and TRasterFx::canHandle methods.

int TRasterFx::getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info)
{
	return 0;
}

//--------------------------------------------------

std::string TRasterFx::getAlias(double frame, const TRenderSettings &info) const
{
	std::string alias = getFxType();
	alias += "[";

	// alias degli effetti connessi alle porte di input separati da virgole
	// una porta non connessa da luogo a un alias vuoto (stringa vuota)
	int i;
	for (i = 0; i < getInputPortCount(); i++) {
		TFxPort *port = getInputPort(i);
		if (port->isConnected()) {
			TRasterFxP ifx = port->getFx();
			assert(ifx);
			alias += ifx->getAlias(frame, info);
		}
		alias += ",";
	}

	// alias dei valori dei parametri dell'effetto al frame dato
	for (i = 0; i < getParams()->getParamCount(); i++) {
		TParam *param = getParams()->getParam(i);
		alias += param->getName() + "=" + param->getValueAlias(frame, 3);
	}

	alias += "]";
	return alias;
}

//--------------------------------------------------

void TRasterFx::dryCompute(TRectD &rect,
						   double frame,
						   const TRenderSettings &info)
{
	if (checkActiveTimeRegion() && !getActiveTimeRegion().contains(frame))
		return;

	if (!getAttributes()->isEnabled() || !m_rasFxImp->isEnabled()) {
		if (getInputPortCount() == 0)
			return;

		TFxPort *port = getInputPort(getPreferredInputPort());

		if (port->isConnected())
			TRasterFxP(port->getFx())->dryCompute(rect, frame, info);

		return;
	}

	//If the input tile has a fractionary position, it is passed to the
	//rendersettings' accumulated affine.
	TPoint intTilePos(tfloor(rect.x0), tfloor(rect.y0));
	TPointD fracTilePos(rect.x0 - intTilePos.x, rect.y0 - intTilePos.y);
	TPointD fracInfoTranslation(
		info.m_affine.a13 - fracTilePos.x,
		info.m_affine.a23 - fracTilePos.y);
	TPoint intInfoTranslation(tfloor(fracInfoTranslation.x), tfloor(fracInfoTranslation.y));
	TPointD newTilePos(intTilePos.x - intInfoTranslation.x, intTilePos.y - intInfoTranslation.y);

	if (rect.getP00() != newTilePos) {
		TRenderSettings newInfo(info);
		newInfo.m_affine.a13 = fracInfoTranslation.x - intInfoTranslation.x;
		newInfo.m_affine.a23 = fracInfoTranslation.y - intInfoTranslation.y;

		TRectD newRect(newTilePos, rect.getSize());

		dryCompute(newRect, frame, newInfo);
		return;
	}

	//If the fx can't handle the whole affine passed with the TRenderSettings, the part
	//of it that the fx can't handle is retained and applied by an affine transformer fx (TrFx)
	//after the node has been computed.
	bool canHandleAffine = canHandle(info, frame) || (handledAffine(info, frame) == info.m_affine);
	if (!info.m_affine.isIdentity() && !canHandleAffine) {
		TrFx *transformerFx = new TrFx;
		TFxP locker(transformerFx);
		transformerFx->setFx(this);
		transformerFx->dryCompute(rect, frame, info);
		return;
	}

	std::string alias = getAlias(frame, info) + "[" + ::traduce(info.m_affine) + "][" + ::toString(info.m_bpp) + "]";

	int renderStatus = TRenderer::instance().getRenderStatus(TRenderer::renderId());
	TFxCacheManager *cacheManager = TFxCacheManager::instance();

	if (renderStatus == TRenderer::FIRSTRUN) {
		TRectD bbox;
		//ret = getBBox... puo' darsi che l'enlarge del trFx (o naturale del bbox) faccia
		//diventare TRectD() non vuoto!!
		getBBox(frame, bbox, info);
		enlargeToI(bbox);

		TRectD interestingRect(rect * bbox);
		if (myIsEmpty(interestingRect))
			return;

		//Declare the tile to the tiles manager
		ResourceBuilder::declareResource(
			alias, this,
			interestingRect, frame, info);

		doDryCompute(interestingRect, frame, info);
	} else {
		TRectD bbox;
		getBBox(frame, bbox, info);
		enlargeToI(bbox);

		TRectD interestingRect(rect * bbox);
		if (myIsEmpty(interestingRect))
			return;

		//Invoke the fx-specific simulation process
		FxResourceBuilder rBuilder(alias, this, info, frame);
		rBuilder.simBuild(interestingRect);
	}
}

//--------------------------------------------------

//! Declares the computation scheme of this fx for rendering optimization purposes.
//! This is an important function of the Toonz rendering API, and should be reimplemented
//! with the necessary care.
//! The Toonz rendering process makes use of this function to enact most of the
//! optimization steps about the fx computation, in particular fx caching.
//! A correct implementation of this method should follow these rules:
//! <li> The invocation of child node computations should be faithfully reproduced.
//! <li> TRasterFx::compute and TRasterFx::allocateAndCompute calls have to be
//!      translated to TRasterFx::dryCompute calls.
//! <li> This fx is intended for precomputation stage, so the hard rendering code
//!      should be skipped here.
//! By default, this method raises a dryCompute call to each input port in increasing
//! order, using the TRasterFx::transform method to identify the tiles to be passed
//! on input precomputation.
void TRasterFx::doDryCompute(TRectD &rect,
							 double frame,
							 const TRenderSettings &info)
{
	int inputPortCount = getInputPortCount();
	for (int i = 0; i < inputPortCount; ++i) {
		TFxPort *port = getInputPort(i);
		if (port->isConnected()) {
			TRectD rectOnInput;
			TRenderSettings infoOnInput;

			TRasterFxP fx = port->getFx();
			transform(frame, i, rect, info, rectOnInput, infoOnInput);

			if (!myIsEmpty(rectOnInput))
				fx->dryCompute(rectOnInput, frame, infoOnInput);
		}
	}
}

//--------------------------------------------------

//! This is an overloaded member function that deals with
//! the allocation of an input tile before invoking the TRasterFx::compute
//! method on it.
void TRasterFx::allocateAndCompute(
	TTile &tile,
	const TPointD &pos, const TDimension &size,
	TRasterP templateRas, double frame,
	const TRenderSettings &info)
{
	if (templateRas) {
		TRaster32P ras32(templateRas);
		TRaster64P ras64(templateRas);
		templateRas = 0; //Release the reference to templateRas before allocation

		TRasterP tileRas;
		if (ras32)
			tileRas = TRaster32P(size.lx, size.ly);
		else if (ras64)
			tileRas = TRaster64P(size.lx, size.ly);
		else {
			assert(false);
			return;
		}

		tile.setRaster(tileRas);
	} else {
		if (info.m_bpp == 32) {
			TRaster32P tileRas(size.lx, size.ly);
			tile.setRaster(tileRas);
		} else if (info.m_bpp == 64) {
			TRaster64P tileRas(size.lx, size.ly);
			tile.setRaster(tileRas);
		} else
			assert(false);
	}

	tile.m_pos = pos;
	compute(tile, frame, info);
}

//-----------------------------------------------------------------------

//! This method supplies the actual fx rendering code.

void TRasterFx::compute(TTile &tile, double frame,
						const TRenderSettings &info)
{
	//If the render was aborted, avoid everything
	//if(TRenderer::instance().isAborted(TRenderer::renderId()))
	//  throw TException("Render canceled");

	if (checkActiveTimeRegion() && !getActiveTimeRegion().contains(frame))
		return;

	if (!getAttributes()->isEnabled() || !m_rasFxImp->isEnabled()) {
		if (getInputPortCount() == 0)
			return;

		TFxPort *port = getInputPort(0);

		//la porta 0 non deve essere una porta di controllo
		assert(port->isaControlPort() == false);

		if (port->isConnected()) {
			TRasterFxP(port->getFx())->compute(tile, frame, info);
			return;
		}

		return;
	}

	//If the input tile has a fractionary position, it is passed to the
	//rendersettings' accumulated affine. At the same time, the integer part of
	//such affine is transferred to the tile.
	TPoint intTilePos(tfloor(tile.m_pos.x), tfloor(tile.m_pos.y));
	TPointD fracTilePos(tile.m_pos.x - intTilePos.x, tile.m_pos.y - intTilePos.y);
	TPointD fracInfoTranslation(
		info.m_affine.a13 - fracTilePos.x,
		info.m_affine.a23 - fracTilePos.y);
	TPoint intInfoTranslation(tfloor(fracInfoTranslation.x), tfloor(fracInfoTranslation.y));
	TPointD newTilePos(intTilePos.x - intInfoTranslation.x, intTilePos.y - intInfoTranslation.y);
	/*-- 入力タイルの位置が、小数値を持っていた場合 --*/
	if (tile.m_pos != newTilePos) {
		/*-- RenderSettingsのaffine行列に位置ずれを足しこむ --*/
		TRenderSettings newInfo(info);
		newInfo.m_affine.a13 = fracInfoTranslation.x - intInfoTranslation.x;
		newInfo.m_affine.a23 = fracInfoTranslation.y - intInfoTranslation.y;
		/*-- タイルの位置は整数値にする --*/
		TPointD oldPos(tile.m_pos);
		tile.m_pos = newTilePos;

		compute(tile, frame, newInfo);

		tile.m_pos = oldPos;
		return;
	}

	bool canHandleAffine = canHandle(info, frame) || (handledAffine(info, frame) == info.m_affine);
	if (!info.m_affine.isIdentity() && !canHandleAffine) {
		TrFx *transformerFx = new TrFx;
		TFxP locker(transformerFx);
		transformerFx->setFx(this);
		transformerFx->compute(tile, frame, info);
		return;
	}

	//Retrieve tile's geometry
	TRectD tilePlacement = myConvert(tile.getRaster()->getBounds()) + tile.m_pos;

	//Build the fx result alias (in other words, its name)
	std::string alias = getAlias(frame, info) + "[" + ::traduce(info.m_affine) + "][" + ::toString(info.m_bpp) + "]"; //To be moved below

	TRectD bbox;
	getBBox(frame, bbox, info);
	enlargeToI(bbox);

	TRectD interestingRect(tilePlacement * bbox);
	if (myIsEmpty(interestingRect))
		return;

	//Extract the interesting tile from requested one
	TTile interestingTile;
	interestingTile.m_pos = interestingRect.getP00();
	TRect interestingRectI(myConvert(interestingRect - tilePlacement.getP00()));
	interestingTile.setRaster(tile.getRaster()->extract(interestingRectI));

#ifdef DIAGNOSTICS

	//1. Push fx name on call stack
	QString fxName = QString::fromStdString(getDeclaration()->getId());

	DIAGNOSTICS_PUSH("FName", fxName);
	DIAGNOSTICS_THRSET("FComputeTime", 0);

	TStopWatch sw;
	sw.start();

#endif

	//Invoke the fx-specific computation process
	FxResourceBuilder rBuilder(alias, this, info, frame);
	rBuilder.build(interestingTile);

#ifdef DIAGNOSTICS
	sw.stop();

	QString countsStr("#ftimes.txt | 4. " + fxName + " | 4. Calls count");
	QString fxStr("fcum_4. " + fxName);

	long computeTime = DIAGNOSTICS_THRGET("FComputeTime");
	long fxTime = sw.getTotalTime();
	long fxCumulativeTime = DIAGNOSTICS_GLOGET(fxStr);
	long count = DIAGNOSTICS_GET(countsStr);

	//2. Add this time to fx time, and subtract it from parent time
	DIAGNOSTICS_GLOADD(fxStr, computeTime);
	DIAGNOSTICS_ADD(countsStr, 1);
	DIAGNOSTICS_SET("#ftimes.txt | 4. " + fxName + " | 3. Mean time", (fxCumulativeTime + computeTime) / (count + 1));

	DIAGNOSTICS_POP("FName", 1);
	QString parentFxName = DIAGNOSTICS_STACKGET("FName");
	if (!parentFxName.isEmpty())
		DIAGNOSTICS_GLOADD("fcum_4. " + parentFxName, -fxTime);

	DIAGNOSTICS_GLOADD("fcum_03. Cached Fxs Retrieval", fxTime - computeTime);
#endif

#ifdef WRITEIMAGES
	static int iCount = 0;
	QString qPath("C:\\butta\\image_" + QString::number(++iCount).rightJustified(3, '0') + ".tif");
	TImageWriter::save(TFilePath(qPath.toStdWString()), tile.getRaster());

	if (iCount >= 35)
		int aa = 1;
#endif

	/*
  return;

tryCanceled:

  //if(TRenderer::instance().isAborted(TRenderer::renderId()))
  //  throw TException("Render canceled");
  ;
*/
}

//------------------------------------------------------------------------------

TRasterP TRasterFx::applyAffine(
	TTile &tileOut,
	const TTile &tileIn,
	const TRenderSettings &info)
{
	TAffine aff = info.m_affine;

	TRasterP src_ras = tileIn.getRaster();
	TRasterP dst_ras = tileOut.getRaster();

	if (aff.isTranslation()) {
		//Check the tile origins' fractionary displacement
		TPointD diff(tileOut.m_pos - tileIn.m_pos - TPointD(aff.a13, aff.a23));
		double fracX = diff.x - tfloor(diff.x);
		double fracY = diff.y - tfloor(diff.y);

		if ((fracX < 0.01 || fracX > 0.99) && (fracY < 0.01 || fracY > 0.99)) {
			//Just copy part of tileIn into tileOut
			TRect geomIn(src_ras->getBounds());
			TRect geomOut(dst_ras->getBounds());
			TPoint diffI(convert(diff));
			geomIn -= diffI;
			geomOut += diffI;
			geomIn *= dst_ras->getBounds();
			geomOut *= src_ras->getBounds();

			if (geomIn.isEmpty())
				return dst_ras;

			TRasterP rasIn(src_ras->extract(geomOut));
			TRasterP rasOut(dst_ras->extract(geomIn));
			TRop::copy(rasOut, rasIn);

			return dst_ras;
		}
	}

	TRectD rectIn = myConvert(src_ras->getBounds()) + tileIn.m_pos;
	TRectD rectOut = myConvert(dst_ras->getBounds()) + tileOut.m_pos;

	TRectD rectInAfter = aff * myConvert(src_ras->getBounds());
	TAffine rasterAff = TTranslation((aff * rectIn).getP00() - rectOut.getP00() - rectInAfter.getP00()) * aff;

	TRop::ResampleFilterType qual;
	switch (info.m_quality) {
	case TRenderSettings::StandardResampleQuality:
		qual = TRop::Triangle;
		break;
	case TRenderSettings::ImprovedResampleQuality:
		qual = TRop::Hann2;
		break;
	case TRenderSettings::HighResampleQuality:
		qual = TRop::Hamming3;
		break;
	case TRenderSettings::Triangle_FilterResampleQuality:
		qual = TRop::Triangle;
		break;
	case TRenderSettings::Mitchell_FilterResampleQuality:
		qual = TRop::Mitchell;
		break;
	case TRenderSettings::Cubic5_FilterResampleQuality:
		qual = TRop::Cubic5;
		break;
	case TRenderSettings::Cubic75_FilterResampleQuality:
		qual = TRop::Cubic75;
		break;
	case TRenderSettings::Cubic1_FilterResampleQuality:
		qual = TRop::Cubic1;
		break;
	case TRenderSettings::Hann2_FilterResampleQuality:
		qual = TRop::Hann2;
		break;
	case TRenderSettings::Hann3_FilterResampleQuality:
		qual = TRop::Hann3;
		break;
	case TRenderSettings::Hamming2_FilterResampleQuality:
		qual = TRop::Hamming2;
		break;
	case TRenderSettings::Hamming3_FilterResampleQuality:
		qual = TRop::Hamming3;
		break;
	case TRenderSettings::Lanczos2_FilterResampleQuality:
		qual = TRop::Lanczos2;
		break;
	case TRenderSettings::Lanczos3_FilterResampleQuality:
		qual = TRop::Lanczos3;
		break;
	case TRenderSettings::Gauss_FilterResampleQuality:
		qual = TRop::Gauss;
		break;
	case TRenderSettings::ClosestPixel_FilterResampleQuality:
		qual = TRop::ClosestPixel;
		break;
	case TRenderSettings::Bilinear_FilterResampleQuality:
		qual = TRop::Bilinear;
		break;
	default:
		assert(false);
	}

	TRop::resample(dst_ras, src_ras, rasterAff, qual);

	return dst_ras;
}

//--------------------------------------------------

bool TRasterFx::isCacheEnabled() const
{
	return m_rasFxImp->m_cacheEnabled;
}

//--------------------------------------------------

void TRasterFx::enableCache(bool on)
{
	m_rasFxImp->enableCache(on);
}

//==============================================================================
//
// TRenderSettings
//
//------------------------------------------------------------------------------

TRenderSettings::TRenderSettings()
	: m_gamma(1), m_timeStretchFrom(25), m_timeStretchTo(25), m_stereoscopicShift(0.05), m_bpp(32), m_maxTileSize((std::numeric_limits<int>::max)()), m_shrinkX(1), m_shrinkY(1), m_quality(StandardResampleQuality), m_fieldPrevalence(NoField), m_stereoscopic(false), m_isSwatch(false), m_applyShrinkToViewer(false), m_userCachable(true), m_isCanceled(NULL)
{
}

//------------------------------------------------------------------------------

TRenderSettings::~TRenderSettings()
{
}

//------------------------------------------------------------------------------

std::string TRenderSettings::toString() const
{
	std::string ss =
		::toString(m_bpp) + ";" +
		::toString(m_quality) + ";" +
		::toString(m_gamma) + ";" +
		::toString(m_timeStretchFrom) + ";" +
		::toString(m_timeStretchTo) + ";" +
		::toString(m_fieldPrevalence) + ";" +
		::toString(m_shrinkX) + "," +
		::toString(m_shrinkY) + ";" +
		::toString(m_affine.a11) + "," +
		::toString(m_affine.a12) + "," +
		::toString(m_affine.a13) + "," +
		::toString(m_affine.a21) + "," +
		::toString(m_affine.a22) + "," +
		::toString(m_affine.a23) + ";" +
		::toString(m_maxTileSize) + ";" +
		::toString(m_isSwatch) + ";" +
		::toString(m_userCachable) + ";{";
	if (!m_data.empty()) {
		ss += m_data[0]->toString();
		for (int i = 1; i < (int)m_data.size(); i++)
			ss += "," + m_data[i]->toString();
	}
	ss += "}";
	return ss;
}

//------------------------------------------------------------------------------

bool TRenderSettings::operator==(const TRenderSettings &rhs) const
{
	if (m_bpp != rhs.m_bpp ||
		m_quality != rhs.m_quality ||
		m_fieldPrevalence != rhs.m_fieldPrevalence ||
		m_stereoscopic != rhs.m_stereoscopic ||
		m_stereoscopicShift != rhs.m_stereoscopicShift ||
		m_gamma != rhs.m_gamma ||
		m_timeStretchFrom != rhs.m_timeStretchFrom ||
		m_timeStretchTo != rhs.m_timeStretchTo ||
		m_shrinkX != rhs.m_shrinkX ||
		m_shrinkY != rhs.m_shrinkY ||
		m_applyShrinkToViewer != rhs.m_applyShrinkToViewer ||
		m_maxTileSize != rhs.m_maxTileSize ||
		m_affine != rhs.m_affine ||
		m_mark != rhs.m_mark ||
		m_isSwatch != rhs.m_isSwatch ||
		m_userCachable != rhs.m_userCachable)
		return false;

	return std::equal(m_data.begin(), m_data.end(), rhs.m_data.begin(), areEqual);
}

//------------------------------------------------------------------------------

bool TRenderSettings::operator!=(const TRenderSettings &rhs) const
{
	return !operator==(rhs);
}